Ściaga bud ogólne2, Materiały PWSZ Budownictwo, BUDOWNICTWO dodatkowe materiały, Ściągi, Pomoce, itp


36 WIĄZANIA CEGIEŁ

1 pospolite (kowadełkowe, blokowe) Mur składa się z dwu rodzajów warstw a spoiny poprzeczne i podłużne jednej warstwy są przykryte pełnymi powierzchniami cegieł następnej warstwy. Tego rodzaju wiązanie widoczne jest na powierzchni licowej w przesunięciu spoin pionowych każdej następnej warstwy o ¼ cegły W tym wiązaniu w pełni są zachowane zasady prawidłowego rozmieszczenia powierzchni podziałowych. (rys a)

2 krzyżykowe (weneckie) Warstwy główkowe są na całej długości muru takie same jak w układzie pospolitym; warstwy wozówkowe różnią się tylko tym, że co druga warstwa wozówkowa w2 jest przesunięta o 1./2 cegły w stos do warstwy zasadniczej w1, zasady praw rozmieszczenia powierzchni podziałowych są w pełni zachowane. (rys b)

3 polskie (gotyckie) (rys c) Występują tu 2 kolejno przeplatające się warstwy. Każda następna warstwa jest tak samo zbudowana jak poprzednia, tylko jest przesunięta wzdłuż muru o ¾ cegły. Spoiny podłużne są w części nie przykryte pełnymi powierzchniami cegieł następnej warstwy, co jednak nie ma istotnego wpływu na wytrzymałość muru. Dodatnią cechą jest bardziej ożywiony rysunek powierzchni licowej niż w wiązaniu pospolitym lub krzyżykowym, ujemną- trudniejsza praca murarza wynikająca z konieczności układania w jednej warstwie na przemian wozówek i główek.

0x01 graphic
0x01 graphic
0x01 graphic

0x01 graphic
0x01 graphic
0x01 graphic

4 wielorzędowe (amerykańskie) /rys d/ Mur utworzony jest z powtarzających się pasów 6-warstwowych. Pas składa się z pionowych równoległych rzędów wozówkowych gr po pół cegły i wysokości 4-5 warstw oraz z 2 warstw z główkami które stanowią przewiązanie rzędów wozówkowych. Spoiny podłużne nie są przykrywane na wysokości 5 warstw cegieł ułożonych wozówkowo, dopiero każda 6 warstwa przykrywa główką spoinę. Zalety-mniejsza liczba układanych cegieł licowych, mniejsza liczba cegieł przycinanych w narożnikach i zakończeniach, możliwość zużytkowania we wnętrzu muru znacznej ilości połówek bez naruszenia przewiązania w kierunku poprzecznym. Wady-mur z kanałami dymowymi jest znacznie słabszy niż w pospolitym, nie można opierać ciężkich belek stropowych i innych obc skupionych na rzędach w pół cegły, nie nadaje się w miejscach działania obciążeń ze znaczniejszym mimośrodem.

37.ŚCIANY WARSTWOWE, STOSOWNE ROZWIĄZANIA, PRZYKŁADY

cechy w porównaniu do ścian pełnych: zwiększona izolacyjność termiczna, zmniejszona grubość ścian, niska masa jednostki powierzchni ściany, zmniejszona nośność;

- ściany warstwowe z cegieł: 2 warstwy cegieł grub. 0.5 cegły każda w odstępach14-28cm; w co 6 warstwie przewiązanie z cegły lub kotwi ze stali zbrojonej fi 6-8 mm rozstawionej w poziomie w odległ. 0.8-1.2 m; stosujemy cegłę ceramiczną, wapienno-piaskową, cementową o wytrz. Co najm. 7,5 Mpa; wypełniacze: betony lekkie, żużel paleniskowy, wielkopiecowy, filce i płyty z wełny min.; wiązanie cegieł ze szczeliną zapełnioną zasypką lub płytami termoizolacyjnymi;

- ściany warstwowe mieszane: a) przewiązane zaprawą; cegła kratówka lub kamień; oblicowane od zewnątrz cegłą pełną ceramiczną, wapienno-piaskową lub dziurawką; b)z przerywaną szczeliną powietrzną; duże warstwy muru podzielone szczeliną pow. Co 6-8 warstw cegły; zamykane szczeliny główkowym ułożeniem; c)ze szczeliną pow. ciągłą (przez całą kondygnację) gr. Szczeliny 3-5 cm; przewiązania obu warstw za pomocą kotwi stalowych;

-ściany wielowarstwowe- muszą spełniać warunki: współczynn. Sprężystości poszcz. Warstw nie różnią się bardziej niż o 50%; poszczególne warstwy przewiązano między sobą w odstępach nie większych niż 0,7m przy pionowym i 1.2 przy poziomym przewiązaniu; ściana nie spełniająca tych warunków jest jednowarstwowa o grub. Warstwy nośnej; pozostałe warstwy to obc. warstwy nośnej;

38.DYLATACJE W BUDYNKACH ZE ŚCIANAMI MUROWANYMI.

Stosuje się w przypadku: różnych wysokości budynku; różnych konstrukcji jego elementów; różnych sposobów posadowienia poszczególnych części budynku; różnych obciążeń w budynku; różnych gruntów na których stoi bud.; dylatowanie zapobiega pęknięciom konstrukcji oraz zapewnia swobodę ruchu przy zmianach temp.; pożądane jest umieszczanie szczelin w miejscach najm. Widocznych: w załamaniach , koło rur spustowych; gdy ściany są tynkowane należy tynk przeciąć- zapobiega to nieregularnemu pękaniu tynku na dylatacji; szczeliny dyl. Projektowane ze względu na nierównomierne osiadanie budynku przebiegają przez całą wys. Od podstawy fundamentów do gzymsu wieńczącego; szczeliny termiczne nie muszą być doprowadzone do fundam.- tam nie ma wahań temp.; stosuje się najczęściej szczeliny: stykowe, zazębione, wrębowe; grubość dylatacji dla murów: gr. 1 cegły-8 mm, pozostałe 15-20 mm; dylatacje w murze wypełniamy wełną mineralną, płytami pilśniowymi impregnowanymi, papą;

39 MURY Z PUSTAKÓW BETONOWYCH.

-mury z pustaków zasypkowych; materiałem zasypkowym są trociny, paździerze, igliwie, trzcina zmielona; pustaki stos. Się bez wypełnienia zaprawą spoin poziomych, a niekiedy i pionowych(metoda na sucho); zalety: przewiewność muru, ciepłochronność, mniejsza grubość, odporność na uderzenia podczas transportu, łatwość układania;; a)pustaki gamma 30*30*60- dwie zewnętrzne płutki ścienne połączone czterema przegrodami; wiązanie pełni mat. zasypkowy, stosujemy co 2 warstwy; zastosowanie: ławy fund, ściany piwniczne, naziemne nadproża, podciągi, kominy, przewody kominowe i went.; b) pustakowy element ścienny EF- ma układ dwukwadratowy modułowy z wysuniętą dodatk. Ścianką licową; gr. Ścian wewn. z tego pustaka 30-38 cm, wypełnienie zasypką stwarza dużą stateczność cieplną; można używać do ścian szczytowych i kolankowych ; do produkcji betony o wytrz. 9Mpa; c)pustaki Bsp- do ścian 3 rodzaje pustaków: zasadniczy, połowa pustaka, pustak narożnikowy; ściany z nich grub. 30 cm, bez zaprawy; kanaliki wykonujemy żużlobetonem lub gruzobetonem; b)pustaki kratowe XX (30*60cm) wysokość 20cm ; do budowy wszelkich obiektów tymczasowych; kratowy układ ścianek wewn. zapewnia sztywną konstrukcję; układamy w zasadzie na sucho; budynek z pustaków: z betonem wypełniającym, od zewnątrz ocieplamy wieńce np. płyty wiórowo-cementowe; beton do nich ok. 11Mpa;

-mury z pustaków z betonów ciepłochronnych- stosowane do nośnych ścian zewn. W kondygnacjach nadziemnych; niedopuszczalne do piwnic i fundamentów; zalety: lekkość, duża nośność, dobra izolacyjność cieplna i akustyczna; a)pustaki typu BPT i SBM składają się z: pustaków ściennych zasadniczych, połówkowych, narożnikowych, nadprożowych, podokiennych, ryglowych, płyt wieńcowych; szer. pustaka 25cm, wys. 30cm, gr. ścianek 6 cm; b)pustaki J6 dług. 60 cm, wys.30 cm, szer. 20 cm, grub. ścianek zewn. 5 cm ; wykonanie ściany mniej pracochłonne niż BTP i SBM, używamy tylko 1 typ pustaka; nośność mniejsza, izolacyjność term. Gorsza;

-mury z pustaków wieloszczelinowych; najb. rozpowszechnione w Europie; im więcej warstw szczelin tym bardziej niwelowany wpływ mostków term.; a)pustaki alfa- mur zewn 1.5 pustaka 38cm, wewn. 10,5 cm nienośne; produk. W trzech klasach 25,50,75; bezpośrednie oparcie stropów żelbetowych na murze z pustaków może powodować ich pękanie; potrzebne pośrednictwo wieńców; niedopuszczalne wykonanie bruzd w ścianach nośnych; nie należy stosować do przewodów dymowych, spalinowych i wentylacyjnych; b)pustaki muranów- zbliżone do pustaków alfa, mają wiekszą wytrz., można z łatwością wiązać z murem ceglanym;

40. MURY Z PUSTAKÓW CERAMICZNYCH.

Ściany jednorodne z pustaków ceramicznych są najlepszymi ścianami zewnętrznymi do budowy domów. * Ceramiczne pustaki ścienne typy:S2 (gr.48.8,wysokość ściany zewn.18,8 lub 22 cm); U (gr.51cm,klasa 75 pustaka ,marki zaprawy 15 i 30); ,MAX i UNI (gr.48,8, wysokość ściany zewn.18,8 lub 22 cm) ,KO65-W (to samo tylko, że tutaj szczeliny kierunek pionowy) ,K-065-2W (ściany zewn. nośne i samonośne, gr.38,8cm) ,K065-J (ściany zewn. nośne i samonośne,gr.39 cm, filary, słupy) ,M44 (gr.44 cm, świetna izolacyjność, wytrzy. Na ścisk). ZALETY : korzystny mikroklimat pomieszczeń, wysoka akumulacja i stateczność cieplna, znaczna wytrzymałość, dobra izolacyjność cieplno-wilgotnościowa, wieloletnia trwałość, dobra izolacyjność akustyczna, korzystna paroprzepuszczalność, szybkie odsychanie, niska wilgotność w stanie powietrznosuchym, stosowanie surowców łatwodostępnych, prostota wykonania. Należy zwracać uwagę na układ szczelin w ścianie. Droga przepływu ciepła przez tworzywo ściany była już najdłuższa i napotykała jak największą liczbę szczelin, a wówczas izolacyjność cieplna muru jest lepsza. Niezwykle ważne jest prawidłowe ustawienie pustaków w ścianie.

51 SPRAWDZANIE NOŚNOŚCI MURU CEGLANEGO W STREFIE DOCISKU.

Nośność przekrojów poddanych działaniu obc miejscowych należy sprawdzać z war: N≤ md⋅Rm⋅Fd

N-siłą podłużna działająca na powierzchni docisku Fd, m.d- wsp korekcyjny

Wartość wsp kor , m.d należy obl , m.dd - (δmr/Rm)⋅(ωd-1)

δmr- średnie napr na powierzchni rozdziału,ωd- wsp którego wartość należy obl wg wzoru,ωd=pierw 3 stopnia z( Fr/Fd)

Fr-powierzchnia rozdziału, Fd- pow docisku Zasady przyjmowania pow rozdziału -

52 SPRAWDZENIE NOŚNOŚCI MURU NIE ZBROJONEGO NA ŚCISKANIE.

Nośność murów ściskanych należy sprawdzać przyjmując do obl mimośród początkowy eo przyłożenia siły N eo= es + en

Es- mim siły N otrzymany z obl statycznych, en-mim przypadkowy którego wartość należy przyjmować en=h/300 i nie mniej niż 10mm, Nośność murów ściskanych których smukłość obl wynosi lo/i>21, lo/h>6 należy sprawdzać z uwzględnieniem wpływu smukłości. Dla tego przypadku do obl przyjmować należy es wyznaczoną ! gdy elem występuje w układach o węzłach nieprzesuwnych A)przy prostoliniowym wykresie momentów

es=(0,6⋅M1 + 0,4⋅M2)/N≤0,4M1/N

M1,M2- mom zginające wraz z ich znakami występujące na końcach elementów,

B)przy krzywoliniowym wykresie es=M3/N

M3-ekstremalny mom zg na odcinku środkowym równym 1/3 wys muru,

Gdy nośność elem ściskanych sprawdzana jest bez uwzgl smukłości es=M/N, Wys obl murów lo =ψhψvl

ψh-wsp usztywnienia wzdłuż krawędzi poziomych (stropami)

ψv-Wsp uszt wzdłuż krawędzi pionowych (ścianami poprzecznymi) W zależności od eo,λM.M.,Ndl określa się wsp ϕ

Wytrzym obl na ściskanie Rm=(Rm1⋅mm1⋅⋅mm2⋅⋅mm3 )/( γm1⋅γm2)

Nośność muru N≤ ϕ⋅Fm⋅Rm, dla małych przekrojów Fm, Rm należy skorygować wsp γm1

53 OBLICZANIE MIMOŚRODÓW W MURZE.

Patrz pyt nr 52

54 SPRAWDZANIE NOŚNOŚCI MURU ZGINANEGO.

Nośność na zginanie konstr obciążonej prostopadle do jej płaszczyzny lub ściskanej przy eo> 0,9y należy sprawdzać z war M≤W⋅Rmz

y-odl środka ciężkości przekroju muru od krawędzi bardziej ściskanej

Rmz- wytrzym obl muru (nie)zbrojonego na rozciąganie przy zginaniu

W-wskaźnik wytrzym przekroju poprzecznego muru

55 SPRAWDZANIE ŚCINANIA W MURACH.

Nośność na ścinanie gdy zniszczenie może wystąpić w przekroju równoległym do warstwy muru (przez spoiny nie przewiązane) przy działaniu pionowych naprężeń ściskających, spr z warunku Q≤ (Rmt+0,8⋅ρσ0)Fm

ρ-wsp tarcia (0,5-0,75)

σ0-średnia wartość pionowych napr ściskających przy min obciążeniu

Rmt- wytrzym obl muru na ścinanie w przekroju równoległym do warstwy muru

Nośność na ścinanie gdy zniszczenie może wystąpić w przekroju prostopadłym do warstw muru Q≤Rmt⋅Fm

Rmt-↑ w przekroju prostopadłym

Nośność na ścinanie przy zginaniu Q≤0,75⋅Rmz⋅bh

b-najmniejsza szer przekroju muru występująca na jego wys, Rmz-wytrzym obl muru na rozciąganie przy zginaniu

Jeżeli war ten nie jest spełniony to należy zwiększyć wymiary przekroju poprzecznego konstrukcji lub przyjąć wyższe wytrzymałości mater.

98.DYLATOWANIE STROPODACHÓW I SPOSOBY WYKONANIA PRZYKRYĆ RÓŻNYCH TYPÓW DYLATACJI.

Dylatowanie stropodachów jest konieczne ze względu na znaczne ruchy związane ze zmianą temperatury. Gładź cementowa na warstwie ocieplającej - maksymalny odstęp dylatacji : 4 - 5, beton układany dla wyrobienia spadku : 6, płyty żelbetowe nie ocieplone od góry na murze : 12, płyty j.w. na konstrukcjach szkieletowych : 24 , płyty żelbetowe ocieplone na konstr,. Szkielet. : 42, gzymsy na murze : 12, ścianki kolankowe murowane : 24, ścianki kolankowe prefabrykowne : 12. Dylatacje konstrukcyjne dachów - powinny przenosić odkształcenia poziome oraz pionowe bez utraty swojej szczelności na wody opadowe

99. OBRÓBKI BLACHARSKIE NA STROPODACHACH

Konstrukcja obróbki dylatacji powinna być wykonana wg następujących zasad: -szczelina dylatacyjna powinna być wyniesiona ponad poziom dachu min. 10 cm, - obróbki blacharskie w formie „omega” powinny być mocowane do podłoża , nie jest dopuszczalne jedynie wklejenie obróbek między warstwy papy. Obróbki dylatacji między budynkami o różnych wysokościach powinny stanowić konstrukcję dwudzielną przenoszącą niezależne odkształcenia zdylatowanych części budynku. W przypadku dylatacji dachu najlepiej obróbkę blacharską mocować do listew drewnianych zabetonowanych w odbojach betonowych , zabezpieczając dodatkiem papy na tkaninie technicznej. Wyniesienie połączenia obróbki blacharskiej ponad połać dachową daje gwarancję szczelności przy wodzie spływającej wzdłuż dylatacji po połaci dachowej.

104 PODKŁADY POD POKRYCIA PAPOWE.

1)Podkłady z desek i mater drewnopoch (dobrze zaimpregnowane środkiem grzybobójczym)- przy spadku ≥5% na deski kładzie się papę, przy pokryciach tymczasowych, bud gosp, Deski powinno łączyć się na zakładkę lub na pióro (deski starannie oczyszczone), papą kryje się z reguły równolegle do okapu, rolki papy są do 6m. i przed przyklejeniem powinny poleżeć Ze wzgl na kruchość papę tniemy na mniejsze kawałki, przy spadku <10 % podkład -deski odpowiednio grube lub łączone na wpust

2)z betonu- spadek >30% powierzchnia musi być równa czysta zagruntowana na zimno roztworem asfaltowym, gruntujemy rozcieńczonym rozpuszczalnikiem Na to można położyć płyty pilśniowe, zaimpreg przyklejone lepikiem

3)z zap cem wytrzym >8MPa wilgotność <8% Musi być zagruntowany odpowiednim materiałem-emulsje, roztwory asfaltowe, które wnikają w podłoże i poprawiają jego lepkość względem lepiku i papy

105 ZASADY DOBORU PAP I LEPIKÓW DO WYKONANIA POKRYĆ NA DACHACH PŁASKICH.

Zależy od pochylenia połaci dachowych. Należy kierować się zasadami: im mniejszy spadek tym większa liczba warstw musi się znajdować na pokryciu, poszczególne zaś z nich muszą być wykonane z pap o większej zawartości bitumów,

do klejenia pap asfaltowych należy używać wyłącznie lepików asfaltowych, smołowe powodują rozwarstwienie się pokrycia co doprowadza do przecieków, pokrycia dachowe należy układać wyłącznie przy sprzyjającej pogodzie min temp 5C przy układaniu pokryć na lepiku na gorąco, układanie pokryć na lepiku na zimno do temp 10C

Papy na tkaninie stos w miejscach o ostrych załamaniach, nie nadają się na warstwę wierzchnią

107 KIEDY I W JAKI SPOSÓB WYKONUJE SIĘ POKRYCIA Z CYKLOLEPU.

Produkt uzyskiwany z asfaltów ponaftowych + cyklokauczuk + związki powierzchniowo czynne + rozpuszczalniki organiczne Cyklolep R- Służy do gruntowania wykonywania powłokowych izol przeciwwligociowych, do konserwacji pokryć dachowych, do wykonywania z matą szklaną bezspoinowych izol dachowych tzw. Cyklolaminatów, Cyklolep DK- do konserwacji pokryć dachowych z papy asfaltowej, Cyklolep KL- do przyklejania pap do podłoża z zap cem, do sklejania w pokryciach dachowych i izol wodochronnych Nakł szczotką lub szpachlą

108 DO CZEGO SŁUŻĄ EMULSJE ASFALTOWE, KITY I PASTY.

Emulsja asfaltowa- roztwór, zawiesina asfaltu w wodzie,

1)emulsje anionowe-zastos: do gruntowania podłoża pod właściwą izol bitumiczną, do wykonywania samodzielnych powłok izol i bezspoinowych pokryć dachowych, może być stos do robót izol wewnątrz pomieszczeń

2)em kationowe: do gruntowania podłoża pod właściwą izol bitumiczną, samodzielnych powłok chroniących przed działaniem wód agresywnych, do pokryć bezspoinowych dachów.

Kity asfaltowe- (na rozpuszczalnikach) stos do wypełniania szczelin dylatacyjnych

Pasty asfaltowe-do wyrównywania podłoży pod izolację, do wykonywania samodzielnych powłok przeciwwilgociowych, do przyklejania styropianu

109 WYKONYWANIE POKRYĆ BEZSPOINOWYCH Z DYSPERSJI ASFALTOWO-GUMOWYCH.

Pokrycia te powinny być stos przy spadku połaci poniżej 5% na podkładach z papy.

Dyspersje asfaltowo-gumowe-mater hydroizol przeznaczony do powłok bezspoinowych zarówno na starych jak i nowych pokryciach z papy (Gumbit) Są prod z asfaltów lateksu wypełniaczy mineralnych środków wulkanizujących i wody. Wymagania- podkład na tekturze lub na welonie szklanym, nie należy stos jako podkładów do pap izol i bezspoinowych z folii alum, na starym poszyciu musi być czysto bez pęcherzy, usunięte wszelkie uszkodzenia, nie daje się powłok tam gdzie izol termiczna jest zawilgocona. Wykonanie: rozprowadza się masę po przygotowanej powierzchni, po1-2 dniach nakłada się warstwę nośną-tkaninę szklaną o luźnej strukturze aby luźno weszła w masę, rozprowadza się warstwę wierzchnią i posypuje posypką, pełne walory użytkowe po 3-10 dniach, zależy od gr warstwy.

183. SZCZELNOŚĆ OKIEN W ZAKRESIE INFILTRACJI POWIETRZA I NA PRZECIEKANIE.

Infiltracja : szczelność okien w zakresie infiltracji powietrza stanowi podstawowy warunek spełniania wymogów użytkowych jakie są im stawiane. Infiltracja powietrza określona została dla poszczególnych rodzajów okien wsp. Infiltracji , która wyraża ilość powietrza przenikającą przez 1 m. szczeliny pomiędzy skrzydłem a ościeżnicą w ciągu 1 godz. Przy różnicy ciśnień równej 1 daPa /depascal/.

Współczynnik infiltracji jest ważnym parametrem techn. Okien , gdyż jego wartość /wielkość/ ma duży wpływ na kształtowanie się strat ciepła przez okna oraz ich izolacyjność akustyczną, a także na przenikanie kurzu . Wartość współczynnika a zależy przede wszystkim od jakości wykonania okien .W ostatnich latach zastosowano w większości konstrukcji uszczelki gumowe, które pozaoliły na szczelność w danych przedziałach. Ważnym wymaganiem okien jest ich szczelność na przenikanie wody opadowej pomiędzy skrzydłami a ościeżnicą. Okna i drzwi nie powinny wykazywać przecieków przy zroszeniu ich powierzchni wodą w ilości 120l/h przy różnicy ciśnień 60 do 160 Mpa.

186. OKNA KROSNOWE

Produkowane w dwóch wersjach wynikających z ich przeznaczenia do pomieszczeń pomocniczych lub jako okna inwentarskie. Okna krosnowe mają ościeżnice w postaci krosna stosowanego w oknie skrzynkowym, a jego skrzydła stanowią pojedyncze ramy podobnie jak w oknie jednoramowym. Nie są wyposażone w uszczelki gumowe przez co mają znacznie większą infiltrację powietrza. (rys. patrz pyt.181)

187.OKNA OŚCIEŻNICOWE

Charakteryzują się przede wszystkim tym, że wszystkie skrzydła zarówno wewnętrzne jak i zewnętrzne nie są ze sobą łączone i otwierają się oddzielnie. Zewnętrzne /letnie/ na zewnątrz, wewnętrzne /zimowe/ do wewnątrz pomieszczenia. Stosuje się je w budownictwie jednokondygnacyjnym, wiejskim gdzie po otwarciu skrzydeł na zewnątrz nie utrudniają przejścia przechodniom. Nie należy stosować ich w budynkach piętrowych gdyż gwałtowne działanie wiatru noże spowodować wyrwanie skrzydła. Zalety: duża odległość między skrzydłami, dobra izolacyjność akustyczna i termiczna, większa szczelność przy silnym wietrze-wiatr dociska skrzydła do ościeżnicy. (rys. patrz pyt.181)

188. OKNA SKRZYNKOWE Posiadają konstrukcję charakteryzującą się oddzielnymi skrzydłami zewnętrznymi i wewnętrznymi otwieranymi do wewnątrz, co jest możliwe dzięki krosnu przymocowanemu do zewnętrznej strony ościeżnicy .Zalety: łatwość mycia, wygodne i bezpieczne otwieranie, duża izolacyjność akustyczna i termiczna, duża odległość między skrzydłami. Zastosowanie: budownictwo indywidualne. Nie powinny być stosowane w budynkach wysokich ze względu na stosunkowo małe przekroje ramiaków i wynikające stąd możliwości odkształcenia pod wpływem działania parcia wiatru. Sytuację pogarsza brak uszczelek gumowych, których zastosowanie nie jest możliwe ze względu na brak miejsca. (rys. patrz pyt.181)

189. OKNA PÓŁSKRZYNKOWE.

Różnią się od skrzydłowych położeniem zawiasów, krośniaki umieszczone są tylko w progu i nadprożu. Zalety: - tak jak dla okien skrzynkowych oraz większy prześwit, który wynika z braku krosna na bokach. Wada: części poziome i pionowe ościeżnicy nie leżą w jednej płaszczyźnie - estetyka. (rys. patrz pyt.181)

190. OKNA ZESPOLONE /TYPU SZWEDZKIEGO/

Okna te mają nakładane na siebie dwa skrzydła, które zespolone są ze sobą za pomocą śrub i specjalnych zawiasów pozwalających na rozłączenie skrzydeł do mycia. Szerokość ramiaka zewn. 38mm, co decyduje o tym, że są wiotkie, (rys. patrz pyt.181)

Zespolone standard

Są zmodyfikowaną formą poprzednio omówionych okien zespolonych. Stosowane w budynkach mieszkalnych o wysokości do 33 m. w strefie I obciążenia wiatrem, do 15 m. w II, do 6 m. w III. W rozwiązaniu standard wprowadzono w stosunku do poprzedniego rozwiązania następujące zmiany: grubość elementów skrzydeł zewn. Oraz wewn. Ujednolicono do 33 mm co zwiększa sztywność. Na obwodzie skrzydeł zastosowano uszczelkę gumową zmniejszającą znacznie infiltrację powietrza. Wyeliminowano wywietrzniki.

191. ZESPOLONE WZMOCNIONE.

W oknach tych zwiększono w porównaniu do „standard” grubość ramiaków wewn.do 45 mm, co wzmocniło konstrukcję okna oraz zwiększyło odległości między szybami polepszając izolacyjność akustyczną okna. Zastosowanie: w budynkach mieszkalnych, hotelach, internatach itp. (rys. patrz pyt.181)

192. OKNA ZESPOLONE O PODWYŻSZONEJ IZOLACYJNOŚCI.

Przyjęto w nich takie same grubości ramiaków zewn. I wewn. Jak w oknach wzmocnionych tj. 35 i 45 mm, lecz szerokość ramiaków została zwiększona z uwagi na zwiększony ciężar skrzydła, wynikający z zastosowania 3-ciej szyby. Skrzydło zewn. Oszklono szybą pojedynczą, natomiast okno wewn. Oszklono jednokomorową szybą zespoloną składającą się z dwóch szyb pojedynczych pomiędzy którymi na obwodzie znajduje się dystansowa ramka aluminiowa, wypełniona pochłaniaczem pary wodnej , zapobiegając skraplaniu się pary wodnej w komorze międzyszybowej. (rys. patrz pyt.181)

193. OKNA JEDNORAMOWE.

Istotą tych okien jest szyba zespolona osadzona w pojedynczej ramie skrzydła tak jak w oknach o podwyższonej izolacyjności. W porównaniu z oknami zespolonymi są dużo łatwiejsze do utrzymania /nie wymagają rozkręcania do mycia co jest ważne w budynkach takich jak szpitale, żłobki itp. Wady: dość często obserwowana nieszczelność szyb zespolonych, gorsza izolacyjność, zamglenie i wyroszenie się pary wodnej wewn. Komory. (rys. patrz pyt.181)

194. OKNA METALOWE

-stalowe: stosowane w obiektach handlu a także jako okna pomieszczeń pomocniczych oraz klatek schodowych. Wszystkie okna szklone są szybami zespolonymi o rozstawie szyb 12mm. Muszą być zabezpieczone przed korozją i konserwowane. Wady: niekorzystny współczynnik przenikania ciepła oraz łatwość skraplania się pary wodnej na metalu

-aluminiowe: ich ramy tzn. elementy nośne są złożone z różnych komór, które mają być wypełnione pianką , co zwiększa ich izolacyjność termiczną. (rys. patrz pyt.181)

110. POKRYCIA DACHÓW BLACHAMI /JAKIMI, POŁĄCZENIA, MOCOWANIE, ZABEZPIECZENIA itp./

Blachy stalowe /płaskie, faliste/, ocynkowane , miedziane, aluminiowe - 0,45 0,5 0,55 0,6 0,6 cm - dost.gr.

Układamy zawsze na deskowaniu, deski ok. 2,5, powinien być prześwit pomiędzy deskami około 5 cm. Połączenia blach płaskich - wzdłuż dachu ząbek stojący /rys1,2/ 2,5 cm,

0x01 graphic
0x01 graphic
0x01 graphic

pojedynczy, podwójny - prostopadle do spadku, aby umożliwić spływ wody. Może być też ząbek leżący /rys3/ pojedynczy lub podwójny. Mocowanie blach płaskich. Blachy faliste przybijamy /gwóźdź ocynkowany + podkładka /; Blachy fałdowe układane na teownikach stalowych , blachy miedziane podwójny rąbek. Blacha ocynk. /rys4/- łączenie to zwoje; Faliste blachy azbestowo cementowe-/rys5/ uszczelka + wkręt. Zbyt mocne dokręcenie 2,5 cm - pękną. Łączenie na listwy /rys6/ /listwa berlińska/

0x01 graphic
0x01 graphic
0x01 graphic

111. POKRYCIE DACHU DACHÓWKA /JAKĄ, KIEDY, JAK/.

KARPIÓWKA /rys1/ - pojedyncza tylko do budynków tymczasowych, bo nieszczelna, łaty 25 cm, podwójna na stromych dachach /35 - 45 st./ - układana na łuskę /stąd nazwa / łaty co 14 cm. Bardziej ekonomiczne układanie w koronkę. Uszczelnia się lekką zaprawą wapienną. Zakładkowa wzdłuż boku wyżłobienia i występ, zazębiające się nawzajem łaty co 32 cm; MARSYLSKA - bardzo estetyczna, stanowi odmianę zakładkowej, wszystkie krawędzie mają zakłady przez co gwarantuje pełną szczelność. Dobra do krycia dachów o małych spadach.; HOLENDERSKA - stosowana na Zachodzie, spadek 30 - 50 st. Łaty co 32 cm Są dwa rodzaje - z gładkimi krawędziami i nakładkami. Pierwsza jest nieszczelna , druga układana jak karpiówka szczelna.

MNICH MNISZKA /rys2/ - dekoracyjne, głównie przy zabytkach , spadek 30 - 50 st. Pokrycie ciężkie i mało szczel.

KLASZTORNA /rys3/ - stosowana jak mniszka.

0x01 graphic
0x01 graphic
0x01 graphic

Cementowa i cementowo gliniana w dwóch rodzajach : karpiówka podwójna i zakładkowa .Spadek 27 - 45 st., Cięższe od ceramicznych ale łatwiejsze w produkcji , nie odporne na agresywne gazy. Cementowo gliniane - karpiówka pojedyncza , podwójna i zakładkowa 35 - 43 st. Uszczelnia się zaprawą cementowo wapienną

112.POKRYCIA PŁYTAMI I PŁYTKAMI AZBESTOCEMENTOWYMI.

Są wytwarzane z włókien azbestowych i cementu portlandzkiego wyższych marek przez prasowanie tworzywa; gr. 4mm; rodzaje płyt falistych: NF-9 - niskofalista o 9 falach; WF6 - wysokofalista o 6 falach; GZG-N gąsior zawiasowo-falisty górny o niskiej fali; GZG-W o wysokiej fali; GZD-N dolny o niskiej fali; GP gąsior zwykły żlobkowy; Płyty faliste powinny mieć licową pow. gładką, bez rys i pęknięć, a krawędzie ostre i równe, wzajemnie prostop.; płyty są dostarczane w paletach lub bez opakowania krytymi środkami przewozowymi, w których układa się je w stosy po 25 szt., powinno się układać na równym podłożu;

113.RODZAJE WÓD W GRUNCIE

-Wody kapilarne .Podciągi kapilarne zależą od wielkości ziaren kruszcu : 0,5 - 0,2 mm - podciąg 25 cm., 0,2 - 0,1mm - podciąg 40 cm, 0,1 - 0,05mm - podciąg 100 cm, 0,05 - 0,02 mm - podciąg 2 m., iły do 3 m.

-Woda przesączająca się z opadów atmosferycznych; np. pozostałości po wykopach /luźno zasypany grunt/. Woda zaskórna wywiera ciśnienie na budynki, stąd konieczny drenaż zapob.

-Woda gruntowa - poziom w gruncie wyznaczony w badaniach wywiera ciśnienie na fundamenty budynku.

Pomieszczenia mokre - podczas ich użytkowania woda może być wylewana na posadzki, ściany polane , łazienki, rzeźnie , mleczarnie, baseny, kanały. Zabezpieczenie- spływy, odpływy wody, izolacje aby woda nie

przedostawała się do konstrukcji..

114.RODZAJE IZOLACJI WODOCHRONNYCH.

Izolacje wodochronne dzielimy na 3 grupy :typu lekkiego, średniego, ciężkiego.

- Przeciwwilgociowe izolacje typu lekkiego - chronią przed wodą nie wywierającą ciśnienia /kapilarna, opadowa/. Stosowane materiały: masy izolacyjne asfaltowe, lepiki na gorąco, na zimno, 1 - 3 warstw w zależności od podłoża i jakości izolacji, 2 - 5 mm grubość powłok. Masy asfalt : 1 warstwa - zagruntowanie materiału , dajemy rzadko, kolejne gęstsze. Masy asfaltowe, smołowe z wypełniaczem, żywice poliestrowe /0,1mm/ - do 3 warstw .Żywica epoksydowa - 1 lub 2 warstwy, silikonowanie powierzchni , tynki wodoszczelne z mas bitumicznych , z mas bit. Z dodatkami hydrofobowymi., płytki ceramiczne , materiały smarne. Materiały te mają za zadanie wniknąć w podłoże /impregnacja, gruntowanie/. Nie gruntuje się materiału mocno porowatego, np. miękkie płyty pilśniowe. Mogą być wykonywane powłoki z tworzyw sztucznych - wada - nie są trwałe mechanicznie.

-. Przeciwwodne izolacje typu średniego - to izolacje przeważnie asfaltowe z wkładkami papy asfaltowej. Papy pełnią rolę przeciwwilgociową /bitumy/ , wzmacniacz przekładanka /lepik/ . Do zabezpieczenia przed wodą opadową /dachy/, muru przed podciąganiem /kapilary/. Materiały : papy asfaltowe, układane w pion i poziom, folie polietylenowe , folie ze zmiękczonego PCV gr. 0,5 - 1 mm - aby były szczelne kładziemy na zakładkę. Folie polietylenowe nie skleja się - muszą być zgrzewane . raczej 1 warstwa.

- Izolacje typu ciężkiego - przeciwwodne . Chronią przed wodą wywierającą ciśnienie /zaskórną/

Materiały - asfalt przemysłowy + tkanina techniczna 10 - 15 mm /1 -2 warstwy/ , żywica poliestrowa + wypełniacz /1,5-2mm/ aby zwiększyć grubość. - zbiorniki wody, benzyny, szyby windowe, Żywica epoksydowa może być zbrojona włóknem szklanym, papa asfaltowa + lepiki asfaltowe /3 - 6 warstw, 7 - 25 mm/, folia PCV + klej , płyty terakotowe.

Ponadto mamy do czynienia z izolacją parochronną zabezpieczającą przed przenikaniem pary wodnej /para przechodzi przez materiały hydrofobowe a woda nie/

115 116.IZOLACJE PRZECIWWILGOCIOWE STANÓW ZEROWYCH

chronią obiekty przed działaniem wody nie wywierającej ciśnienia hydrostatycznego; powierzch. Podkładów pod izolację powinny być równe czyste i odpylone; poza tym trwałe i nieodkształcalne; izol. W konstrukcjach odwodnionych powinny być położone ze spadkiem 1%, zaleca się utrzymanie spadku 2%; izol. Powinny być wykonane podczas bezdeszczowej pogody lub pod zadaszeniem; zakłady mat. rolowych powinny wynosić nie mniej niż 10cm; grubość lepiku pom. Warstwami papy powinna wynosić 1-1,5 mm; załamania warstwy izolacji powinny być wzmocnione przez zastosowanie wkładek z papy na tkaninie techn., juty, tkaniny szklanej; szczeliny dylatacyjnepowinny być uszczelnione; warstwy dociskowe pow. być z żelbetu z betonem najm. B-15; warstwy ochronne wykonane z muru ceglanego gr. Min. 6.5 cm z cegły pełnej na zaprawie cem,;

117. IZOLACJE PAROCHRONNE W BUDYNKU /GDZIE TRZEBA WYKONYWAĆ, KIEDY, W JAKI SPOSÓB , Z JAKICH MAT./

Należy stosować samo zabezpieczenie stropodachów , tarasów, zapór, ścian i podobnych przegród budowlanych przed przenikaniem pary wodnej od strony pomieszczeń o podwyższonej wilgotności. Rozróżniamy następujące rodzaje - powłokowe: z farb, lakierów lub emalii, mas asfaltowych , - warstwowe z pap, folii z tworzyw sztucznych, folii metalowych . Izolacje z blach umieszczone od strony działania ciśnienia pary wodnej, wykonane z materiałów o dużym oporze dyfuzyjnym. Izolacja z papy asfaltowej jest przyklejana do podkładu, sklejana na zakładach z papy . Szerokość zakładów 5 cm, arkusze folii PCV przyklejone lepiszczem, zakłady 3 cm Folia polietylenowa układana luzem lub przyklejana emulsyjną pastą asfaltową, zgrzewana na zakładach . Powłoki z farb, lakierów mają grubość dającą wymaganą szczelność. Cechy dobrej izolacji: duży opór przenikania pary wodnej, łatwość przyklejania się do materiałów izol. oraz okładzin, oporność na wilgoć korozję chemiczną i biologiczną; kleje i lepiszcze stosowane do izolacji powinny być odporne co najmniej na 50 st. C i

przy tej temperaturze nie mogą spływać po ścianach.

118. JAKIM WARUNKOM MUSI ODPOWIADAĆ ZAPROJEKTOWANA IZOLACJA PRZECIWWILGOCIOWA Z BITUMÓW ? W JAKICH WARUNKACH NIE MOŻNA WYKONAĆ TEGO TYPY IZOLACJI.

Izolacji bitumicznych nie wolno stosować : w miejscach narażonych na kontakt z olejem mineralnym , rozpuszczalnikami organicznymi, alkoholami. Warstwa musi być ciągła , dobrze przylegać do powierzchni , bez złuszczeń, pęcherzy /np. lepik na zimno/. Musi być odporna na daną temperaturę /skurcz./, odporna na przewidywane wpływy mechaniczne , nie wolno wykonywać w porze deszczowej //mokre pow./ w temp.7,5 C.

Podłoża pod izolacje:pon.poz gruntu, powierzchnia równa ale nie zbyt gładka , bez rys i pęknięć.

Podłoża pod izolacje- betonowe lub żelbetowe płyty prefabrykowane , podłoża metalowe /najczęściej - blachy stalowe, / Od podkładów wymaga się dobrego zdylatowania . Podłoże powinno być wytrzymałe. Żadne podłoże nie może być wilgotne w 4 % inaczej pęcherze/ . Dokładnie odkurzone odpylone, Kolejne warstwy nakłada się na wysuszone wcześniej powierzchnie. Podłoże powinno być zagruntowane - roztworami bitumicznymi, emulsjami np. płyta pilśniowa twarda lub miękka. Płyta pilśniowa na styropianie max wymiary 120 cm i układać z rozstępem ok. 2 mm /dylatacja/.Gruntowanie płyt twardych nie jest konieczne. Płyty miękkie kawałki mniejsze od 120cm. bez gruntowania bo wchłonęłyby dużo materiału gruntującego a potem długo schnie. Nie gruntujemy styropianu- wymaga się aby nie był najlżejszy /min. 30 kg/m3/ gruntowanie nie wsiąka. Na styropian kleimy watę na gorąco ale lepik nie na gorąco /roztapia/ tylko podgrzewamy z termometrem .Płyty z wełny mineralnej /twarda ciężar 180 kg/m3.

119. PODŁOŻE POD IZOLACJE PRZECIWWILGOCIOWE patrz 115,116

powinny być odporne na korozję; wytrzymałość na naprężenia rozciągające, które mogą powst. w przeponie izolacyjnej ; mogą być stosowane: papy zgrzewalne na osnowie zdwojonej z tkaniny szklanej i welonu szklanego; papy podkładowe na welonie szklanym; papy podkładowe na tekturze; z tworzyw sztucznych: folię izolacyjną z PCV i folię bitumoodporną; łączenie folii izol. Z PCV z mat. asfalt. Jest nioedopuszczalne;

205.OBCIĄŻENIE OGNIOWE

Intensywność pożaru i czas jego trwania zależne są od ilości materiałów palnych przypadających na jednostkę powierzchni pomieszczenia-tj. od wart.obciążenia ogniowego. Obciążenie ogniowe wyraża się-wartością ciepła materiałów palnych w przeliczeniu na równoważnik 1kg drewna i określane jest w kg drewna na 1 m.2 powierzchni podłogi pomieszczenia,przy czym ciepło spalania przyjmuje się Wd=18,4 MJ/kg.Obciążenie ogniowe oblicza się:

Qd = ∑αiGi/F

i-n-liczba rodzajów mat. Palnych

αi-współ. Przeliczeniowy dla poszczególnych mat.wyznaczony wg.PN-70/B02852

Gi-masa poszczególnych materiałów w kg

F -powierzchnia rzutu poziomego pomieszcz. m2

W razie braku danych w normie wsp. α liczymy: αi=Qc/4400 gdzie Qc-ciepło spalania danego materiału. Przy obliczaniu obc. Ogniowego należy uwzględniać mat palne:składowane,wytwarzane,przerabiane lub transportowane w sposób ciągły,znajdujące się w danym pomieszczeniu. Przykładowo ,obciążenie ogn. Wynosi:- mieszkania zależnie od stopnia zagęszczenia 25-50 kg/m.²; -pokoi biurowych ok.40 kg/m.²; -hoteli 20-30; domów towarowych 75-600

Temperatura płomienia może wynosić 1200-1600˚C,ale temp. powietrza nie przekracza zwykle 1200˚C,waha się od 750-1000˚C.Względny czas trwania pożaru w zależności od obciążenia ogn. wyznacza się z wykresu normy.

206. GRUPY ZAGROŻENIA LUDZI.

Ustala się 5 klas odporności ogniowej budynku (A,B,C,D,E).Zaliczenie budynku do odp. klasy odporności zależy od : kategorii niebezpieczeństwa pożarowego(grupa I)-budynki i obiekty na potrzeby przemysłu związane z produkcją i magazynowaniem,zajezdnie autobusowe i tramwajowe itp.5 kat. I,II...

obciążenia ogniowego

kategorii zagrożenia ludzi (grupa II)

wysokości budynku

GrupaII -kat. zagr. ludzi ( 5 kat.): ZL I -domy towarowe,kina sale konferencyjne,obiekty w których mogą przebywac ludzie w gr. Ponad 50 osób. ZL II- szpitale, łobki,sanatoria, pmieszczenia o ograniczonej zdolności poruszania się ludzi.; ZL III-budynki biurowe,szkoły,hotele itp.; ZL IV-budynki mieszkalne.; ZL V-archiwa muzea i biblioteki.

207. ODDZIELENIA P.POŻAROWE PODZIAŁ.

W celu ograniczenia rozszerzenia się pożaru stosuje się podział budynku na strefy za pomocą oddzieleń przeciwpożarowych.W przepisach rozróżnia się ściany i stropy,których odporność ogniowa może wynosić 4,2,1h ,zależnie od przeznaczenia budynku i wymaganej dla niego klasy odporności ogniowej.

Oddzielenia p.pożarowe dzielą się na:

oddzielenia pionowe (ściany)

poziome ( stropy)

przedsionki przeciwpożarowe,

klapy zamykające otwory w elementach oddzieleń ( drzwi , zsypy )

oddzielenia przestrzenne ( wolny , niezabudowany pas terenu dzielący obiekty budowlane)

Ściany i stropy oddzielenia p.pożarowego powinny być wykonane z materiałów niepalnych .W zależności od klasy odporności pożarowej budynku min.odporność ogniowa oddzielenia w minutach wynoszą:A-240min,B i C-120 ,D i E -60.Ściany oddz.p.p. należy wznosić na własnym fundamencie,dopuszcza się wypełnienie otworu w ścianie,materiałem o podobnych wł. Na powierzchni nie większej niż 10% ściany,ogólna pow.otworów zamykanych < 25% pow.ściany.Jeż ze względów technologicznych lub użytkowych jest niezbędne niezamykającego się otworu w ścianie oddz.p.p. pomieszczenia po jej obu str. Powinny być połączone korytarzem o dł. co najmniej 4 m.(60 min).W stropie dopuszcza się stosowanie otworów o łącznej pow. 0,5%.

208.DROGI EWAKUACYJNE.

Przy spalaniu materiałów.oprócz wydzielania się ciepła,powstają gazy i dymy.Mają wysoką temp.Dymy rozprzestrzeniają się z v=30-60 m/mim,a w szybach klatek schodowych z v=200-300 m/min.Stosuje się wiec przejścia ewakuacyjne .

Droga ewakuacyjna -bezpieczne wyjście prowadzące bezpośrednio lub pośrednio na przestrzeń otwartą,do innej strefy pożarowej,bądź na poziome lub pionowe drogi komunikacji ogólnej.

Wyjścia z pomieszczeń na drogi ewakuacyjne powinny być zamykane drzwiami.

Drzwi ewakuacyjne powinny się otwierać na zewnątrz.

Długość przejścia w pomieszczeniu ,mierzona od najdalszego miejsca,w którym może przebywać człowiek, do wyjścia na drogę ewakuacyjną waha się w zależności od pomieszczenia od 40 m. do 100 m. Szerokość wyjścia należy dostosować do liczby osób mogących przebywać jednocześnie w pomieszczeniu,przyjmując 0,6 m. szerokości wyjścia na 100 osób. lecz nie mniej niż 0,9 m. w świetle.Stosowanie drzwi obrotowych i podnoszonych jest zabronione,drzwi przesuwnych niewskazane. Wysokość nie mniejsza niż 2,2m. Na drogach ewak. zabronione jest stosowanie: spoczników ze stopniami, schodów ze stopniami zabiegowymi,jeśli są one jedyną drogą ewak.W zależności od stopnia ZL. i wysokości budynku klatki schodowe wyposaża się w urządzenia zapobiegające zadymieniu lub służące do usuwania dymu.Schodów i pochylni ruchomych nie zalicza się do dróg ewakuacyjnych.

147. PODZIAŁ SCHODÓW, RODZAJE KLATEK SCHODOWYCH I SCHODÓW.

Schody są częścią budowli złożoną z: biegów (pochylnia ze stopniami ), spoczników (podestów).

Klasyfikacja schodów ze względu na:

Kąt nachylenia: łagodne do 30; normalne 31 - 36; strome 37 - 45; drabiniaste 45 - 75; drabiny 75 - 90;

Materiał: drewniane, kamienne, betonowe, żelbetowe, metalowe, ceramiczne,; Położenie: Wewnętrzne, zewnętrzne, terenowe,; Kierunek wchodzenia: Lewoskrętne, prawoskrętne; Kształt w rzucie poziomym: jednokierunkowe jednobiegowe; jednokierunkowe dwubiegowe; jednobiegowe zabiegowe; dwubiegowe; dwubiegowe z płytą spocznikową; jednobiegowe kręcone, łamane; powrotne; wachlarzowe; spiralne;;

Konstrukcje biegów schodowych: z biegami wspornikowymi, ze stopniami wolnopodpartymi na belkach policzkowych, z biegami płytowymi opartymi na belkach spocznikowych

148 ZASADY DOBIERANIA WYMIARÓW SCHODÓW I KLATEK SCHODOWYCH

Wymiary stponi powinny być dostosowane do wielkości stopy ludzkiej i długości kroku

2h + s = 0,60 ÷ 0,65 m.; s-szer stopnia, h- wys stopnia

Przeciętne wysokości i szerokości schodów.

Rodzaj budowli

h [cm]

s [cm]

Bud reprezentacyjne

14

34

Bud mieszk schody b.wygodne

15

32

Bud mieszk schody wygodne

16

30

Bud mieszk schody przeciętne

17

29

Bud mieszk schody podrzędne

19

25

W przypadku stopni zabiegowych szer stopnia w najwęższym miejscu nie powinna być mniejsza niż: w bud jednorodzinnych i dwukondygnacyjnych - 10 cm, w bud mieszkalnych dwu- i wielorodzinnych - 12 cm

BIEGI. Długość biegu zależy od liczby stopni, wygodny bieg liczy 10 - 12 stopni. Schody w budynkach przeznaczonych na pobyt ludzi nie powinny mieć w jednym biegu więcej niż 18 stopni. W schodach wewnętrznych nie należy również stosować biegów zawierających mniej niż 3 stopnie, gdyż są one niewygodne i można łatwo potknąć się na nich. Szerokość biegu powinna wynosić co najmniej w domkach jednorodzinnych i mieszkaniach dwukondygnacyjnych 0,7m. W bud z pomieszczeniami przemysłowymi - 1,2m. W zakładach lecznictwa zamkniętego - 1,4 m., w pozostałych obiektach 1,0 m.

SPOCZNIKI. Międzypiętrowe mają zwykle szer równą szer biegu, spoczniki piętrowe powinny mieć szer o ok. 0,2m. Większą od szer użytkowej biegu.

BALUSTRADY Biegi i spoczniki od strony nie ograniczonej ścianami powinny mieć balustrady z pochwytami, gdy szer biegu wynosi więcej niż 1,5m. Należy stosować pochwyt także od strony ściany. Wysokość balustrady zależy od szer duszy i powinna wynosić 0,9m. jeśli dusza jest nie większa niż 0,2m. i 1,1m gdy przestrzeń ta (dusza) przekracza 0,2m., a także w bud szkolnych niezależnie od szer duszy. Wysokość przejścia pod biegami i spocznikami mierzona w świetle powinna wynosić co najmniej 2m

149 DROGI EWAKUACYJNE I ROZMIESZCZENIE KLATEK SCHODOWYCH.

Jako najmniejszą szerokość użytkową biegów schodów ewakuacyjnych przyjmuje się 1,2m. największą 2,4m.; gdy z obliczeń wypadają schody szersze niż2,4m. najeży gęściej rozstawić klatki schodowe.

ROZMIESZCZENIE SCHODÓW W BUDYNKU. Konieczność szybkiej ewakuacji ludzi z budynku (np. podczas pożaru), ograniczona długość drogi, jaką musi przebyć człowiek od drzwi wejściowych pomieszczenia do najbliższego spocznika klatki schodowej lub do wyjścia na zewnątrz na parterze. Te odległości decyduję o rozmieszczeniu klatek schodowych w budynkach. W bud mieszkalnych, socjalnych itp. długość dojścia do klatki schodowej od drzwi wyjściowych z najdalej położonego pomieszczenia nie powinna przekraczać 45m. w przypadku możliwości dojścia tylko do jednej klatki schodowej dopuszczalne odległości są krótsze, niż gdy istnieje połączenie z dwiema klatkami i wynoszą 10 lub 20m. W bud wysokich długość dojścia ewakuacyjnego nie może przekraczać 10m. przy jednym dojściu i 30m. przy większej liczbie dojść.

150 PODZIAŁ I CHARAKTERYSTYKA SCHODÓW ZE WZGLĘDU NA KONSTRUKCJĘ

Podstawowymi elementami nośnymi w konstrukcji schodów są belki lub płyty, które mogą opierać się na ścianach albo na słupach. W zależności od rodzaju elementów nośnych rozróżnia się schody:

  1. belkowe; b) płytowe; c) belkowo-płytowe

Schody belkowe:

Ze wzgl na sposób zamocowania stopni dzielą się na:

-Wspornikowe, /rys1/ których każdy stopień jest niezależną belką utwierdzoną w ścianie nośnej

-Dwuwspornikowe, /rys2/ w których stopnie każdego biegu opierają się na belce umieszczonej pod nimi w środku rozpiętości, zwanej belką policzkową

-Jednoprzęsłowe (wolno podparte lub zamocowane) oparte na ścianach, na ścianie i belce policzkowej lub na dwóch belkach policzkowych [ drewno, metal, kamień, żelbet ] /rys3/

0x01 graphic
0x01 graphic
0x01 graphic

Schody płytowe

Schody te składają się z płyty biegowej i płyty spocznikowej, przy czym bieg może być:

-Płytą wspornikową osadzoną w ścianie nośnej /rys4/

-Płytą wolno podpartą na płytach spocznikowych /rys5/

-Połączony w jednolity element z płytami spocznikowymi - tworzą razem płytę jednoprzęsłową załamaną (wolno podpartą lub zamocowaną w poprzecznych ścianach klatki schodowej) [ żelbet ] /rys6/

0x01 graphic
0x01 graphic
0x01 graphic

Schody belkowo- płytowe

Składają się z płyt i belek (żeber) najczęściej połączonych ze sobą w jeden monolit. Rozróżnia się schody z belkami spocznikowymi oraz z belkami spocznikowymi i policzkowymi. W pierwszym wypadku belki służą do oparcia spoczników i biegów, w drugim - biegi opierają się na belkach policzkowych, które z kolei opierają się na belkach spocznikowych. [ żelbet, stalowo-ceramiczne ] /rys7,8/

0x01 graphic
0x01 graphic

151 SCHODY ŻELBETOWE

A.Monolityczne

-Z biegami wspornikowymi, Z belkami policzkowymi, Z belkami spocznikowymi, Płytowe

1)Z biegami wspornikowymi /rys9/

Składają się z płyt biegowych utwierdzonych jednostronnie w ścianie nośnej i spoczników oddzielonych od nich szczeliną dylatacyjną. W bud szkieletowych płyty mocuje się w belce żelbetowej. Zbrojenie główne biegów wspornikowych umieszczone jest w narożach stopni. Utwierdzenie płyty biegowej w ścianie murowanej uzyskuje się za pomocą wieńca o szer 18-25cm

2)Z belkami policzkowymi /rys10/

Płyty biegowe podparte są dwoma końcami na belkach policzkowych albo jednym końcem na belce a drugim na murze. Płyty biegowe ze stopniami traktuje się jak belki swobodnie podparte. Każdy stopień jest zbrojony w strefie dolnej 3 prętami φ 8mm przy czym środkowy pręt odgina się ku górze w pobliżu podpory. Grubość płyty wynosi przeważnie 8-10cm

0x01 graphic
0x01 graphic

3)Z belkami spocznikowymi /rys11/

Głównymi elementami nośnymi są belki spocznikowe na których opierają się płyty biegowe i spocznikowe. Zastosowanie belek spocznikowych przejmujących całe obciążenie z biegów schodowych pozwala na umieszczenie w ścianach klatki schodowej kanałów i przewodów instalacyjnych.

4)W formie płyty załamanej rys/12/

Rozwiązanie takie stosuje się wówczas gdy nie ma możliwości oparcia schodów na podłużnych ścianach klatki schodowej albo gdy zależy nam na gładkiej powierzchni podniebienia schodów. Schody o płycie załamanej pod wzgl statycznym stanowią jednoprzęsłową belkę wolno podpartą o znacznej rozpiętości, dlatego też grubość płyty jest znaczna (nawet ponad 20 cm)

0x01 graphic
0x01 graphic

B)Prefabrykowane

a) z prefabrykatów drobnowymiarowych - schody z prefabrykowanych stopni wspornikowych. Dostarcza się je na budowę w stanie wykończonym z nałożoną na podnóżku i przednóżku warstwą lastryka. Poszczególne stopnie osadza się w bruzdach pozostawionych w ścianie klatki schodowej.

b) z prefabrykatów wielkowymiarowych - schody takie składają się z płyt biegowych, płyt spocznikowych międzypiętrowych i płyt spoczników piętrowych. Górne powierzchnie prefabrykatów pokryte są 2 cm warstwą lastryka. Elementy te zostały zaprojektowane dla schodów dwubiegowych prawoskrętnych przy wys kondygnacji H=280, 330, 360 i 450 cm. Szerokości klatek schodowych 240, 300, 360 i 480 cm, długości 480, 540, 600, 660 i więcej. Grubość płyt biegowych zależy od ich długości 7,5; 10,5; 14,5.

151 SCHODY KAMIENNE I CEGLANE

Schody kamienne /rys13/

Stosowane są obecnie bardzo rzadko ze wzgl na większy koszt kamienia od kosztu innych materiałów. Do budowy schodów stosowano skały twarde (granity, sjenity, piaskowce) i skały o mniejszej twardości (marmury, dolomity, twarde wapienie) Wykonywano je jako schody wspornikowe lub obustronnie oparte na murach albo belkach policzkowych stalowych. Przy stopniach mocowanych wspornikowo w murze szerokość biegu nie powinna przekraczać 1,30m.- gdy wykonane są one ze skał twardych oraz 1,00m. - gdy wykonane są ze skał o mniejszej twardości. Jeśli stopnie oparte są na obu końcach to szer biegu może wynosić 2,20m.- gdy wykonane są one ze skał twardych oraz 1,70m. - gdy wykonane są ze skał o mniejszej twardości. Konstrukcja spoczników może być wykonana jako sklepienie odcinkowe lub płyta Kleina. Istotną wadą tych schodów , oprócz znacznego kosztu, jest mała odporność na działanie wysokiej temperatury (skała ulega spękaniu)

0x01 graphic
0x01 graphic
0x01 graphic

Schody ceglane /rys14/

Nie są one obecnie wykonywane ze wzgl na znaczną pracochłonność. Elementami nośnymi schodów ceglanych są belki stalowe, na których mocuje się płytę Kleina lub sklepienie odcinkowe z cegły. W przypadku zastosowania sklepienia odcinkowego belki policzkowe łączy się ściągami stalowymi w celu przeniesienia przez nie poziomej siły rozporu wywołanej parciem sklepienia.

153 SCHODY METALOWE /rys15/

Są rzadko stosowane, mimo że są znacznie lżejsze od schodów żelbetowych. Podstawową ich wadą jest spadek wytrzymałości po ogrzaniu do temp ponad 500C. Dlatego też schody metalowe, przeważnie stalowe, stosuje się jako schody pomocnicze w halach przemysłowych. Najprostsze stopnie składają się tylko z podnóżków z blachy gładkiej lub rowkowanej, przymocowanych za pomocą kątowników do policzków. Mocniejsze stopnie wykonuje się z podnóżkami z blachy usztywnionej przy przedniej krawędzi za pomocą kątowników, a bardzo mocne z przednóżkami i podnóżkami umocowanymi do policzków i między sobą za pomocą kątowników.

154 SCHODY DREWNIANE /rys16,17,18/

Stosowane są w bud mieszkalnych do dwóch kondygnacji. Stosuje się je najczęściej z drewna iglastego, rzadziej z liściastego; Rodzaje schodów drewnianych: Drabiniaste; Policzkowe ze stopniami wpuszczonymi lub wsuwanymi; Siodłowe ze stopniami nakładanymi

0x01 graphic
0x01 graphic
0x01 graphic

Schody drabiniaste: Stosuje się je w magazynach, składach, bud gospodarczych, a także jako schody strychowe lub piwniczne w domach jednorodzinnych. Są one bardzo strome dlatego nie mają przednóżków. Składają się one z belek policzkowych drewnianych gr 5-6 cm i szer 20-28 cm oraz z podnóżków gr 3,8 - 5cm i szer 25-30 cm Podnóżki łączy się z policzkami na pół- lub jaskółczy ogon. W celu zapewnienia większej sztywności policzki ściąga się śrubami (umieszczonymi pod podnóżkami) o śr 14-20mm rozmieszczonymi co 1,5-2,0m

Schody policzkowe: Składają się z belek policzkowych, podnóżków i przednóżków. Policzki wykonuje się z bali gr 6-8cm i szer 25-33cm. Stopnie składają się z podnóżków o gr 4-6cm i szer 25-30cm oraz przednóżków o gr 2-3cm i szer 16-20cm. Stosuje się dwa sposoby osadzenia stopni w policzkach: 1) polega na wsuwaniu podnóżków i przednóżków w odpowiednio wycięte rowki w policzkach; 2) najpierw osadza się podnóżki i przednóżki w gniazdach wyciętych w jednym policzku, a potem nakłada się drugi policzek i oba policzki ściąga się śrubami rozmieszczonymi co 1,5-2,0m. podnóżki z przednóżkami łączone są na wpust prosty u góry i za pomocą gwoździ u dołu.

Schody siodłowe: Zaleta - ładniejszy wygląd klatki schodowej, wada - większe zużycie drewna oraz trudniejsze i kosztowniejsze wykonanie. W schodach siodłowych policzki mają od góry wycięcie schodkowe dostosowane do wymiarów stopni. Nie naruszona wycięciami dolna część policzka musi mieć szer 15-18cm Policzki wykonuje się z bali szer 29-37cm i gr 6-8cm. Na wycięte belki policzkowe nakłada się podnóżki gr 5cm i przymocowuje do policzków wkrętami

155 WYKOŃCZENIA SCHODÓW

W celu zwiększenia odporności na ścieranie oraz polepszenia wyglądu powierzchni stopni i spoczników wykańcza się je różnymi okładzinami. Schody prefabrykowane mają zazwyczaj nawierzchnię wykonaną ze szlifowanego lastryka, dlatego też nie wymagają wykonania warstwy wierzchniej po zmontowaniu. Schody kamienne. Metalowe i drewniane nie wymagają specjalnego wykańczania powierzchni spoczników i stopni. Niekiedy tylko na spocznikach i podnóżkach stopni metalowych układa się deski w celu poprawienia wyglądu i polepszenia warunków użytkowania. Schody betonowe i żelbetowe wykonywane jako monolityczne bezpośrednio na budowie, oraz schody ceglane wykańcza się innymi materiałami poprawiającymi ich wygląd i cechy użytkowe. Schody betonowe i żelbetowe najczęściej pokrywa się warstwą lastryka. W bud o wyższym standardzie oraz w obiektach użyteczności publicznej stopnie i spoczniki schodów żelbetowych okłada się płytami kamiennymi o gr na spoczniki i podnóżki 4-5cm a na przednóżki gr 2-3cm. W domach jednorodzinnych i w mieszkaniach dwukondygnacyjnych schody żelbetowe wykańcza się drewnem. Okładziny stopni i spoczników wykonuje się zazwyczaj z desek dębowych lub bukowych gr 4-5cm Deski mocuje się wkrętami do zabetonowanych kołków lub listew. Ze wzgl estetycznych również przednóżki okłada się drewnem. Powierzchnia schodów może być również pokryta wykładziną lub masą szpachlową z tworzywa sztucznego. W przypadku zastosowania wykładziny przykleja się na krawędziach stopni specjalne wyprofilowane okładziny ze zmiękczonego poli(chlorku winylu). Stopnie schodów w zakładach przemysłowych i magazynach narażone są na uszkodzenia mechaniczne, zabezpiecza się je kątownikami stalowymi i płaskownikami.

Balustrada zabezpieczająca składa się z części konstrukcyjnej i przymocowanego do niej pochwytu. Najczęściej stosuje się balustrady stalowe, rzadziej żelbetowe, drewniane lub kamienne. Balustrady mogą być pełne, kurtynowe lub ażurowe. Pochwyty mogą być drewniane, metalowe, z tw sztucznych. Balustrady mogą być jedno- lub dwupłaszczyznowe.

156 OŚWIETLENIE I WENTYLACJA KLATEK SCHODOWYCH.

Oświetlenie: Schody wewnętrzne powinny być oświetlone światłem dziennym; powierzchnia okien w ścianie zewnętrznej powinna wynosić co najmniej 1/12 rzutu klatki schodowej. Jeśli klatka schodowa nie ma okien lub ich powierzchnia jest niewystarczająca, można oświetlić ją za pomocą świetlika dachowego lub okien w górnej części klatki wyprowadzonej ponad dach. Schody w domkach jednorodzinnych, mieszkaniach dwukondygnacyjnych oraz prowadzące do podziemia nie muszą być oświetlone światłem dziennym.

Wentylacja.: Klatki schodowe muszą mieć otwory wentylacyjne umożliwiające odprowadzenie dymu w czasie pożaru. Wentylację może również zapewnić wywietrznik, umieszczony w oknie nad najwyższym spocznikiem, o ile jest łatwo dostępny.

Powierzchnie otworów wentylacyjnych klatek schodowych.

Bud o liczbie

kondygnacji K

Powierzchnia otworu wentylacyjnego w zależności od umieszczenia

W stropie

W ścianie

K≤11

0,04 m2

0,08 m2

K>11

0,01(A⋅B) i ≥ 0,125 m2

0,02(A⋅B) i ≥ 0,25 m2

A⋅B- powierzchnia rzutu klatki schodowej

157 DŹWIGI STOSOWANE W BUDYNKACH MIESZKALNYCH.

Ze wzgl na przeznaczenie dźwigi dzielimy na: osobowe, szpitalne, towarowo-osobowe, towarowe małe

Dźwigi osobowe należy- wg przepisów prawa budowlanego- instalować we wszystkich obiektach przeznaczonych na stały pobyt ludzi, gdy liczba kondygnacji nadziemnych w budynku wynosi ponad 5 lub gdy znajdują się w nim pomieszczenia o poziomie podłogi powyżej 15m. nad poziomem terenu. Liczba dźwigów w obiekcie powinna wynikać z potrzeb w godzinach szczytowego nasilenia ruchu. Pojedynczy dźwig projektowany w bud mieszkalnym powinien być dźwigiem typu meblowego. Do bud biurowych i użyteczności publicznej należy bezwzględnie stosować dźwigi z drzwiami automatycznymi.

173.RODZAJE PŁYTEK CERAMICZNYCH I PODSTAWOWE ZASADY WYKONYWANIA OKŁADZIN.

Rodzaje płytek ceramicznych:

-płytki i kształtki ścienne szkliwione (glazura)

-płytki i kształtki kamionkowe (zwykłe i kwasoodporne)

-płytki klinkierowe

-płytki ceramiczne elewacyjne

Podstawowe zasady wykonywania okładzin z w/w:

Do przytwierdzania - w zależności od warunków i podłoża - używać zapraw:

cementowe: 80 lub 50, cementowo-wapienne 50 lub 30, gipsowe 30, gipsowo-wapienne marki 30 (tylko w pomieszczeniach suchych i nie narażonych na zawilgocenie), lub (przy bardzo dokładnym wyrównaniu i wygładzeniu podłoża) -

klejów np. lateksowych.Przed kładzeniem okładziny należy wykonać podkład z w/w

surowców (jego grubość zależna jest od rodzaju ściany).

Płytki mocuje się na warstwie wyrównującej, lub na innym (gładkim) podłożu np. tynku. Do osadzania okładzin na ścianach murowanych można przystąpić dopiero po zakończeniu osiadania muru. Podłoża pod w/w okładziny powinny spełniać wymagania jak dla tynków III kategorii i powinny być oczyszczone i zmyte. Przed rozpoczęciem układania płytki należy posegregować według wymiarów, kolorów itd.,

oraz moczyć w czystej wodzie przez około 2-3 h. Układać tak, aby spoiny tworzyły

linie proste, nie szersze niż 2 mm. Płytki układane jako ostatnie i na wszelkich narożach powinny mieć odpowiednio zaokrąglone zewnętrzne brzegi. Po 5-7 dniach od wykonania okładziny spoiny wypełnić białym cementem lub cementem portlandzkim z dodatkiem białej mączki kamiennej.

174 OKŁADZINY Z DREWNA I MATERIAŁÓW DREWNOPOCHODNYCH.

Boazerię wykonuje się na ścianach (całej lub częściowej powierzchni) czasem na sufitach Wykonuje się je z estetycznie wykończonych desek drewnianych (sosna,dąb) Moą być wykonane z drewna litego, elem klejonych, elem stanowiących kombinację drewna z materiałami drewnopochodnymi, metalami, tw szt,. Drewno używane na okładziny powinno mieć wilgotność 10-12% a wilg podłoża max do 2,5% zaś wilgotn powietrza do 65% Bardziej ekonomiczne jest stosowanie okładzin w postaci cienkich deseczek niż drewna litego, ale za to bardziej pracochłonne. Zastosowanie okł drewnopoch umożliwia uzyskanie bardzo szerokiej gamy barw. Do okładzin z drewna stosuje się elementy gr 12-18mm i szer 10-15cm Można je łączyć i profilować w różny sposób. Okładziny z płyt pilśniowych laminowanych, lakierowanych mogą być stos w pomieszczeniach o stałej wilgotności względnej powietrza ≤ 75% Do przyklejania płyt pilśniowych stosuje się kleje rozpuszczalnikowe a do mocowania specjalne listwy montażowo-dekoracyjne z PCW

175.OKŁADZINY Z TWORZYW SZTUCZNYCH I PAPIERU.

Okładziny z papieru (tapety):

Jako w/w okładziny można stosować: tapety wodoodporne, tj. odporne na ścieranie gąbką lub szmatką zwilżoną w czystej wodzie, oraz zmywalne, tj. odporne na zmywanie wodą z dodatkiem środków piorących. Do ostatniej grupy zalicza się także tzw. tapety winylowe. Tapety są dostarczane w rolkach o szerokości (z fabrycznie obciętymi marginesami) 53 cm, długości 10,05 m, liczonej na cztery wysokości typowych pomieszczeń mieszkalnych. Do przyklejenia tapet stosuje się kleje celulozowe lub skrobiowe; do gruntowania stosuje się albo te same środki, albo preparaty specjalnie przeznaczone do tego celu np. zalecane przez producenta. Podłoże pod tapety nie powinno mieć wilgotności większej niż: podłoże betonowe - 4%, gipsowe - 3%, dla tapet grubszych oraz winylowych są to odpowiednio następujące wartości: 3% i 2%, oraz podłoże te nie powinno wykazywać szkodliwych właściwości (alkaliczność, zanieczyszczenie olejami itd.) Podłoże powinno być także odpowiednio wyrównane i zagruntowane (gruntowanie - najlepiej na dzień przed kładzeniem tapety).

Okładziny z tworzyw sztucznych

Tworzywa sztuczne jako surowiec: - płynne, proszkowe, ziarniste - dzielą się na: duroplasty, termoplasty, elastomery.Ich cechy w zastosowaniach budowlanych są następujące: odpornośc na wodę i korozję, nie wymagają konserwacji, niski ciężar, łatwość barwienia, łatwość formowania, mała przewodność cieplna. Temperaturowe granice użytkowania to 80-120 C, jako związki organiczne tworzywa te określane są jako palne, niektóre rodzaje osiągają klasę tworzyw trudno zapalnych. Jako okładziny

z tworzyw sztucznych stosuje się: płyty i materiały rolkowe, folie, płachty, tkaniny, włókniny, wykładziny podłogowe, wykładziny powierzchni sportowych, drobne materiały eksploatacyjne: taśmy klejące, uszczelniające itd.Na zewnątrz - np.płyty pokrywające dach itd...

176 Z JAKICH MATERIAŁÓW WYKONUJE SIĘ OKŁADZINY ZEWN (OKŁ KONSTR I POWIERZCHNIOWE)

Okł elewacyjne zewn zaliczamy te wszystkie materiały okładzinowe ceramiczne, z kamieni naturalnych, sztucznych, azbestobetonu szkła, drewna, mater drewnopoch, blach i tw szt, które montuje isę na wykonanych już budynkach w stanie surowym W zależności od kształtu elem okładzinowych oraz sposobu ich powiązania z konstrukcją ściany okładziny dzielą się na konstrukcyjne i powierzchniowe. Konstr wykonywane są jednocześnie z murowaniem ścian przy zachowaniu prawidłowego powiązania wszystkich elementów, mogą być traktowane wspólnie z murem jako konstr zespolone. Okł powierzchniowe nie są powiązane z murem i stanowią element niezależny.

177.KOTWIE (MATERIAŁ I KSZTAŁT) I SPOSOBY KOTWIENIA OKŁADZIN KAMIENNYCH.

Kotwie - odpowiednio wygięte i wyprofilowane zestawy prętowe służące do łączenia np. warstw muru ceglanego, mocowania płyt zewnętrznej okładziny do muru itd.

Muszą spełniać odpowiednie warunki dotyczące ich wytrzymałości oraz posiadać odpowiednio wysoką odporność na korozję oraz inne szkodliwe oddziaływania zarówno ze strony materiałów budowlanych, jak i warunków zewnętrznych.

Jako elementy kotwiące stosuje się kotwy kolankowe wykonane z płaskownika lub prętów okrągłych z końcami wygiętymi w przeciwne strony, powinny być osadzone w odpowiednich rowkach a ich końce w gniazdach o głębokości 2-3cm

178.OKŁADZINY CERAMICZNE ZEWNĘTRZNE.

Stosuje się dobrze wypalone cegły o równych krawędziach, specjalne licówki, klinkiery oraz płytki kamionkowe (terakotę) Do okładzin ceram stos się zaprawy cem 1:3, 1:4, oraz zapr cem-wap. Środki uplastyczniające zwiększają przyczepność zaprawy. Wielkowymiarowe elementy ceram są łączone z konstr nośną za pomocą kotw należy zwracać uwagę na jakość połączeń i dokładność przygotowania ścian do umocowania okładzin, gdyż okładziny zewn są w dużo większym stopniu narażone na szkodliwe warunki.

179.OKŁADZINY ZEWNĘTRZNE Z DREWNA, METALU I TWORZYW SZTUCZNYCH, A TAKŻE SZKŁA I INNYCH MATERIAŁÓW.

Okładziny szklane:

Przykładem w/w są: pustaki szklane. Zalety w/w to: dekoracyjność, rozpraszanie i odchylanie światła, dobra izolacyjność akustyczna i termiczna, przepuszczalność świetlna do 75%, możliwe wersje antywłamaniowe i odporne na uderzenia, możliwość zastosowania wielu wersji barwnych; wady: np. cena

Inny przykład: szkło typu "float" - zbrojone, trudno rozpadające się, obydwie powierzchnie gładkie, możliwe wersje nieprzezroczyste i przepuszczające 82-92% światła, możliwe wersje ornamentowane, ognioodporne

Okładziny drewniane:

zalety: dekoracyjność, możliwość dobrej izolacji termicznej i akustycznej; wady: aby okładziny drewniane mogły być stosowane jako zewnętrzne, musi się je zabezpieczyć od zewnątrz i od wewnątrz (tj. pomiędzy ścianą a okładziną) przed szkodliwym wpływem wilgoci oraz ewentualnym zagrzybieniem; tylko bardzo dobrze zabezpieczone przed szkodliwymi warunkami okładziny takie mogą służyć dość długo, ale i tak mają krótszy czas eksploatacji od innych okładzin (czas ten jest zależny także od gatunku i klasy drewna wykorzystanego na okładzinę). Przy montażu oraz przycinaniu elementów należy zwrócić uwagę na niekorzystne zjawisko sęków, oraz na różne własciwości drewna wzdłuż i w poprzek włókien.

Okładziny metalowe:

zalety: dekoracyjność, możliwość stosowania cienkich, a więc lekkich elementów, bardzo duże możliwości wykonywania różnych kształtów, łatwość montażu (np. jako blachy pokrywającej dach, bardzo niska przepuszczalność wilgoci, różne rodzaje metalu i wiele wariantów kolorystycznych; wady: korozyjność, czasami wysoka cena,

niektóre stopy "gryzą" się z innymi stopami. Uwaga na rozszerzalność cieplną przy stosowaniu dużych elementów.

Okładziny z tworzyw sztucznych:

Patrz także punkt 175. Izolacje z w/w, w zależności od sytuacji można wykonać z:

folii PCV, polietynowej, poliizobutylenowej, bądź jako powłoki z tiokolu, szpachlówki epoksydowej z laminatów poliestrowo- lub epoksydowo-szklanych.



Wyszukiwarka