p08 056

background image

56.

(a) By a force analysis in the style of Chapter 6, we find the normal force N = mg cos θ (where

mg = 267 N) which means f

k

= µ

k

mg cos θ. Thus, Eq. 8-29 yields

E

th

= f

k

d = µ

k

mgd cos θ = (0.10)(267)(6.1) cos 20

= 1.5

× 10

2

J .

(b) The potential energy change is ∆U = mg(

−d sin θ) = (267)(6.1 sin 20

) =

5.6×10

2

J. The initial

kinetic energy is

K

i

=

1

2

mv

2

i

=

1

2



267 N

9.8 m/s

2



(0.457 m/s)

2

= 2.8 J .

Therefore, using Eq. 8-31 (with W = 0), the final kinetic energy is

K

f

= K

i

U − E

th

= 2.8



5.6 × 10

2



1.5 × 10

2

= 4.1

× 10

2

J .

Consequently, the final speed is v

f

=



2K

f

/m = 5.5 m/s


Document Outline


Wyszukiwarka

Podobne podstrony:
p08 082
p08 014
p08 001
p08 096
p08 044
p08 095
p08 061
p08 011
p12 056
12 2005 048 056
04 2005 056 057
p08 060
p08 085
p08 063
p08 003
p08 013
pc 02s054 056

więcej podobnych podstron