Mathcad Cw 6

background image

Rozkład normalny zmiennej losowej

Oto najważniejsze funkcje:

Funkcja

Opis

rnorm(n, Sr, sigma) generuje wektor n wartości pseudolosowych o rozkładzie normalnym

pnorm(x, Sr , sigma) to dystrybuanta określająca dla kolejnych wartości z ciągu x

prawdopodobieństwa, że zmienna losowa X nie przekroczy wartości x

dnorm(x, Sr, sigma) to funkcja gęstości prawdopodobieństwa (pochodna z dystrybuanty, krzywa

Gaussa), x - rosnący ciąg wartości dla osi x wykresu, (D od słowa distribution
oznacza rozkład)

przy czym:
Sr - to wartość średnia (oczekiwana)
sigma - to odchylenie standardowe

background image

Zadanie nr 1- przepisz przyklad

Obliczenia z zastosowaniem zmiennych losowych

W modelowaniu zagadnień mechanicznych ważnym problemem jest szacowanie prawdopodobieństwa
zajścia pewnych zjawisk, na przykład prawdopodobieństwa, że obciążenie przekroczy dopuszczalną
wartość, albo że naprężenie rozciągające będzie większe niż wytrzymałość na rozciąganie, albo że
grubość filmu smarnego spadnie poniżej minimalnej dopuszczalnej wartości i t.p.

Zakładamy więc, że w najprostszych przypadkach rozpatrywać będziemy dwie przeciwstawne wielkości
fizyczne tego samego typu (siły, momenty, naprężenia), które w modelu deterministycznym przyjęlibyśmy
jako stałe, natomiast przy dokładniejszym rozpatrywaniu i zastosowaniu modelu stochastycznego,
uznamy, że mają one losowy rozrzut, według określonego rozkładu. W niektórych przypadkach - gdy
rozrzut wartości jest symetryczny wokół określonej średniej - można przyjąć, że każda z tych dwu
wielkości jest zmienną losową charakteryzowaną rozkładem normalnym. Hipoteza ta powinna być
zweryfikowana statystycznymi testami normalności, którymi na razie nie zajmujemy się.

Wyznaczyć prawdopodobieństwo przesunięcia ciężaru Q stojącego na poziomym podłożu o
współczynniku tarcia M jeśli działa na niego siła P. Zakładamy, że zarówno siła pchania P (o różnych
wartościach przy kolejnych próbach pchnięcia) jak i współczynnik tarcia M (zmieniający się wskutek
różnic między tarciem statycznym i dynamicznym) są zmiennymi losowymi o rozkładach normalnych.
Każdy rozkład normalny charakteryzują dwa parametry: wartość średnia i odchylenie standardowe:
A więc nasze DANE to:

średnia siła pchania:

odchyl. standardowe pchania:

ciężar skrzyni:

średni współczynnik tarcia:

odchyl. standardowe:

współczynnika tarcia

Psr

85

:=

σP

4

:=

Q

300

:=

Msr

0.3

:=

σM

0.017

:=

Analiza Siła pchania P i współczynnik tarcia M to wielkości nieporównywalne, a więc musimy wyznaczyć
siłę tarcia T i dopiero ją porównać z siłą P

Obliczenia:

średnia siła tarcia:

odchyl. standardowe tarcia:

Tsr

Q Msr

:=

Tsr

90

=

σT

Q σM

:=

σT

5.1

=

Ponieważ średnia siła tarcia Tsr jest większa niż średnia siła pchania Psr, więc pchnięcie skrzyni nie
byłoby możliwe gdyby nie losowy rozrzut wartości tych sił. Dzięki temu rozrzutowi może się zdarzyć
przypadek, że przy którejś z wielu prób, siła pchania przekroczy siłę tarcia i skrzynię uda się wówczas
pchnąć. Mamy obliczyć prawdopodobieństwo takiego zdarzenia przy założeniu rozkładów normalnych.

Obliczenia
Dla sporządzenia wykresów potrzebujemy zakresy zmienności
Wyznaczamy je na podstawie reguły trzech sigm

Zakres siły pchania:

Zakres siły tarcia:

Pmi

Psr

3 σP

:=

Pma

Psr

3 σP

+

:=

Pmi

73

=

Pma

97

=

Tmi

Tsr

3 σT

:=

Tma

Tsr

3 σT

+

:=

Tmi

74.7

=

Tma

105.3

=

background image

Ponieważ będą dwa rozkłady na jednej osi reprezentującej siły F, więc wyznaczamy Fmin i Fmax

Fmin

min Pmi Tmi

,

Pma

,

Tma

,

(

)

:=

Fmax

max Pmi Tmi

,

Pma

,

Tma

,

(

)

:=

Fmin

73

=

Fmax

105.3

=

Jak zwykle, dla wykresu definiujemy następnie przyrost zmiennej niezależnej (siły): Df tak, aby otrzymać
100 punktów wykresu

Df

Fmax

Fmin

(

) 0.01

:=

Następnie generujemy ciąg wartości siły (jako zmienną zakresową), a potem już wstawiamy wykres

F

Fmin Fmin

Df

+

,

Fmax

..

:=

70

80

90

100

110

0

0.02

0.04

0.06

0.08

0.1

Siła Pchania

Siła Tarcia

dnorm F Psr

,

σP

,

(

)

dnorm F Tsr

,

σT

,

(

)

F

Szukane prawdopodobieństwo PR, że siła pchania przekroczy siłę tarcia możemy wyznaczyć metodą
symulacji stochastycznej (Monte Carlo).
Generujemy (przy pomocy rnorm), według zadanych rozkładów normalnych, N par wartości siły Psi oraz
tarcia Tsi.
Następnie przy pomocy sumy oraz funkcji if(...) zliczamy wszystkie przypadki gdy Psi>Tsi i dzielimy przez
liczbę wszystkich losowań N, otrzymując oszacowanie prawdopodobieństwa, tym dokładniejsze im
wieksze N:

Sposób obliczenia

N

1000

:=

ORIGIN

1

i

1 N

..

:=

Ps

rnorm N Psr

,

σP

,

(

)

:=

Ts

rnorm N Tsr

,

σT

,

(

)

:=

PRsym

i

if Ps

i

Ts

i

>

1

,

0

,

(

)

N

:=

PRsym

0.195

=

background image

70

80

90

100

110

0

200

400

600

800

1 10

3

×

i

i

Ps

i

Ts

i

,

Zadanie nr 2

Dane jest pasowanie 50H7/n6 o następujących parametrach

Wymiar nominalny [mm]:

n

50

:=

odchyłka góra otworu 50H7[mm]:

ES

0.025

:=

odchyłka góra wałka 50n6 [mm]:

es

0.028

:=

odchyłka dolna otworu 50H7[mm]: EI

0

:=

odchyłka dolna wałka 50n6 [mm]:

ei

0.015

:=

Przy założeniu rozkładu normalnego obliczyć prawdopodobieństwo, że połączenie będzie połączeniem
wciskowym.
Porównać ten wynik z pasowaniem 50H7/js6.

odchyłka góra wałka 50js6 [mm]:

es2

0.008

:=

odchyłka dolna wałka 50js6[mm]:

ei2

0.008

:=


Wyszukiwarka

Podobne podstrony:
ćw 5 MathCad PTCh A Krzyżkowska, M Martyła
ćw 5 MathCad PTCh
ćw 4 Profil podłużny cieku
biofiza cw 31
Kinezyterapia ćw synergistyczne
Cw 1 ! komorki
Pedagogika ćw Dydaktyka
Cw 3 patologie wybrane aspekty
Cw 7 IMMUNOLOGIA TRANSPLANTACYJNA
Cw Ancyl strong
Cw 1 Zdrowie i choroba 2009
Rehabilitacja medyczna prezentacja ćw I

więcej podobnych podstron