AGH Analog electronics Chapter V data transmission principles pptx

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

1

Cable properties

Transmission of analogue signal

Analog digital conversion

Characteristics of digital data flow

Signal transmission of digital data

Rozdzial V Podstawy transmisji danych analogowych i cyfrowych
Chapter V Analog and digital data transmission principles

background image

Receiver

ITEEM IE3 B.Piwakowski : Télécommunications, Chapitre 3 Transmission dans la bande de base

Wlasnosci kabli transmisyjnych Cable proprieties

- Twisted pair

- Coaxial cable

2

]

/

1

[

/

1

km

L

e

r

ou

e

P

P

km

(dB/km) coefficient

(absorption) of cable or ,

….

cable

L

Input power

P

e

R

c

R

c

v

s

R

g

U

e

R

g

output source resistivity

source

R

e

Emitter

Received power

P

R

U

e

R

c

= characteristic resistivity

attenuation

L Lenght
Bandwidth B

cable

Parameters of cable

R

e

input receiver resistivity

Power balance

c

g

e

c

g

e

R

R

R

R

r

,

,

Reflection coefficient at
the and of cable

Matching condition!

c

g

c

e

R

R

R

R

background image

Receiver

ITEEM IE3 B.Piwakowski : Télécommunications, Chapitre 3 Transmission dans la bande de base

If cable is not matched

3

câble

L

Input power

P

e

R

c

R

c

R

g

U

e

R

g

output source resistance

R

e

Emitter

Received power

P

R

U

R

R

e

input receiver resistivity

c

g

e

c

g

e

R

R

R

R

r

,

,

output

at

matched

r

R

R

input

at

matched

r

R

R

if

c

e

c

g

0

0

sortie

la

à

adaptation

d

pas

r

R

R

entrée

l

à

adaptation

d

pas

r

R

R

Si

s

c

e

e

c

g

'

0

'

'

0

U

e

U

R

If Re>0 , Rs>0

background image

ITEEM IE3 B.Piwakowski :

Télécommunications, Chapitre 3

Transmission dans la bande de base

4

bandwidth B

cable

, Cable!: properties

(dB/km) attenuation coefficient

, L B

cable

,

L

f

f

c=

B

canal

L

f

B

f

c

canal

c

1

Cable bandwidth decrease with:

Attenuation (quality of cable)

Length L of cable

background image

ITEEM IE3 B.Piwakowski :

Télécommunications, Chap.I,

Introduction et rappels

5

SNR





eff

eff

dB

dB

eff

eff

n

U

Log

N

S

Log

SNR

N

S

Log

SNR

R

n

R

U

N

S

SNR

10

10

10

2

2

20

20

10

/

/

Quality os transmission system is expressed by signal to noise ratio

N

S

P

P

SNR

bruit

signal

SNR : Signal to Noise Ratio

Example : Noisy Sinusoïdal signal.

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

s

i g n a l o r i g i n a l

s

i g n a l f i l t r é

SNR=2

SNR=0.25

SNR=20

SNR=

R

s(t)=U(t)

background image

Received

: Even in noise is present the receiver is able to resolve the emitted signal Quality of transmission

is measured by error probability P

err

which is a function os SNR .

Signal Analogue/ Digital signal transmission

Analog

: Because of noise the receiver can not resolve the emitted signal . Quality of transmission is measured

by signal to noise ratio SNR.

Emitted signal

Signal received

+

n(t)

s(t)

r(t)

1

0

receiver

a

2

a

1

seuil

decision

Compaparato

r

threshold

0

1

EC-Pekin B.Piwakowski : Chap 11 , Numérisation et codage des signaux

6

background image

Analog signal

source

Cable

Transmission by cable of analog signal

Récepteur

Emitterr

Signal
received

Signal emis s

B

signal

N

, L

B

cable

,

P

e

P

r

SNR

L

min

SNR

SNR

B

B

B

B

signal

recepteurl

signal

canal

Conditions of correct operation

B

recepteur

Signal emis

7

ITEEM IE3 B.Piwakowski :

Télécommunications, Chapitre 3

Transmission dans la bande de base

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

8

Digital signal transmission

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

9

Analog-Digital Conversion (ADC) Sampling

T

e

t

s

e

(t)

s(t)

t

s(t)

t

s

e

(t)

t=0 => perfect samplig

T

s

=sampling period

f

s

=sampling frequency

F

s

=1/T

s

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

10

s

e

(t)=p(t).s(t)

S

e

(f)

f

F

s

F

s2

-F

s/2

Frequency domain

Time domain

S(f)

f

F

max

- F

max

s(t)

t

t

s

e

(t)

ADC Sampling

B

g

alia

not

if

F

F

s

sin

2

max



Shannon principle

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

11

ADC

Quanatification et binary conversion

bits

in

resolution

conversion

bits

of

number

k

n

b

b

b

b

S

value

k

k

i

1

2

2

2

2

)

(

2

2

1

1

0

0

Exemple

n=8, m= 256, D=48 dB,

If Value (S

i

)=5

Binary word:
S

i

<=> 1+4 =>1, 0, 1, 0, 0, 0, 0, 0

Binary signal

)

(

6

2

log

20

log

20

2

dB

n

n

m

D

CAD

of

Dynamics

m

dB

n

tension

t

s

s

1

s

2

s

3

s

n

q

V

q

V

V

m

pp

min

max

q quantification step

V

max

V

min

m =number of voltage intervals

Binary coding

full scale voltage range

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

12

Quantification noise

• quantification noise :

12

2

2

q

)

(

)

(

)

(

t

x

t

x

t

q

x(t)

x

q

(t)

t

t

Quantification noise power:

Quantification step n



pp

eff

dB

q

V

s

n

SNR

log

20

8

.

10

6

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

13

For n et V

pp

given :

s

1eff

> s

2eff

.

SNR

1

> SNR

2

.

t

V

max

V

min

SNR

1

t

SNR

2



pp

eff

dB

q

V

s

n

SNR

log

20

8

.

10

6

V

pp

Quantization noise

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

14

- Le Débit Binaire D :

s

bits

bitrate

rate

bit

nF

T

n

T

D

n

T

T

bit

one

for

required

time

T

s

s

b

b

b

/

)

(

1

/

10 00

11

00 00

01

T

b

1 s

Samples m=4 :

Bauds

T

R

s

1

Number of

samples/second.

Ts = sampling period

Ex: Ts=0.25s, R = 4 (Bauds)

Ts

10 00 11

00 00 10

1 s

m=2

n

=> n=log

2

m

n = bit number

(here n=2)

m = (ici m=4). Number of quantifocatio levels

3

2

1

0

Ex: n=2 ; m=4; T=0.25s; T

b

=0.125 s;

fs=4Hz D = 8 bit/s

Characteristics of digital data flow

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

15

Coding

1 0 0 0 0 0 0 1 0 1 0 0 0 0 1

Densité spectrale de puissance

0

1/T

b

2/T

b

3/T

b

f

D

D

2

D

3

4/T

b

D

4

B

signal

Clock

T

h=

T

b

=> f

h

= D

NRZ code :

0 => 0
1 => 1

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

16

1

Manchester ( Biphase) code :

0 => 01
1 => 10

1 0 0 0 0 0 0 1 0 1 0 0 0 0 1

Power spectrum

0

1/T

b

2/T

b

f

D

D

2

3/T

b

D

3

4/T

b

D

4

-:

- B=2D = .

B

signal

Coding

background image

AGH B.Piwakowski Analog Electronics Chapter V Data trasmission

principles

17

Attenuation,: signal level drop :

• Low pass filterin,, fc increases with a length

Low pass

filtering

Band=B

canal

Distortion of numeric data :

•Multiple refections; no match effect:

• Noise:

17

Received signal s(t)

• All factors together

background image

AGH B.Piwakowski Analog Electronics Chapter V Data trasmission

principles

18

:

Source
format code NRZ
D

B

signal

= D

Bandwidth of câble

signal

canal

B

B

Adapted Receiver

Recived power Pr

Conditions of
succesful transmission:

Adapted Amplifier
Output resistivity Rs=Rc
Outpu power Pe

Cable

Rc =caracteristic resisitivity
 atténuation
bandwidth

B

canal

]

/

1

[

]

/

[

]

/

1

[

3

.

4

/

1

km

km

dB

km

L

r

e

r

ou

e

P

P

km

L km

Exepmle : Direct asynchrone transmission of digital data :

L

B

L

f

f

B

canal

c

c

canal

1

1

For given D, L is limited

Amplitude condition

min

R

R

P

P

1

0

1

0

background image

ITEEM IE3 B.Piwakowski :

Télécommunications, Chapitre 3

Transmission dans la bande de base

Cable transmission :

Source

Power amplifier

s

E

(t)

s

R

(t)

N

, L,

P

e

P

r

SNR

]

/

1

[

/

1

km

L

r

e

r

ou

e

P

P

km

Receiver

19

R

P

A

P

P

R

P

P

A

A

P

P

km

dB

dBm

E

dBm

E

dBm

R

km

dB

dBm

R

dBm

E

dBm

E

dBm

R

/

)

(

)

(

)

(

/

)

(

)

(

)

(

)

(

dBm

dBm

r

r

r

dB

dBm

N

P

mW

N

mW

P

N

P

SNR

mW

N

N

W

bruit

du

puissance

N

)

1

/

1

/

log(

10

)

log(

10

)

1

/

log(

10

)

(

dB

dBm

dBm

R

R

R

SNR

N

P

SNR

N

P

N

P

SNR

SNR

SNR

min_

)

(

)

min(

_

min

min

_

min

_

min

min

)

(

N

P

R

SNR

min

R(km)

maximal communication ragne

A

background image

ITEEM IE3 B.Piwakowski : Télécommunications, Chapitre 3 Transmission dans la bande

de base

20

Asynchrony transmission :without clock signal

Exemple: Transmission aRS 232

D<115000 bit/s
R≈D/11 bauds

Synchronization is performed for
each symbol

8 bits

Stop/start

Stop/start

"0" level => +3V à +12V => min 3V
« 1 » level => -3V à -12V => max =-3V

0

Version with parity bit

D

B

signal

background image

ITEEM IE3 B.Piwakowski : Télécommunications, Chapitre 3 Transmission dans la bande

de base

21

Coding ASCII

table ascii ( 0 - 127 )

Décimal Octal Hex Binaire Caractère
------- ----- --- --------

------

000 000 00 00000000 NUL (Null char.)
001 001 01 00000001 SOH (Start of Header)
002 002 02 00000010 STX (Start of Text)
003 003 03 00000011 ETX (End of Text)
004 004 04 00000100 EOT (End of Transmission)
005 005 05 00000101 ENQ (Enquiry)
006 006 06 00000110 ACK (Acknowledgment)
007 007 07 00000111 BEL (Bell)
008 010 08 00001000 BS (Backspace)
009 011 09 00001001 HT (Horizontal Tab)
010 012 0A 00001010 LF (Line Feed)
011 013 0B 00001011 VT (Vertical Tab)
012 014 0C 00001100 FF (Form Feed)
013 015 0D 00001101 CR (Carriage Return)
014 016 0E 00001110 SO (Shift Out)
015 017 0F 00001111 SI (Shift In)
016 020 10 00010000 DLE (Data Link Escape)
017 021 11 00010001 DC1 (XON)(Device Control 1)
018 022 12 00010010 DC2 (Device Control 2)
019 023 13 00010011 DC3 (XOFF)(Device Control 3)
020 024 14 00010100 DC4 (Device Control 4)
021 025 15 00010101 NAK (Negative Acknowledgement)
022 026 16 00010110 SYN (Synchronous Idle)
023 027 17 00010111 ETB (End of Trans. Block)
024 030 18 00011000 CAN (Cancel)
025 031 19 00011001 EM (End of Medium)
026 032 1A 00011010 SUB (Substitute)
027 033 1B 00011011 ESC (Escape)
028 034 1C 00011100 FS (File Separator)
029 035 1D 00011101 GS (Group Separator)
030 036 1E 00011110 RS (Request to Send)(Record Separator)
031 037 1F 00011111 US (Unit Separator)
032 040 20 00100000 SP (Space)
033 041 21 00100001 ! (exclamation mark)
034 042 22 00100010 " (double quote)
035 043 23 00100011 # (number sign)
036 044 24 00100100 $ (dollar sign)
037 045 25 00100101 % (percent)
038 046 26 00100110 & (ampersand)
039 047 27 00100111 ' (single quote)
040 050 28 00101000 ( (left opening parenthesis)
041 051 29 00101001 ) (right closing parenthesis)
042 052 2A 00101010 * (asterisk)
043 053 2B 00101011 + (plus)
044 054 2C 00101100 , (comma)
045 055 2D 00101101 -

(minus or dash)

046 056 2E 00101110 . (dot)
047 057 2F 00101111 / (forward slash)
048 060 30 00110000 0
049 061 31 00110001 1

050 062 32 00110010 2

051 063 33 00110011 3
052 064 34 00110100 4
053 065 35 00110101 5
054 066 36 00110110 6
055 067 37 00110111 7
056 070 38 00111000 8
057 071 39 00111001 9
058 072 3A 00111010 : (colon)
059 073 3B 00111011 ; (semi-colon)
060 074 3C 00111100 < (less than sign)
061 075 3D 00111101 = (equal sign)
062 076 3E 00111110 > (greater than sign)
063 077 3F 00111111 ? (question mark)
064 100 40 01000000 @ (AT symbol)
065 101 41 01000001 A
066 102 42 01000010 B
067 103 43 01000011 C
068 104 44 01000100 D
069 105 45 01000101 E
070 106 46 01000110 F
071 107 47 01000111 G
072 110 48 01001000 H
073 111 49 01001001 I
074 112 4A 01001010 J
075 113 4B 01001011 K
076 114 4C 01001100 L
077 115 4D 01001101 M
078 116 4E 01001110 N
079 117 4F 01001111 O
080 120 50 01010000 P
081 121 51 01010001 Q
082 122 52 01010010 R
083 123 53 01010011 S
084 124 54 01010100 T
085 125 55 01010101 U
086 126 56 01010110 V
087 127 57 01010111 W
088 130 58 01011000 X
089 131 59 01011001 Y
090 132 5A 01011010 Z
091 133 5B 01011011 [ (left opening bracket)
092 134 5C 01011100 \

(back slash)

093 135 5D 01011101 ] (right closing bracket)
094 136 5E 01011110 ^ (caret cirumflex)
095 137 5F 01011111 _ (underscore)
096 140 60 01100000 `
097 141 61 01100001 a
098 142 62 01100010 b
099 143 63 01100011 c
100 144 64 01100100 d

n=8 bit
m=2

8

=256 symbols

background image

ITEEM IE3 B.Piwakowski : Télécommunications, Chapitre 3 Transmission dans la bande

de base

22

Asynchronytransmission RS232

Exemple: Transmission asynchrone RS 232

• RS 232 series connection , since 1981 ,
• Called « series port ».
• At Windows, RS-232 are designed as COM1,

COM2, etc.

• « ports COM », are used presently but replaced by

ports USB

• RS 232 is commonly used to connect different devices

to PC (GPS, modems, sensors, etc.)

• Few PCs are equipped with this port
• If RS 232 is absent , it can be substituted by an

adapter USB/port serie..

maximum length de câble RS2323

Bit rate (bit/s) ) D

Length (m) L

2 400

60

4 800

30

9 600

15

19 200

7,6

38 400

3,7

57 000

2,6

simplex / duplex

D

B

B

signal

canal

L

B

canal

1

background image

Uwaga: Kazdy kabel jest antena

Each cabled acts like antena

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

23

Para skrecona Twisted pair

Kabel nieekranowany Non shielded cable
Tani, low cost
Ale But:

Silnie promieniuje ≈ L/l ,

wrazliwy na odbior pola elektomagnetycznego ≈ L/l Sensitive to receive electrompagnetic field ≈ L/l

Rozwiazanie dla polaczen polacznie symetryczne Solution for connections: Symmetric connection

1

1

2

1

2

1

2

s

R

R

2

)

v

v

R

R

v

v

v

s

v

2

+

-

-V

cc

V

cc

R

1

R

2

v

1

R

3

R

4

V1+N

-V1+N

+

-

background image

Uwaga: Kazdy kabel jest antena

Each cabled acts like an antenna

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

24

Para skrecona Twisted pair

Kabel concentryczny Coaxial cable
Kabel ekranowany Shielded cable
Drozszy, higher price
Uzywany w polaczeniach asymetrycznych (sygnal + masa
Used in assymetric connections (signal + ground)

1

1

2

s

2

R

R

v

0

v

v

v

s

v

2

+

-

-V

cc

V

cc

R

1

R

2

v

1

R

3

R

4

V1

+

-

background image

Synchrone transmission of digital data: clock signal recovery and use

Source

Signal numérique

câble

Récepteur

Emetteur

Codeur

decodeur

Received signal

SNR

, L B

cable

,

L

0

1

25

Source

Code, format
Débit : D,R

B

signal

=D ou 2D

Receiver

B

recepteur=

B

canal

SNR

•Théorème de Nyquist :

1. Canal Bandwidth

canal synchrone avec récepteur optimal

:

2

/

signal

canal

B

B

If code NRZ , n=1, m=2 => SNR

min

=4.7 dB

N

S

m

 1

Two conditions for correct operation :

2. Sur le rapport S/N

cable

receiver

B

B

ITEEM IE3 B.Piwakowski :

Télécommunications, Chapitre 3

Transmission dans la bande de base

clock

Cable quality

Power Balance

background image

AGH B.Piwakowski Analog Electronics Chapter V Data trasmission principles

26

Synchrone reception

Receiver :

Gain

Filtering

Matched filter

Decodeur

format

Signal

received

Data

Clock

Recovery

Seuils

Clock

1 0

1

1 1

1 1 1

0

0 0

Clock

Threshold

P

e

=f(S/N

)

•Probability of error P

e

Detected signal

background image

ITEEM IE3 B.Piwakowski :

Télécommunications, Chapitre 3

Transmission dans la bande de base

27

Synchronic reception

Clock Signal Recovery

Transmission synchronic
(two signals are required)

background image

ITEEM IE3 B.Piwakowski : Télécommunications,

Chapitre 3 Transmission dans la bande de base

28

Synchronic transmission: error probability Perr

N

S

z

z

Q

Perr

2

)

(

)

2

/

(

5

.

0

)

(

z

erfc

z

Q

1

2

3

4

5

6

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

Pe=Q(z)

z

N

S

z

2

background image

Goal:
To move the signal bandwidth b

towards

another bandwidth B assigned by carrier

frequency f

c

Transmission with modulation

f

Signal BF

MHz
GHz

kHz

Signal HF

Badwidth
e

B

B/f

c

<<1

Original bandwidth

b

f

Exemple: organisation TV programs in cable

BF

MHz
GHz

f

c1

f

c2

f

c3

ITEEM IE3 B.Piwakowski :

Télécommunications Chap 5,

modulations linéaires

29

background image

ITEEM IE3 B.Piwakowski : Télécommunications Chap 5, modulations linéaires

30

modulations pourquoi ?:

Goal 2 : Enable radio transmission: :
Increase signal frequency

=> Dicrease the signal

wavelength => enable

antennes use .

Example : signal audio f

m

10 kHz.

f

c

l

Antenna shouild have a length ≈ l/4 ! But !

km

m

Hz

s

m

5

.

7

7500

10

.

10

/

10

.

3

4

1

4

3

8

l

7500

m

If wavelength decreases the size
of antenna decreases

7500

m

background image

ITEEM IE3 B.Piwakowski : Télécommunications Chap 5, modulations linéaires

31

Source

Modulation

Récepteur

receiver

Signaux numériques
signaux analogiques

Emitter

Démodulation

Transmission using modulation modulation

s

E

(t)

s

R

(t)

atmosphère, eau

Câbles

fibre optique)

Milieu de Propagation

= canal de transmission

SNR

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

32

Antennas examples

2

,

,

4

;

2

l

l

a

r

e

r

e

S

D

L

D

R

c

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

33

Cables

Câbles :

Twisted pair

Coaxial

Fiber Optics :

Twisted wire coaxial cable

Fiber optics

Frequency

background image

AGH B.Piwakowski Analog

Electronics Chapter V Data

trasmission principles

34

Fiber optics connecting

background image

ITEEM IE3 B.Piwakowski : Télécommunications Chap 5, modulations linéaires

35

Modulation :

)

(t

s

m

)

(t

s

)

(t

s

c

Signal modulating
Information to transmit

Signal (carrier)

Modulated Signal

)

cos(

)

(

c

c

c

c

t

A

t

s

Modulation
= perturbation bt

MODULATEUR

)

(t

s

m

c

A

c

c

AM ASK

FM, FSK

PM, PSK

Amplitude Ac dépends on sm

Fréquence of carrier signal dépends on sm

1

1

1

0

0

t

t

Phase of carrizer signal dépends on sm

background image

ITEEM IE3 B.Piwakowski : Télécommunications Chap 5, modulations linéaires

36

Illustratrion of three familles of modulation

AM

FM

PM

Analog Signal

Digital Signal

Tb

t

a

0

1

1

1

0

0

t

Tb

t

a

0

Tb

t

a

0

ASK, OOK

FSK

PSK

background image

Source Canal and Receiver , case with carrier frequency:

Source
format code
D

B

signal

=

D or 2D

Adapted Receiver
Recived power

Adapted Amplifier
Output resistivity Rs=Rc ant
Outpu power Pe

Distance

L km

modulator

fc

carrier frequency

Modulation type: PSK,FSK QAM

Emitting Antenna
Wi FI
Other radio connections

Receiving
Antenna

Pr
N
SNR=10log(Pr/N)

Pe

Pr

dBm

dBm

R

km

km

dB

km

dB

dBm

E

dBm

R

km

L

f

r

e

r

N

P

SNR

f

f

L

P

P

ou

e

P

P

)

(

]

/

1

[

]

/

[

/

)

(

)

(

]

/

1

[

)

(

)

(

3

.

4

)

(

2

2

)

4

(

L

D

D

P

P

r

r

e

e

e

r

l

2

,

,

4

;

2

l

l

a

r

e

r

e

S

D

L

D

B

sigmod

=2R

AGH B.Piwakowski Analog Electronics Chapter V Data trasmission

principles

37

SNR>SNR

min

fc

carrier frequency

demodulator

Using antenna

Using cable


Wyszukiwarka

Podobne podstrony:
AGH Analog electronics Chapter III 5 Power amplifiers
AGH Analog electronics Chapter III 3 Operational amplifier
AGH Analog electronics Chapter III 4 Comprators
AGH Analog electronics Chapter III 2 transistor
AGH Analog electronics Chapter I Introduction
AGH Analog electronics Chapter III 1 introduction
AGH Analog electronics Chapter I I diode
AGH Analog electronics Chapter IV power supplies
Anti Aliasing, Analog Filters For Data Acquisition Systems
USITT DMX512 A Asynchronous Serial Digital Data Transmission Standard

więcej podobnych podstron