Pochodne
xa'= axa-1
sinx' = cosx
cosx' = -sinx
tgx' = = 1+tg2x
ctgx' =- = -(1+ctg2x)
arcsinx' =
arccosx' =
arctgx' =
arcctgx' =
ex' = ex
ax' = axlna
ln|x|' = 1/x
loga|x|' = = (1/x) logae
' = 1/(n)
[c*f(x)]'=c*f'(x)
[f(x)-g(x)]'=f'(x)-g'(x)
[f(x)+g(x)]'=f'(x)+g'(x)
f[g(x)]'=f'[g(x)*g'(x)
[f(x)*g(x)]'=f'(x)*g(x)+g'(x)*f(x)
[f(x)/g(x)]'= ('(x)*g(x)-g'(x)*f(x))/[g(x)]2