Obróbka cieplna dobre

Obróbka cieplna – zabieg dokonywany na stopach żelaza z węglem takich jak stal, staliwo lub żeliwo, w czasie którego pod wpływem ciepła i innych działań modyfikuje się niektóre własności fizyczne i chemiczne tych stopów.

Podstawowymi rodzajami obróbki cieplnej stopów żelaza są:

Wyżarzanie – jest operacją cieplną polegającą na nagrzaniu elementu stalowego (lub szkła) do odpowiedniej temperatury, przetrzymaniu w tej temperaturze jakiś czas, a następnie powolnym schłodzeniu. Ma głównie ono na celu doprowadzenie stali do równowagi termodynamicznej w stosunku do stanu wyjściowego, który jest znacznie odchylony od stanu równowagowego.

Dla stopów żelaza wyżarzanie przeprowadza się w różnych temperaturach, w zależności od celu:

Wyżarzanie z przemianą alotropową

Wyżarzanie bez przemiany alotropowej

Hartowanie - to rodzaj obróbki cieplnej stopów żelaza (np. stali), składający się z dwóch bezpośrednio po sobie następujących faz. Pierwsza faza to nagrzewanie materiału do temperatury powyżej przemiany austenitycznej (dla stali węglowej 727°C; zwykle 30°C do 50°C powyżej temperatury przemiany austenitycznej) i wygrzewanie, tak długo jak to potrzebne, by nastąpiła ona w całej objętości hartowanego obiektu. Drugą fazą jest szybkie schładzanie. Szybkość schładzania musi być taka, by z austenitu nie zdążył wydzielić się cementyt i jego struktura została zachowana do temperatury przemiany martenzytycznej, w której to austenit przemienia się w fazę zwaną martenzytem. Stal o strukturze martenzytycznej nazywana jest stalą martenzytyczną lub hartowaną. Hartowanie przeprowadza się, by podnieść twardość i wytrzymałość stali.

Przy hartowaniu istotny jest dobór szybkości schładzania. Zbyt wolne schładzanie powoduje wydzielanie się cementytu i uniemożliwia przemianę martenzytyczną, podczas gdy zbyt szybkie chłodzenie powoduje powstanie zbyt dużych naprężeń hartowniczych, które mogą doprowadzić do trwałych odkształceń hartowanego elementu lub jego pęknięć.

Szybkość schładzania wpływa także na głębokość hartowania. Przy elementach o większych rozmiarach, których grubość przekracza maksymalną głębokość hartowania, tylko część objętości przedmiotu hartowanego zostanie zahartowana. W takiej sytuacji martenzyt powstanie w warstwach powierzchniowych. Im głębiej zaś, tym udział martenzytu maleje, a cementytu wzrasta. Bardzo często jest to zjawisko pożądane, wtedy, gdy element ma być twardy na powierzchni, a ciągliwy w swym rdzeniu. Głębokość hartowania zależy także od hartowności stali.

Metody hartowania stali

Hartowanie zwykłe

Polega na nagrzaniu przedmiotu hartowanego do zakresu austenitu, a następnie szybkim schłodzeniu w kąpieli chłodzącej, zwykle wodnej lub olejowej, poniżej temperatury początku przemiany martenzytycznej, aż do temperatury otoczenia. Szybkość chłodzenia powinna być dobrana tak, by nie nastąpiły odkształcenia hartownicze. Chłodzenie w wodzie jest bardziej intensywne niż w oleju.

Hartowanie stopniowe

Polega na nagrzaniu przedmiotu hartowanego, a następnie szybkiemu schłodzeniu w kąpieli chłodzącej, zwykle ze stopionej saletry, do temperatury nieco powyżej temperatury przemiany martenzytycznej i przetrzymaniu w tej temperaturze, by nastąpiło wyrównanie temperatur w całym przekroju przedmiotu. W drugiej fazie, już w kąpieli wodnej lub olejowej, następuje dalsze schładzanie, w celu uzyskania przemiany martenzytycznej. Zaletą tej metody jest uniknięcie naprężeń hartowniczych. Wymaga jednak dużej wprawy przy określaniu czasu kąpieli pośredniej.

Hartowanie izotermiczne

Jest hartowaniem, w którym nie zachodzi przemiana martenzytyczna. Nagrzany przedmiot utrzymuje się w kąpieli z roztopionej saletry lub ołowiu, w temperaturze powyżej początku przemiany martenzytycznej. Nazwa metody pochodzi od faktu, iż kąpiel zachowuje stałą temperaturę. W hartowaniu tego typu nie powstaje martenzyt, lecz następuje rozpad austenitu na inne fazy, np. bainit, dając stali własności podobne jak po hartowaniu z odpuszczaniem. Zaletą metody jest brak naprężeń hartowniczych, lecz jest ona procesem długotrwałym, niekiedy przeciągającym się do kilku godzin.

Hartowanie powierzchniowe

Metoda, w której nie nagrzewa się całego przedmiotu (hartowanie na wskroś), lecz tylko powierzchnię przedmiotu. W związku z tym tylko warstwa powierzchniowa podlega hartowaniu. Stosowane wszędzie tam, gdzie wymagane jest utwardzenie tylko fragmentów powierzchni przedmiotu. Istnieje kilka metod hartowania powierzchniowego.

Hartowanie płomieniowe – powierzchnia przedmiotu lub jej fragment nagrzewana jest płomieniem palnika, a następnie schładzana silnym strumieniem wody.

Hartowanie indukcyjne – przedmiot przeciągany jest przez cewkę otaczającą go (możliwie najciaśniej). Prądy wirowe powstałe w przedmiocie powodują efekt powierzchniowy, w którym, wskutek oporności materiału, zamieniają się na ciepło. Mimo konieczności budowy skomplikowanych stanowisk hartowniczych, metoda ta zyskuje na popularności, ze względu na możliwość kontrolowania temperatury oraz głębokości nagrzewania.

Hartowanie kąpielowe – polega na zanurzeniu przedmiotu w kąpieli saletrowej lub ołowiowej i przetrzymaniu w niej na krótką chwilę. Temperatura kąpieli musi być na tyle wysoka, by w jej czasie powierzchnia przedmiotu podniosła się ponad temperaturę przemiany austenitycznej.

Hartowanie ślepe – hartowanie poniżej wartości temperaturowej właściwej dla nawęglania – zatem – hartowanie bez nawęglania.

Hartowanie laserowe- powierzchniowe hartowanie za pomocą wiązki laserowej nagrzewającej obrabiany przedmiot miejscowo. Głowica lasera umieszczona jest na manipulatorze laserowym, zaś ślad hartowniczy wyznaczany jest komputerowo CAD/CAM. Podczas hartowania laserowego do obrabianego detalu wprowadza się stosunkowo niewielką ilość ciepła co ogranicza rozrost ziarna a w konsekwencji krzywienie powierzchni. Nie są wymagane dodatkowe media chłodzące, obrabiany przedmiot schładza się samoistnie na zasadzie przewodnictwa cieplnego.

Hartowanie kontaktowe

Hartowanie elektrolityczne

Hartowanie impulsowe

Odpuszczanie – rodzaj obróbki cieplnej, której poddawana jest stal wcześniej zahartowana. Celem odpuszczania jest usunięcie naprężeń hartowniczych oraz zmiana własności fizycznych zahartowanej stali, a przede wszystkim zmniejszenie twardości, a podniesienie udarności zahartowanej stali.

Odpuszczanie polega na rozgrzaniu zahartowanego wcześniej przedmiotu do temperatury w granicach 150° do 650 °C, przetrzymywaniu w tej temperaturze przez pewien czas, a następnie schłodzeniu. W czasie odpuszczania całość lub część martenzytu zawartego w zahartowanej stali rozpada się, wydzielając bardzo drobne ziarna cementytu, tworząc fazy noszące nazwy: "martenzyt odpuszczania", sorbitem odpuszczania" i "troostyt odpuszczania".

Przemiany zachodzące w martenzycie podczas nagrzewania można podzielić na cztery etapy. Śledzenie tych przemian umożliwiają badania dylatometryczne.

Rodzaje odpuszczania ze względu na temperaturę:

Przeprowadza się je w temperaturach w granicach 150–250 °C. Celem jego jest usuniecie naprężeń hartowniczych, przy zachowaniu w strukturze wysokiego udziału martenzytu, a przez to zachowanie wysokiej twardości. Stosuje się przy narzędziach.

Przeprowadza się je w temperaturach w granicach 250°–500 °C. Stosowane w celu uzyskania wysokiej wytrzymałości i sprężystości przy znacznym obniżeniu twardości. Stosowane przy obróbce sprężyn, resorów, części mechanizmów pracujących na uderzenie np. młoty, części broni maszynowej, części samochodowych itp.

Przeprowadza się je w temperaturach powyżej 500 °C w celu uzyskania wysokiej wytrzymałości przy niskiej twardości. Stal odpuszczana wysoko nadaje się do obróbki skrawaniem.

Podczas odpuszczania występuje kruchość odpuszczania, którą dzieli się na:

Obróbka cieplno-chemiczna stopów żelaza – zabieg dokonywany na stopach żelaza z węglem takich jak stal, staliwo lub żeliwo, w którym pod wpływem ciepła i chemicznego oddziaływania otoczenia oraz innych działań modyfikuje się niektóre własności fizyczne i chemiczne tych stopów.

Rodzaje:

1.Nawęglanie - jest to dyfuzyjne nasycanie stali węglem. Poddaje się temu stale niskowęglowe o zawartości do ok. 0,2 %C, przez co zawartość C zwiększa się do ok. 1 %. Po zahartowaniu uzyskuje się wysoką twardość powierzchni i ciągliwy rdzeń. Nawęglanie przeprowadza się w temp. 930 oC zwykle ok. 10 godzin. Można je przeprowadzać w ośrodkach stałych, ciekłych i gazowych.

2.Azotowanie - jest to nasycanie warstwy wierzchniej azotem, w wyniku czego uzyskuje się dużą twardość i odporność na zmęczenie. Przeprowadza się w temperaturze 550 oC. Do azotowania stosuje się atmosferę dysocjowanego amoniaku, w której występują aktywne atomy azotu. Jest to kosztowna obróbka, gdyż bardzo długotrwała (ok. 40 godzin) i dlatego stosowane jest w przypadku szczególnie odpowiedzialnych elementów.

3.Siarkowanie - do siarkowania dyfuzyjnego może być stosowana metoda elektrolityczna. Temperatura kąpieli to ok. 220 oC, skład: rodanek potasowy 80%, sodowy 15%, reszta Na2S2O3, polaryzacja przemienna, gęstość prądu ok. 3 A/cm2, czas obróbki to ok. 10 min. Dzięki tej obróbce uzyskujemy wzrost żywotności narzędzi do nawet 400%.

4.Borowanie - nasycanie warstwy powierzchniowej stali borem. W wyniku borowania powstają związki boru z żelazem (borki) o wysokiej twardości (borek bogatszy w bor jest twardszy ale i bardziej kruchy). Warstwy borowane cechują się bardzo dużą odpornością na ścieranie i są zwykle stosowane gdy smarowanie jest skąpe gdy nie może być stosowane w ogóle. Borowanie jest stosowane także do utwardzania narzędzi. Borowanie można przeprowadzać w ośrodkach stałych (proszkach), ciekłych lub gazowych.

5.Węgloazotowanie - jednoczesne nasycanie stali węglem i azotem. Głównymi zaletami tej obróbki jest niższa temperatura i krótszy czas procesu. Może być przeprowadzane w ośrodkach gazowych lub ciekłych w wysokich lub niskich temperaturach. Wegloazotowanie gazowe może być procesem wysokotemperaturowych (750 – 900 oC) i wówczas jest zbliżone do nawęglania- lub niskotemperaturowych (500 – 600 C), kiedy upodabnia się do azotowania. Atmosfera składa się z mieszaniny amoniaku i gazu nawęglającego. Po obróbce wysokotemperaturowej stosuje się hartowanie, natomiast niskotemperaturowe jest poprzedzane ulepszaniem cieplnym.

6.Utlenianie - łączenie się materii tlenem, zwiększenie wartościowości pierwiastka wskutek oddawania elektronów.

7.Aluminiowanie – jest to wprowadzenie aluminium do warstwy wierzchniej w celu zwiększenia odporności przedmiotu na wysokie temperatury i chemiczne działanie gazów.

8.Chromowanie - nasycenie warstwy przypowierzchniowej wyrobów stalowych i żeliwnych chromem w celu podniesienia twardości, odporności na ścieranie, na kwasy i wysoką temperaturę.


Wyszukiwarka

Podobne podstrony:
Bezpieczenstwo i higiena pracy podczas obrobki cieplnej
Obrobka cieplna laborka sprawko
Spawanie gazowe palnikiem, ZiIP, II Rok ZIP, Obróbka cieplna i spawalnictwo, Spawalnictwo
7---Karta instrukcji obróbki cieplnej, OPERATOR CNC, TECHNOLOG CNC, KARTY TECHNOLOGICZNE
CERAMIKA, Studia, Materiałoznastwo, Metaloznastwo i Podstawy Obrobki Cieplnej, Meteloznastwo
OSC 1, ZiIP, II Rok ZIP, Obróbka cieplna i spawalnictwo, obróbka cieplna
s1, Studia, Materiałoznastwo, Metaloznastwo i Podstawy Obrobki Cieplnej, Meteloznastwo
OCS-sprawozdanie2, ZiIP, II Rok ZIP, Obróbka cieplna i spawalnictwo, obróbka cieplna
Obróbka cieplna 1
Obróbka cieplno
obróbka cieplno chemiczna (8)
obrobka cieplna wytłumaczenie
obrobka cieplna
Obróbka cieplno chemiczna węgl azot
Obróbka cieplna metali
badania nieniszczace, Studia, Materiałoznastwo, Metaloznastwo i Podstawy Obrobki Cieplnej, Metelozna
odlewnicze stopy aluminium i ich obrobka cieplna-struktury, Studia, SEMESTR 3, TPM

więcej podobnych podstron