Podstawy automatyki

0x01 graphic

Dla:

Szukane:

h(t), g(t), P(ω), Q(ω), A(ω), φ(ω), L(ω);

Obliczenia:

Liczymy transmitancje

G(s)=0x01 graphic
;

0x01 graphic

Liczymy transmitancje charakterystyczną:

0x01 graphic

0x01 graphic

Odwrotną transmitancje G(s) i H(s):

0x01 graphic
0x01 graphic

Liczymy transmitancje widmową (s=jω):

0x01 graphic

0x01 graphic

G(jω)=P(ω)+jQ(ω);

P(ω)= 0x01 graphic
;

Q(ω)= 0x01 graphic
;

Z wzoru Eulera:

P2(ω)+jQ2(ω)=A(ω)ejφ(ω)

0x01 graphic

0x01 graphic

Obliczamy postać logarytmiczną:

0x01 graphic

Wykresy:

Dla 0x01 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x01 graphic

Dla 0x01 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x01 graphic

Dla P(ω)= 0x01 graphic
;

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x01 graphic

Dla Q(ω)= 0x01 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x01 graphic

Dla 0x01 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x01 graphic

Dla 0x01 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x01 graphic

Dla 0x01 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x01 graphic

Ω 0x01 graphic

g(t)0x01 graphic
0

Ω 0x01 graphic

h(t)0x01 graphic

ω

ω

ω

ω

ω

ω

ω

Ω 0x01 graphic

P(ω)0x01 graphic
0

Ω 0x01 graphic

Q(ω)0x01 graphic
0

ω

ω

ω

ω

ω

ω

Ω 0x01 graphic
0

A(ω)0x01 graphic

Ω 0x01 graphic

A(ω)0x01 graphic
0

Ω 0x01 graphic
0

Q(ω)0x01 graphic
-∞

Ω 0x01 graphic
0

P(ω)0x01 graphic
-3

Ω 0x01 graphic
0

g(t)0x01 graphic
4

Ω 0x01 graphic
0

h(t)0x01 graphic
0

Ω 0x01 graphic
0

φ(ω)0x01 graphic
π/2

Ω 0x01 graphic

φ(ω)0x01 graphic
-π/2

ω

ω

φ

ω

ω

ω

ω

Ω 0x01 graphic

L(ω)0x01 graphic
-∞

Ω 0x01 graphic
0

L(ω)0x01 graphic