lead IV acetate eros rl006


LEAD(IV) ACETATE 1
predominates (eq 3).12 Conjugated dienes undergo 1,2- and 1,4-
Lead(IV) Acetate1
diacetoxylation,13 while cyclopentadiene in wet acetic acid gives
monoacetates of cis-cyclopentene-1,2-diol (eq 4).14
Pb(OAc)4
LTA
C6H13
MeOH
[546-67-8] C8H12O8Pb (MW 443.37)
OMe OMe O
InChI = 1/4C2H4O2.Pb/c4*1-2(3)4;/h4*1H3,(H,3,4);/q;;;;+4/p-
OMe + OAc +
4/f4C2H3O2.Pb/q4*-1;m
C6H13 C6H13 C6H13 (1)
InChIKey = JEHCHYAKAXDFKV-XDSBQQJHCT
52% 12% 23%
(oxidizing agent for different functional groups;1 oxidation of un-
LTA, AcOH
45 °C
saturated and aromatic hydrocarbons;2 oxidation of monohydrox-
(2)
MeO MeO
ylic alcohols to cyclic ethers;3 1,2-glycol cleavage;4 acetoxylation
94%
OAc
of ketones;1 decarboxylation of acids;5 oxidative transformations
AcO
of nitrogen-containing compounds6)
LTA
Alternate Names: lead tetraacetate; LTA.
AcOH
ć%
Physical Data: mp 175 180 C; d 2.228 g cm-3.
OAc
Solubility: soluble in hot acetic acid, benzene, cyclohexane, chlo- OAc
roform, carbon tetrachloride, methylene chloride; reacts rapidly
OAc OAc
+ + (3)
with water.
Form Supplied in: colorless crystals (moistened with acetic acid
86% 11% 1%
and acetic anhydride); widely available, 95 97%.
LTA, AcOH
Analysis of Reagent Purity: iodometrical titration.
O
H2O, rt
Drying: in some cases, acetic acid must be completely removed
(4)
H, Ac
75 80%
by drying the reagent in a vacuum desiccator over potassium
O
hydroxide and phosphorus pentoxide for several days.
Handling, Storage, and Precautions: the solid reagent is very
Aromatic hydrocarbons react with LTA in two ways: on the
hygroscopic and must be stored in the absence of moisture.
aromatic ring and at the benzylic position of the side chain.
Bottles of lead tetraacetate should be kept tightly sealed and
Oxidation of the aromatic ring results in substitution of aromatic
ć%
stored under 10 C in the dark and in the presence of about 5%
hydrogens by acetoxy or methyl groups.1c Benzene itself is stable
of glacial acetic acid.
towards LTA at reflux and is frequently used as solvent in
LTA reactions. However, mono- and polymethoxybenzene deriva-
tives are oxidized by LTA in acetic acid to give acetoxylation
products (eq 5).15 Oxidation of anthracene in benzene gives 9,10-
Original Commentary
diacetoxy-9,10-dihydroanthracene, whereas in AcOH a mixture
of 10-acetoxy-9-oxo-9,10-dihydroanthracene and anthraquinone
Ø Ø
Mihailo Lj. Mihailović & Zivorad Ceković
is obtained.16 The LTA oxidation of furan affords 2,5-diacetoxy-
University of Belgrade, Belgrade, Serbia
2,5-dihydrofuran (eq 6).17
Oxidations of Alkenic and Aromatic Hydrocarbons. Lead
LTA
AcOH
tetraacetate reacts with alkenes in two ways: addition of an oxygen
MeO OMe MeO OMe (5)
functional group on the double bond and substitution for hydrogen
58%
at the allylic position.2 In addition to these two general reactions,
OAc
depending on the structure of the alkene, other reactions such as
LTA
skeletal rearrangement, double bond migration, and C C bond
AcOH
cleavage can occur, leading to complex mixtures of products, and (6)
AcO OAc
OO
69%
these reactions therefore have little synthetic value (eq 1).1a,b,2,7
Styrenes afford 1,1-diacetoxy derivatives when the LTA reaction
Aromatic compounds possessing a C H group at the benzylic
is performed in acetic acid (eq 2), while in benzene solution
position are readily oxidized by LTA to the corresponding
products resulting from the addition of both the methyl and an
benzyl acetates. Benzylic acetoxylation is preferably performed in
acetoxy group to the alkenic double bond are formed.7,8 Other
refluxing acetic acid (eq 7).18 Acetoxylation at the benzylic posi-
nucleophiles, such as azide ion, carbanions, etc. can be introduced
tion can be accompanied by methylation of the aromatic ring,
onto the alkenic bond in a similar fashion.9 In the LTA oxida-
followed sometimes by acetoxylation of the newly introduced
tion of cyclic alkenes, depending on ring size, structure, solvent,
methyl group.18
and reaction conditions, several types of products are formed.
Thus 1,2-diacetates and 3-acetoxycycloalkenes are obtained OAc
LTA
from cyclohexene (cyclopentanecarbaldehyde is also formed),10
AcOH
cycloheptene, and cyclooctene.11 Norbornene reacts with LTA to (7)
62%
give rearrangement products in which 2,7-diacetoxynorbornane MeO MeO
Avoid Skin Contact with All Reagents
2 LEAD(IV) ACETATE
LTA
Oxidative Cyclization of Alcohols to Cyclic Ethers. The LTA
benzene
oxidation of saturated alcohols, containing at least four carbon
EtO OH
reflux
atoms in an alkyl chain or an appropriate carbon skeleton, to
five-membered cyclic ethers represents a convenient synthetic
OEt
+ (11)
method for intramolecular introduction of an ether oxygen func-
O
O OEt
tion at the nonactivated ´-carbon atom of a methyl, methylene, or
46% 2%
methine group (eq 8).3,19,20 The reactions are carried out in non-
polar solvents, such as benzene, cyclohexane, heptane, and carbon
Secondary aliphatic alcohols containing a ´-methylene group
tetrachloride, either at reflux temperature1a,d,3,20,21 or by UV
afford a cis/trans mixture of 2,5-dialkyltetrahydrofurans in about
irradiation at rt.22
33 70% yield (eq 12).20,22 The LTA oxidation of secondary
alcohols is much slower than that of primary alcohols and iso-
´
R1 LTA
meric six-membered cyclic ethers are not formed.20,21 Tertiary
R
R R1 (8)
O aliphatic alcohols, because of unfavorable steric and electronic
benzene, reflux
OH
factors, are less suitable for the preparation of tetrahydrofurans
by LTA oxidation.22,27
The conversion of alcohols to cyclic ethers is a complex reaction
LTA
involving several steps: (i) reversible alkoxylation of LTA by the
benzene
(12)
substrate; (ii) homolytic cleavage of the RO Pb bond in the result- +
O O
reflux
OH
ing alkoxy lead(IV) acetate with formation of an alkoxy radical;
40 45:55 60
(iii) intramolecular 1,5-hydrogen abstraction in this oxy radical
whereby a ´-alkyl radical is generated; (iv) oxidative ring closure
In the cycloalkanol series, the ease of intramolecular for-
to a cyclic ether via the corresponding ´-alkyl cation (eq 9).3,20
mation of cyclic ether products strongly depends on ring size.
The crucial step is the formation of the ´-alkyl radical by way of
Cyclohexanol, upon treatment with LTA, affords only 1% of 1,4-
1,5-hydrogen migration. This type of rearrangement is a general
cyclic ether, whereas cycloalkanols with a larger ring, such as
reaction of alkoxy radicals, and, independently of the radical pre-
cycloheptanol and cyclooctanol, can adopt appropriate conforma-
cursor, involves a transition state in which the ´-CH group must
tions necessary for transannular reaction, affording bicyclic ethers
be conformationally suitably oriented with respect to the attack-
in moderate yields (eq 13).28 Large-ring cycloalkanols, such as
ing oxygen radical.1,3,23,24 Regioselective hydrogen abstraction
cyclododecanol, cyclopentadecanol, and cyclohexadecanol, also
proceeds preferentially from the ´-carbon atom, since in that case
give the corresponding 1,4-epoxy compounds as major cyclization
an energetically favorable quasi-six-membered transition state is
products.3a,28 However, the special geometry of cyclodecanol is
involved.3,23,24
not favorable for the  normal reaction and the 1,4-cyclic ether is
formed in only 2.5% yield, whereas 1,2-epoxycyclodecane (13%)
Pb(OAc)3
´
LTA and the rearranged 8-ethyl-7-oxabicyclo[4.3.0]nonane (13%) are
O
OH
the predominant cyclization products.29
Ä… (ii)
(i)
LTA
OH
benzene
" OH
O"
O
O
(9) + (13)
O
(iii) (iv)
reflux
35% 1%
The LTA oxidation of primary aliphatic alcohols affords 2-
The LTA oxidation of alcohols to cyclic ethers has been success-
alkyltetrahydrofurans in 45 75% yield. A small amount of
fully applied as a synthetic method for activation of the angular
tetrahydropyran-type ether is also formed (eq 10).3a,20 The
18- and 19-methyl groups in steroidal alcohols containing a ²-
oxidation rate depends on the structural environment of the pro-
oriented hydroxy group at C-2, C-4, C-6, and C-11 (eq 14).3c,30,31
activated carbon atom, with the rate decreasing in the order:
Hydroxy terpenoids with suitable stereochemistry can also
methine > methylene > methyl ´-carbon atom.3 When the ´-
undergo transannular cyclic ether formation (eq 15).32
carbon atom is adjacent to an ether oxygen function, the reaction
rate and the yield of cyclic ethers increases.25 An ether oxygen
LTA
cyclohexane
attached to the ´-carbon atom increases considerably the yield of
OH reflux
six-membered cyclic ethers (eq 11). An aromatic ring adjacent
RO
40 90%
to a ´-methylene group does not noticeably affect the yield of
X
tetrahydrofuran ethers, but when the phenyl group is attached to
an µ-methylene group, the yield of six-membered cyclic ethers are X = H, Cl, Br, OH
O
enhanced.26
(14)
RO
X
LTA
benzene
LTA, benzene
R
+ (10)
ROH reflux
O
reflux
O R (15)
51%
45 75% 3 5% OH O
A list of General Abbreviations appears on the front Endpapers
LEAD(IV) ACETATE 3
Another possible reaction of alkoxy radical intermediates, formed (eq 20).38,39 The oxidation rates often provide a reliable
formed in the LTA oxidation of alcohols in nonpolar solvents, is means for the determination of the stereochemical relationship of
the ²-fragmentation reaction.3 This process, which competes with the hydroxy groups.39,40
intramolecular 1,5-hydrogen abstraction, consists of cleavage of
CO2Bu CO2Bu
a bond between the carbinol (Ä…) and ²-carbon atoms, thus afford-
H OH LTA CO2Bu
H O
ing a carbonyl-containing fragment and products derived from
Pb(OAc)2 (19)
2
benzene
CHO
an alkyl radical fragment (usually acetates and/or alkenes).1a,3,22 H OH H O
CO2Bu CO2Bu
77 87%
Interesting synthetic applications of the LTA ²-fragmentation
reaction are the formation of 19-norsteroids from their 19-hydroxy
OH
O OH
precursors and the preparation of 5,10-secosteroids (containing a
LTA LTA
HO
ten-membered ring) from 5-hydroxy steroids (eq 16).32
k = 100 k = 1
OH (20)
O
H
LTA, benzene
reflux
1,2-Glycol cleavage by LTA has been widely applied for the
(16)
oxidation of carbohydrates and sugars (eq 21).4,37 Because
39%
AcO AcO
OH O
of structural and stereochemical differences, the reactivity of
individual glycol units in sugar molecules is often different, thus
In the LTA oxidations of primary and secondary alcohols in non-
rendering the LTA reaction a valuable tool for structural deter-
polar solvents, the corresponding aldehydes or ketones are usually
mination and for degradation studies in carbohydrate chemistry.41
obtained as minor byproducts (up to 10%).3,20,21 However, in the
CH2OH
presence of excess pyridine or in pyridine alone, either with heat- O O
OHC CHO
LTA
H
O
ing or at rt, the cyclization and ²-fragmentation processes are sup-
AcOH
OH
(21)
pressed and good preparative yields of aldehydes or ketones are
OH
89%
O
OH OH
obtained (eq 17).20,21,33 Carbonyl compounds are also obtained
OH
when the LTA oxidation of alcohols is carried out in benzene so-
lution in the presence of manganese(II) acetate.33
Ä…-Acetoxylation of Ketones. The reaction of enolizable
OH LTA
pyridine ketones with LTA is a standard method for Ä…-acetoxylation
(eq 22).1,3,42 The reactions are usually carried out in hot acetic
acid or in benzene solution at reflux. The reaction proceeds via an
+ (17)
O
enol lead(IV) acetate intermediate, which undergoes rearrange-
O
ment to give the Ä…-acetoxylated ketone. Acetoxylation of ketones
58% 2%
is catalyzed by Boron Trifluoride.43 Enol ethers, enol esters,
enamines,1 ²-dicarbonyl compounds, ²-keto esters, and malonic
In addition to cyclic ethers, ²-fragmentation products, and car-
esters are also acetoxylated by LTA.42
bonyl compounds, acetates of starting alcohols are also usually
formed in the LTA oxidation, in yields up to 20%.20
Ph
Unsaturated alcohols, possessing an alkenic double bond at
O O
LTA
the ´ or more remote positions, react with LTA in nonpolar sol-
OAc
O O (22)
Ph
vents to give acetoxylated cyclic ethers in good yield (eq 18),34,35 Ph benzene
Pb O
AcO
75%
while 5-, 6- and 7-alkenols undergo in great predominance an
AcO
exo-type cyclization, affording six-, seven- and eight-membered
acetoxymethyl cyclic ethers, respectively.35
Decarboxylation of Acids. Oxidative decarboxylation of
OAc
LTA, benzene
carboxylic acids by LTA depends on the reaction conditions, core-
OH
OAc
+
agents, and structure of acids, and hence a variety of products
O
reflux
(18)
O
such as acetate esters, alkanes, alkenes, and alkyl halides can be
26% 14%
obtained.1,5 The reactions are performed in nonpolar solvents
(benzene, carbon tetrachloride) or polar solvents (acetic acid,
pyridine, HMPA).5 Mixed lead(IV) carboxylates are involved
1,2-Glycol Cleavage. LTA is one of the most frequently used
as intermediates, and by their thermal or photolytic decom-
reagents for the cleavage of 1,2-glycols and the preparation of
position decarboxylation occurs and alkyl radicals are formed
the resulting carbonyl compounds (eq 19).1,4 The reactions are
(eq 23).5,44,45
performed either in aprotic solvents (benzene, nitrobenzene, 1,2-
dichloroethane) or in protic solvents such as acetic acid.36,37 The
"
rate of LTA glycol cleavage is highly dependent on the structure n R CO2H + Pb(OAc)4 (RCO2)nPb(OAc)4 n
(or h½)
and stereochemistry of the substrate. In general, there is correla-
tion between the oxidation rate and the spatial proximity of the
n R" + CO2 + Pb(OAc)2 (23)
hydroxy groups.36 1,2-Diols having a geometry favoring the for-
mation of cyclic intermediates are much more reactive than 1,2- Oxidation of alkyl radicals by lead(IV) species give carboca-
diols whose structure does not permit such intermediates to be tions and, depending on the reaction conditions and structure of
Avoid Skin Contact with All Reagents
4 LEAD(IV) ACETATE
the substrate acids, various products derived from the intermedi- Oxidative Transformations of Nitrogen-containing Com-
ate alkyl radicals and corresponding carbocations (dimerization, pounds. The LTA oxidation of aliphatic primary amines con-
hydrogen transfer, elimination, substitution, rearrangement, etc.) taining an Ä…-methylene group results in dehydrogenation to alkyl
are obtained.5 Decarboxylation of primary and secondary acids cyanides (eq 31).51 However, aromatic primary amines give
usually affords acetate esters as major products (eq 24).44 When symmetrical azo compounds in varying yield (eq 32).52
a mixture of acetates and alkenes is formed, it is recommended
LTA, benzene
(in order to improve the yields of acetate esters) to run the reaction
reflux
in the presence of potassium acetate (eq 25).5 The LTA decarboxy- C6H13CH2NH2 C6H13CN (31)
62%
lation of tertiary carboxylic acids gives a mixture of alkenes and
acetate esters.46 For the preparative oxidative decarboxylation of
LTA, benzene
Ar
acids to alkenes, see Lead(IV) Acetate Copper(II) Acetate. reflux
Ar NH2 (32)
N N
30 50%
Ar
CO2H
OAc
LTA, benzene
reflux
(24) Primary amides react with LTA in the presence of alcohols to
75%
give the corresponding carbamates (eq 33), but in the absence of
alcohol, isocyanates are formed.53
benzene
OAc +
CONH2 LTA, t-BuOH NHCO2-t-Bu
reflux, 16 h
Et3N, 50 60 °C
13% 47%
(33)
LTA
(25)
CO2H
62%
AcOH, KOAc
77% 
60 °C, 0.3 h
Aliphatic ketoximes, upon treatment with LTA in an inert
solvent, undergo acetoxylation at the Ä…-carbon producing 1-
A useful modification of the LTA reaction with carboxylic acids
nitroso-1-acetoxyalkanes (eq 34),54 whereas hydrazones afford
is the oxidation in the presence of halide ions, whereby the corre-
azoacetates (eq 35) or, when the reactions are performed in
sponding alkyl halides are obtained (eqs 26 and 27).47 Halodecar-
alcohol solvent, azo ethers.55 Arylhydrazines, N,N -disubstituted
boxylations of acids are performed by addition of a molar equiv-
hydrazines,56 and N-amino compounds57 are oxidized by LTA to
alent of the metal halide (lithium, sodium, potassium chloride)
different products.
to a carboxylic acid and LTA, the reactions being performed in
boiling benzene solution.5,47 For the iododecarboxylation of
LTA NO
NOH
acids, see Lead(IV) Acetate Iodine.
CH2Cl2
OAc
(34)
78%
LTA, LiCl
benzene, reflux
i-Pr i-Pr
(26)
t-Bu CO2H t-Bu Cl
92%
H NAr
N Ar
LTA
N
LTA, LiCl
N (35)
benzene, reflux
OAc
CH2Cl2
CO2H Cl (27)
100%
Bis-decarboxylation of 1,2-dicarboxylic acids by LTA is a use- Other Applications. By LTA oxidation of phenols,
acetoxycyclohexadienones, quinones, and dimerization products
ful method for the introduction of alkenic bonds (eq 28).48 The
can be formed.58 Alkyl sulfides,59 alkyl hydroperoxides,60 and
reactions are performed in boiling benzene in the presence of
organometallic compounds61 are also oxidized by LTA.
pyridine or in DMSO. In some cases, LTA bis-decarboxylation
can be effected by using acid anhydrides (eq 29).49 Bis-
decarboxylation of 1,1-dicarboxylic acids yields the correspond-
ing ketones (eq 30).50
First Update
LTA, benzene
CO2Et CO2Et
py, 80 °C
CO2H
(28)
Brian M. Mathes
CO2H
65%
Eli Lilly and Company, Indianapolis, IN, USA
O
Formation of Alkyl Halides. Lead tetraacetate (LTA) has been
LTA, py
O (29) utilized to add halogens to a variety of unsaturated materials.
20%
Conversion of enol ethers to Ä…-haloketones has been realized.62
O
A wide variety of alkyl and silyl enol ethers was efficiently trans-
formed to the corresponding Ä…-haloketones using LTA and a metal
LTA, benzene
halide salt such as CaCl2 in protic solvents (eq 36). This technique
reflux
CO2H
is a very good complement to established halogenation reactions
O (30)
CO2H
60%
using bromine or N-halosuccinimides.
A list of General Abbreviations appears on the front Endpapers
LEAD(IV) ACETATE 5
OH O
OO
pyridine, CHCl3
Cl
LTA, CaCl2, MeOH, rt
(42)
(36)
(AcO)3Pb Ph
99%
Ph
LTA has been further used to affect the transformation of
alkenes to carboxylates ²-haloethers and (eqs 37 and 38).63
Oxidation. Trimethylsilyl ketene acetals can be oxidized to
LTA in acetic acid with metal halide salts at room temperature
Ä…-acetoxy carbonyl compounds in moderate yield using LTA
affords ²-halocarboxylates in good yields (eq 37). NaI, ZnBr2, and
(eq 43).71 Mechanistic data supports the theory that LTA attacks
ZnCl2 are the preferred halide sources. In some cases, these halide
the enol ether forming a reactive carbocation which traps the
addition reactions are regioselective, but are most often mixtures
carboxylate to form product. Solvent choice has a profound
of Markovnikov and anti-Markovnikov addition products. The
effect on the reaction, as dichloromethane is the preferred
corresponding ²-haloether synthesis gave regioselective addition
solvent for the formation of Ä…-carboxyloxy esters, while benzene
in the Markovnikov sense.
is better in the formation of Ä…-carboxyloxy lactones.
O O
LTA, NaI, AcOH
(37)
O OSiMe3 LTA, benzene O O
O
I (43)
66%
O
O
LTA, NaI, MeOH
(38)
LTA is reported to oxidize furans to the corresponding
I
furanones.72 After initial formation of a furanyl stannane, the stan-
nane is then tranmetallated with Pb. A bis-oxygenated interme-
Halogenated aryl compounds have been directly accessed using
diate is then formed and further treatment with acid affords the
LTA. Aryl chlorides have been obtained using LTA in combina-
desired product (eq 44).
tion with SnCl4 (eq 39).64 The reaction proceeds in high yield and
in most cases gives the expected regioisomers based on known
Oxidative Cyclization of Alcohols to Lactones. Alcohols can
substituent effects. A major benefit of this method is that alkyl
be cyclized to ethers as described above,3,19,20 however new
side-chains on the ring are unaltered, with only aryl chlorination
methodology has been found to insert carbon monoxide into this
observed. Similarly, using Br2or I2 in AcOH provides the corre-
reaction pathway to form lactones (eq 45).73 As noted, this re-
sponding aryl bromide and aryl iodide in good yield.65
action proceeds through a radical mechanism, with trapping of
CO. The major side-product for this reaction is the corresponding
LTA, SnCl4, CH2Cl2
(39)
cyclic ether, as expected. Suppression of this side-product can be
Cl
achieved by varying temperature and concentration of substrate.
1. n-BuLi, SnBu3Cl
O
Cl 2. LTA (2 equiv), CH2Cl2
96%
LTA, SnCl4, CH2Cl2
(40)
+
Cl
O
O
55:45
O
O
H2SO4, AcOH
(44)
O
95%
O
Alkylations. LTA can be used for the transmetallation of
various mercury and tin reagents in route to alkylations of
varied substrates. Transmetallation of vinyl, as well as aryl, tin,
CO (105 atm), LTA
and mercury reagents leads to a reactive Pb intermediate used in
OH
63%
the alkylation of soft carbon nucleophiles such as ²-dicarbonyl
compounds (eq 41).66,67,70 Mechanistic data suggest that these
relatively unstable lead compounds break down into reactive
O
cations.68 This methodology has been further extended to the
alkylation of phenols using both vinyl and alkynyl lead species
O
(45)
(eq 42).69
O
O
OEt
O
pyridine, CHCl3
Oxidative Heteroatom Rearrangements. LTA oxidations of
(41)
O
(AcO)3Pb Ph primary amines with unsaturated ortho substituents have been
OEt
used to access benzoxazoles (eq 46),74 benzimidazoles,75 and
Ph
indazoles (eq 47).76 In the benzoxazole case, the LTA
Avoid Skin Contact with All Reagents
6 LEAD(IV) ACETATE
cyclization tolerates a more diverse set of substituents on the aryl 1. (a) Mihailović, M. Lj.; eković, %7ń.; Lorenc, Lj. In Organic Synthesis
by Oxidation with Metal Compounds; Mijs, W. J.; de Jonge, C. R. H. I.,
ring than a comparable cyclization using azide.
Eds.; Plenum: New York, 1986; p 741. (b) Rubottom, G. M. In Oxidation
in Organic Chemistry; Trahanovsky, W. S., Ed.; Academic: New York,
O O
H
O
1982; Part D, p 1. (c) Butler, R. N. In Synthetic Reagents; Pizey, J. S.,
H
N
LTA, CHCl3
Ph N Ed.; Ellis Horwood: Chichester, 1977; Vol. 3, p 277. (d) Rotermund, G.
Ph
W., Methoden Org. Chem. (Honben-Weyl) 1975, 4/1b, 204. (e) Criegee,
75%
(46)
O
NH2
R. In Oxidation in Organic Chemistry, Wiberg, K., Ed.; Academic: New
N
York, 1965; Part A, p 277.
O
O
2. Moriarty, R. M. In Selective Organic Transformations; Thyagarajan,
B. S., Ed.; Wiley: New York, 1972; Vol. 2, p 183.
O
3. (a) Mihailović, M. Lj.; eković, %7ń., Synthesis 1970, 209. (b) Mihailović,
1. acyl hydrazide
M. Lj.; Partch, R. E. In Selective Organic Transformations, Thyagarajan,
B. S., Ed.; Wiley: New York, 1972; Vol. 2, p 97. (c) Heusler, K.; Kalvoda,
2. LTA, THF, rt
NH2
J., Angew. Chem., Int. Ed. Engl. 1964, 3, 525.
4. (a) Bunton, C. A. In Oxidation in Organic Chemistry; Wiberg, K., Ed.;
Academic: New York, 1965; Part A, p 398. (b) Prelin, A. S., Adv.
O
Carbohydr. Chem. 1959, 14, 9.
5. Sheldon, R. A.; Kochi, J. K., Org. React. 1972, 19, 279.
(47)
N NH
6. (a) Aylward, J. B., Q. Rev., Chem. Soc. 1971, 25, 407. (b) Butler,
N
R. N.; Scott, F. L.; O Mahony, Chem. Rev. 1973, 73, 93. (c) Warkentin,
J., Synthesis 1970, 279.
Ring expansions of cyclic enamides via oxidation with LTA
7. Lethbridge, A.; Norman, R. O. C.; Thomas, C. B.; Parr, W. J. E., J. Chem.
has also been realized (eq 48).77 Mechanistic studies have shown
Soc., Perkin Trans. 1 1974, 1929, 1975, 231.
that the exocyclic carbon is incorporated into the ring system.
8. Criegee, R.; Dimroth, P.; Noll, K.; Simon, R.; Weis, C., Chem. Ber. 1957,
Lead adds across the double bond, followed by formation of a
90, 1070.
cyclopropane intermediate originating from the adjoining benzene
9. Zbiral, E., Synthesis 1972, 285, and references cited therein.
ring, thus requiring an aromatic neighbor to successfully complete
10. (a) Criegee, R., Angew. Chem. 1958, 70, 173. (b) Anderson, C. B.;
this transformation.
Winstein, S., J. Org. Chem. 1963, 28, 605.
H3CO 11. Cope, A. C.; Gordon, M.; Moon, S.; Park, C. H., J. Am. Chem. Soc. 1965,
1. diethyl pyrocarbonate
87, 3119.
N
2. LTA, AcOH
12. Kagan, J., Helv. Chim. Acta 1972, 55, 2356.
H3CO
76%
13. (a) Criegee, R.; Beucker, H., Justus Liebigs Ann. Chem. 1939, 541, 218.
(b) Posternak, Th.; Friedli, H., Helv. Chim. Acta 1953, 36, 251.
14. Brutcher, F. V., Jr.; Vara, F. J., J. Am. Chem. Soc. 1956, 78, 5695.
H3CO
15. (a) Cavill, G. W. K.; Solomon, D. H., J. Chem. Soc. 1955, 1404.
N R
(48)
(b) Preuss, F. R.; Janshen, J., Arch. Pharm. (Weinheim, Ger.) 1958, 291,
H3CO
350, 377.
O
16. (a) Rindone, B.; Scolastico, C., J. Chem. Soc. (C) 1971, 3983. (b) Fieser,
L. F.; Putnam, S. T., J. Am. Chem. Soc. 1947, 69, 1038, 1041.
17. (a) Elming, N.; Clauson-Kaas, N., Acta Chem. Scand. 1952, 6, 535.
Aziridination. Methodology leading to the diastereo- (b) Elming, N., Acta Chem. Scand. 1952, 6, 578.
selective aziridination of alkenes has been published.78-80
18. (a) Heiba, E. I.; Dessau, R. M.; Koehl, W. J., Jr., J. Am. Chem. Soc. 1968,
N-Aminoquinazolone and N-aminophthalimide are transformed
90, 1082. (b) Cavill, G. W. K.; Solomon, D. H., J. Chem. Soc. 1954,
3943.
into the active N-acetoxy intermediate by LTA (eq 49). Studies
comparing this aziridination reaction with epoxidations utilizing 19. (a) Mićović, V. M.; Mamuzić, R. I.; Jeremić, D.; Mihailović, M. Lj.,
Tetrahedron Lett. 1963, 2091; Tetrahedron 1964, 20, 2279. (b) Cainelli,
m-chloroperbenzoic acid show very similar profiles in terms of
G.; Mihailović, M. Lj.; Arigoni, D.; Jeger, O., Helv. Chim. Acta 1959,
regioselectivity and increased stereochemical selectivity (eq 50).
42, 1124.
20. (a) Mihailović, M. Lj.; eković, %7ń.; Maksimović, Z.; Jeremić, D.; Lorenc,
Lj.; Mamuzić, R. I., Tetrahedron 1965, 21, 2799. (b) eković, %7ń.;
Boanjak, J.; Mihailović, M. Lj. reviewed in Fieser & Fieser 1986, 12,
LTA
N N
270.
(49)
-Q-NOAc
21. (a) Mihailović, M. Lj.; Boanjak, J.; Maksimović, Z.; eković, %7ń.; Lorenc,
N O N O
Lj., Tetrahedron 1966, 21, 955. (b) Partch, R. E., J. Org. Chem. 1965,
NH2 HN
30, 2498.
OAc
22. (a) Mihailović, M. Lj.; Jakovljević, M.; eković, %7ń., Tetrahedron 1969,
25, 2269. (b) Mihailović, M. Lj.; Mamuzić, R. I.; %7ńigić-Mamuzić, Lj.;
Boanjak, J.; eković, %7ń., Tetrahedron 1967, 23, 215.
HN HN
OH OH OH 23. Hesse, R. H., In Advances in Free Radical Chemistry, Williams, G. H.
+
Q-NOAc
Ed. Logos: London, 1969; Vol. 3, p 83.
(50)
24. Akhtar, M., In Advances in Photochemistry; Noyes, W. A.; Hammond,
95:5
G. S.; Pitts, J. N., Eds. Interscience: New York, 1964; Vol. 2, p 263.
A list of General Abbreviations appears on the front Endpapers
LEAD(IV) ACETATE 7
25. (a) Mihailović, M. Lj.; Miloradović, M., Tetrahedron 1966, 22, 723. 44. (a) Kochi, J. K.; Bacha, J. D.; Bethea, T. W., J. Am. Chem. Soc. 1967,
(b) Mihailović, M. Lj.; Milovanović, A.; Konstantinović, S.; Janković, 89, 6538. (b) Kochi, J. K., J. Am. Chem. Soc. 1965, 87, 1811. (c) Kochi,
J.; eković, %7ń.; Partch, R. E., Tetrahedron 1969, 25, 3205. J. K., J. Am. Chem. Soc. 1965, 87, 3609. (d) Davies, D. I.; Waring, C., J.
Chem. Soc. (C) 1968, 1865, 2332.
26. (a) Mihailović, M. Lj.; %7ńivković, L.; Maksimović, Z.; Jeremić, D.;
eković, %7ń.; Matić, R., Tetrahedron 1967, 23, 3095. (b) Mihailović, M. 45. Kochi, J. K.; Bacha, J. D., J. Org. Chem. 1968, 33, 2746.
Lj.; Matić, R.; Orbović, S.; eković, %7ń., Bull. Soc. Chim. Beograd 1971,
46. (a) Bennett, C. R.; Cambie, R. C., Tetrahedron 1967, 23, 927. (b) Bennett,
36, 363 (Chem. Abstr. 78, 42 502).
C. R.; Cambie, R. C.; Denny, W. A., Aust. J. Chem. 1969, 22, 1069.
Ø Ø
Ø
27. Mihailović, M. Lj.; Jakovljević, M.; Trifunović, V.; Vukov, R.; eković, (c) Mihailović, M. Lj.; Bosnjak, J.; Ceković, Z., Helv. Chim. Acta 1974,
%7Å„., Tetrahedron 1968, 24, 6959. 57, 1015. (d) Huffman, J. W.; Arapakos, P. G., J. Org. Chem. 1965, 30,
1604.
28. (a) Mihailović, M. Lj.; eković, %7ń.; Andrejević, V.; Matić, R.; Jeremić,
D., Tetrahedron 1968, 24, 4947. (b) Cope, A. C.; McKervey, M. A.; 47. (a) Kochi, J. K., J. Am. Chem. Soc. 1965, 87, 2500. (b) Kochi, J. K.,
Weinshenker, N. M.; Kinnel, R. B., J. Org. Chem. 1970, 35, 2918. J. Org. Chem. 1965, 30, 3265. (c) Jenkins, C. L.; Kochi, J. K., J. Org.
Chem. 1971, 36, 3095.
29. Mihailović, M. Lj.; Andrejević, V.; Jakovljević, M.; Jeremić, D.;
Stojiljković, A.; Partch, R. E., J. Chem. Soc., Chem. Commun. 1970, 48. (a) Grob, C. A.; Ohta, M.; Weiss, A., Angew. Chem. 1958, 70, 343.
854. (b) Grob, C. A.; Ohta, M.; Renk, E.; Weiss, A., Helv. Chim. Acta 1958,
41, 1191. (c) Grob, C. A.; Weiss, A., Helv. Chim. Acta 1960, 43, 000.
30. Heusler, K.; Kalvoda, J., In Steroid Synthesis; Fried, J.; Edwards, J. A.,
Eds. Reinhold; New York, 1972; Vol. II, p 237. 49. (a) van Tamelen, E. E.; Pappas, S. P., J. Am. Chem. Soc. 1963, 85, 3297.
(b) Cimarusti, C. M.; Wolinsky, J., J. Am. Chem. Soc. 1968, 90, 113.
31. (a) Heusler, K.; Kalvoda, J.; Anner, G.; Wettstein, A., Helv. Chim. Acta
1963, 46, 352. (b) Heusler, K.; Kalvoda, J.; Wieland, P.; Anner, G.; 50. (a) Tufariello, J. J.; Kissel, W. J., Tetrahedron Lett. 1960, 6145.
Wettstein, A., Helv. Chim. Acta 1962, 45, 2575. (c) Shoppee, C. W.; (b) Meinwald, J.; Tufariello, J. J.; Hurst, J. J., J. Org. Chem. 1964, 29,
Coll, J. C.; Lack, R. E., J. Chem. Soc. (C) 1970, 1893. (d) Bowers, A.; 2914.
Denot, E.; IbáÅ„ez, L. C.; Cabezas, M. E.; Ringold, H. J., J. Org. Chem.
51. (a) Mihailović, M. Lj.; Stojiljković, A.; Andrejević, V., Tetrahedron
1962, 27, 1862. (e) Bowers, A.; Villotti, R.; Edwards, J. A.; Denot, E.;
Lett. 1965, 461. (b) Stojiljković, A.; Andrejević, V.; Mihailović, M. Lj.,
Halpern, O., J. Am. Chem. Soc. 1962, 84, 3204.
Tetrahedron 1967, 23, 721.
32. (a) Amorosa, M.; Caglioti, L.; Cainelli, G.; Immer, H.; Keller, J.; Wehrli,
52. (a) Pausacker, K. H.; Scroggie, J. G., J. Chem. Soc. 1954, 4003.
H.; Mihailović, M. Lj.; Schaffner, K.; Arigoni, D.; Jeger, O., Helv. Chim.
(b) Dimroth, K.; Kalk, F.; Neubauer, G., Chem. Ber. 1957, 90, 2058.
Acta 1962, 45, 2674. (b) Mihailović, M. Lj.; Stefanović, M.; Lorenc, Lj.;
(c) Richter, H. J.; Dressler, R. L., J. Org. Chem. 1962, 27, 4066.
Gaaić, M., Tetrahedron Lett. 1964, 1867. (c) Mihailović, M. Lj.; Lorenc,
53. (a) Acott, B.; Beckwith, A. L. J.; Hassanali, A., Aust. J. Chem. 1968,
Lj.; Gaaić, M.; Rogić, M.; Melera, A.; Stefanović, M., Tetrahedron 1966,
21, 197. (b) Acott, B.; Beckwith, A. L. J.; Hassanali, A., Aust. J. Chem.
22, 2345.
1968, 21, 185. (c) Baumgarten, H. E.; Smith, H. L.; Staklis, A., J. Org.
33. (a) Mićović, V. M.; Mihailović, M. Lj., Recl. Trav. Chim. Pays-Bas 1952,
Chem. 1975, 40, 3554. (d) Baumgarten, H. E.; Staklis, A., J. Am. Chem.
71, 970. (b) Partch, R. E., Tetrahedron Lett. 1964, 3071. (c) Mihailović,
Soc. 1965, 87, 1141.
M. Lj.; Konstantinović, S.; Vukićević, R., Tetrahedron Lett. 1986, 27,
54. (a) Kropf, H.; Lambeck, R., Justus Liebigs Ann. Chem. 1966, 700, 1, 18.
2287.
(b) Kaufmann, S.; Tökés, L.; Murphy, J. W.; Crabbé, P., J. Org. Chem.
34. (a) Moon, S.; Lodge, J. M., J. Org. Chem. 1964, 29, 3453. (b) Moriarty,
1969, 34, 1618. (c) Shafiullah, D.; Ali, H., Synthesis 1979, 124.
R. M.; Kapadia, K., Tetrahedron Lett. 1964, 1165. (c) Moon, S.; Haynes,
55. (a) Iffland, D. C.; Salisbury, L.; Schafer, W. R., J. Am. Chem. Soc. 1961,
L., J. Org. Chem. 1966, 31, 3067. (d) Bowers, A.; Denot, B., J. Am. Chem.
83, 747. (b) Harrison, M. J.; Norman, R. O. C.; Gladstone, W. A. F., J.
Soc. 1960, 82, 4956.
Chem. Soc. (C) 1976, 735.
Ø Ø
35. Mihailović, M. Lj.; Ceković, Z.; Stanković, J.; Pavlović, N.;
56. (a) Aylward, J. B., J. Chem. Soc. (C) 1969, 1663. (b) Hoffman, R. W.,
Konstantinović, S.; Djokić-Mazinjanin, S., Helv. Chim. Acta 1973, 56,
Chem. Ber. 1964, 97, 2763, 2772. (c) Clement, R. A., J. Org. Chem.
3056.
1960, 25, 1724. (d) Schaap, A. P.; Faler, G. R., J. Org. Chem. 1973, 38,
36. (a) Criegee, R.; Höger, E.; Huber, G.; Kruck, P.; Marktscheffel, F.;
3061.
Schellenberger, H., Justus Liebigs Ann. Chem. 1956, 599, 81. (b) Criegee,
57. Person, H.; Fayat, C.; Tonnard, F.; Foucand, A., Bull. Soc. Chem. Fr.
R.; Büchner, E.; Walther, W., Chem. Ber. 1940, 73, 571.
1974, 635.
37. (a) Wolf, F. J.; Weijlard, J., Org. Synth., Coll. Vol. 1963, 4, 124.
58. (a) Wessely, F.; Sinwel, F., Monatsh. chem. 1950, 81, 1055. (b) Wessely,
(b) Bishop, C. T., Methods Carbohydr. Chem. 1972, 6, 350. (c) O Colla,
F.; Zbiral, E.; Sturm, H., Chem. Ber. 1960, 93, 2840. (c) Harrison,
P. S., Methods Carbohydr. Chem. 1965, 5, 382.
M. J.; Norman, R. O. C., J. Chem. Soc. (C) 1970, 728. (d) Mihailović,
38. (a) Criegee, R.; Kraft, C.; Rank, B., Justus Liebigs Ann. Chem./Liebigs Ø Ø
M. Lj.; Ceković, Z., In The Chemistry of the Hydroxyl Group; Patai, S.,
Ann. Chem. 1933, 507, 159. (b) Bunton, C. A.; Carr, M. D., J. Chem.
Ed.; Wiley: New York, 1971; Part 1, p 505.
Soc. 1963, 770.
59. Field, L.; Lawson, J. E., J. Am. Chem. Soc. 1958, 80, 838.
39. (a) Criegee, R.; Marchand, B.; Wannowius, H., Justus Liebigs Ann.
60. (a) Kropf, H.; Goschenhofer, D., Tetrahedron Lett. 1968, 239. (b) Kropf,
Chem. 1942, 550, 99. (b) Moriconi, E. J.; Wallenberger, F. T.; O Connor,
H.; Wallis, von H., Synthesis 1981, 237, 633.
W. F., J. Am. Chem. Soc. 1958, 80, 656.
61. (a) Corey, E. J.; Wollenberg, R. H., J. Am. Chem. Soc. 1974, 96, 5581.
40. (a) Angyal, S. J.; Young, R. J., J. Am. Chem. Soc. 1959, 81, 5467.
(b) Heck, R. F., J. Am. Chem. Soc. 1968, 90, 5542. (c) Barborak, J. C.;
(b) Clark-Lewis, J. W.; Williams, L. R., Aust. J. Chem. 1963, 16, 869.
Pettit, R., J. Am. Chem. Soc. 1967, 89, 3080.
(c) Bauer, H. F.; Stuetz, D. E., J. Am. Chem. Soc. 1956, 78, 4097.
62. Motohashi, S.; Satomi, M., Synthesis 1982, 1021.
41. (a) Perlin, A. S.; Brice, C., Can. J. Chem. 1956, 34, 541. (b) Gorin, P. A.
63. Motohashi, S.; Satomi, M.; Fujimoto, Y.; Tatsuno, T., Chem. Pharm.
J.; Perlin, A. S., Can. J. Chem. 1958, 36, 480. (c) Perlin, A. S., J. Am.
Bull. 1983, 31, 1788.
Chem. Soc. 1954, 76, 5505. (d) Charlson, A. J.; Perlin, A. S., Can. J.
64. Muathen, H., Tetrahedron 1996, 52, 8863.
Chem. 1956, 34, 1200.
65. Skulski, L.; Lulinski, P.; Krassowska-Swiebocka, B., Synthesis 1995,
42. (a) Rawilson, D. J.; Sosnovsky, G., Synthesis 1973, 567. (b) Cavill, G.
926.
W. K.; Solomon, D. H., J. Chem. Soc. 1955, 4426.
66. Pinhey, J.; Moloney, M., J. Chem Soc., Perkin Trans, I 1988, 2847.
43. (a) Henbest, H. B.; Jones, D. N.; Later, G. P., J. Chem. Soc. 1961, 4472.
(b) Cocker, J. D.; Henbest, H. B.; Phillips, G. H.; Slater, G. P.; Thomas, 67. Pinhey, J.; Moloney, M.; Roche, E., J. Chem Soc., Perkin Trans, I 1989,
D. A., J. Chem. Soc. 1965, 6. 333.
Avoid Skin Contact with All Reagents
8 LEAD(IV) ACETATE
68. Pinhey, J.; Moloney, M.; Stoermer, M., J. Chem Soc., Perkin Trans, I Am. Chem. Soc. 1998, 120, 8692.
1990, 2645.
74. Moore, H.; Schafer, W.; Aguado, A., Synthesis 1974, 30.
69. Pinhey, J.; Hambley, T.; Holmes, R.; Parkinson, C., J. Chem Soc., Perkin
75. Stevens, F. F.; Bower, J. D., J. Chem. Soc. 1949, 2971.
Trans, I 1992, 1917.
76. Kotali, A.; Harris, P., Heterocycles 1984, 37, 1541.
70. Konopelski, J.; Deng, H., Org. Lett 2001, 3, 3001.
77. Knochel, P.; Berk, S.; Yeh, M. C. P., J. Org. Chem. 1988, 53, 5791.
71. Rubottom, G.; Gruber, J.; Marrero, R.; Juve, H.; Kim, C. W., J. Org.
78. Atkinson, R. S.; Kelly, B., J. Chem Soc., Chem. Commun. 1988, 624.
Chem. 1983, 48, 4940.
79. Chen, K.; Yang, K. S., J. Org. Chem. 2001, 66, 1676.
72. Yamamoto, M.; Munkata, H.; Kishikawa, K.; Kohmoto, S.; Yamada, K.,
80. Kuznetsov, M.; Kuznetsova, L.; Schantl, J.; Wurst, K., Eur. J. Org. Chem.
Bull. Chem. Soc. Jpn. 1992, 65, 2366.
2001, 1309.
73. Ryu, I.; Tsunoi, S.; Okuda, T.; Tanaka, M.; Komatsu, M.; Sonoda, N., J.
A list of General Abbreviations appears on the front Endpapers


Wyszukiwarka