Pochodne

xa'= axa-1

sinx' = cosx

cosx' = -sinx

tgx' = = 1+tg2x

ctgx' =- = -(1+ctg2x)

arcsinx' =

arccosx' =

arctgx' =

arcctgx' =

ex' = ex

ax' = axlna

ln|x|' = 1/x

loga|x|' = = (1/x) logae

' = 1/(n)

[c*f(x)]'=c*f'(x)

[f(x)-g(x)]'=f'(x)-g'(x)

[f(x)+g(x)]'=f'(x)+g'(x)

f[g(x)]'=f'[g(x)*g'(x)

[f(x)*g(x)]'=f'(x)*g(x)+g'(x)*f(x)

[f(x)/g(x)]'= ('(x)*g(x)-g'(x)*f(x))/[g(x)]2