IMIR materialy prad id 211874 Nieznany

background image

1

1

Przykład:

W drucie z miedzi o przekroju 1 mm

2

płynie pr

ą

d nat

ęż

eniu 1A. Jaka jest v

u

elektronów przewodnictwa ? Masa molowa miedzi

µ

= 63.8 g/mol, g

ę

sto

ść

d

Cu

= 8.9

g/cm

3

, N

A

=6.022 10

23

mol

-1

oraz e = 1.6·10

-19

C .

nSe

I

u

=

v

3

28

m

elektr.

10

4

.

8

=

=

µ

v

A

Cu

N

d

n

(Cu

+1

)

v

u

= 7.4·10

5

m/s = 0.074 mm/s

Dlaczego ta pr

ę

dko

ść

jest taka mała? Dla porównania: pr

ę

dko

ść

elektronu

przyspieszanego napi

ę

ciem 230V na drodze 1m wynosi 9000 km/s.

Jak przy tak znikomo małej pr

ę

dko

ś

ci elektronów mo

ż

liwe jest błyskawiczne

przenoszenie sygnałów elektrycznych np. w sieci telefonicznej ??

Ź

ródłem oporu elektrycznego w przewodnikach jest rozpraszanie no

ś

ników ładunku

na defektach sieci i drganiach sieci (fononach).

2

Prawo Ohma jest słuszne pod warunkiem,

ż

e przewodnik znajduje si

ę

w stałej

temperaturze.

t

ne

m

ne

mu

=

=

2

2

λ

ρ

Opór wła

ś

ciwy zale

ż

y od czasu relaksacji (pr

ę

dko

ś

ci

no

ś

ników ładunku i ich drogi swobodnej), masy

no

ś

ników ładunku i koncentracji ładunków.

im wy

ż

sza T tym

wi

ę

ksze drgania sieci,

opór ro

ś

nie z T

(droga swobodna maleje)

w dostatecznie niskich T
całkowity zanik oporu

(elektrony tworz

ą

pary

nieoddziałuj

ą

ce z sieci

ą

)

im wy

ż

sza T tym

wi

ę

cej no

ś

ników,

opór maleje z T

(ro

ś

nie

koncentracja
ładunków)

background image

2

Ka

ż

de rzeczywiste

ź

ródło napi

ę

cia posiada opór wewn

ę

trzny

r

Napi

ę

cie zasilania jest mniejsze od SEM o spadek potencjału na oporze wewn

ę

trznym

Źródło prądu

Opór wewnętrzny

akumulator

kilka mΩ

stabilizator sieciowy

1 - 50 mΩ

bateria typu R20

1 - 3 Ω

mikrofon

ok. 600 Ω

ogniwo słoneczne

5 – 100 kΩ

Ir

U

r

=

Zgodnie z prawem Ohma (minus oznacza,

ż

e w kierunku płyni

ę

cia pr

ą

du napi

ę

cie spada):

)

(

R

r

I

+

=

ε

Opór wewn

ę

trzny

prawo zachowania energii:

0

=

dq

U

dq

U

dq

R

r

ε

IR

U

R

=

czyli:

oraz:

Ir

U

z

=

ε

4

0

1

=

=

n

i

i

I

(zachowanie ładunku)

Prawa Kirchhoffa

Pierwsze prawo Kirchhoffa: Twierdzenie o punkcie rozgał

ę

zienia. Algebraiczna

suma nat

ęż

e

ń

pr

ą

dów przepływaj

ą

cych przez punkt rozgał

ę

zienia (w

ę

zeł) jest

równa zeru.

0

1

=

=

n

i

i

q

dt

d

Drugie prawo Kirchhoffa: Twierdzenie o obwodzie zamkni

ę

tym. Algebraiczna suma

sił elektromotorycznych i spadków napi

ęć

w dowolnym obwodzie zamkni

ę

tym (lub

p

ę

tli) jest równa zeru.

0

1

1

=

=

=

m

i

i

i

n

i

i

R

I

ε

(zachowanie energii)

0

1

1

=

=

=

m

i

i

n

i

i

U

dq

dq

ε

i

i

i

R

I

U

=

background image

3

5

Zastosowanie praw Kirchhoffa:
1. Zakładamy jaki

ś

kierunek pr

ą

du i jego nat

ęż

enie w ka

ż

dej gał

ę

zi.

2. Zaznaczamy zmiany potencjału w obwodzie: spadek napi

ę

cia pojawia si

ę

gdy

"przechodzimy" przez opornik w kierunku zgodnym z przyj

ę

tym kierunkiem pr

ą

du, a przyrost

napi

ę

cia gdy przechodzimy przez

ź

ródło SEM w kierunku od "-" do "+".

3. Stosujemy prawa Kirchhoffa dla dowolnych p

ę

tli (oczek) i w

ę

złów.

Przykład :

Je

ż

eli w wyniku oblicze

ń

otrzymamy ujemne nat

ęż

enie pr

ą

du to znaczy,

ż

e rzeczywisty kierunek

pr

ą

du jest przeciwny do przyj

ę

tego.

dla zewn

ę

trznej "du

ż

ej" p

ę

tli

2

2

2

3

3

0

I R

I R

ε

=

dla wewn

ę

trznej "małej" p

ę

tli

1

3

3

0

I R

ε

=

0

3

2

1

=

+

I

I

I

dla w

ę

zła P

2

1

2

2

R

I

ε

ε

=

2

1

3

2

1

3

2

2

1

1

I

I

I

R

R

R

ε

ε

= − =

+

1

3

3

I

R

ε

=

6

Zadanie domowe:

dla zewn

ę

trznej "du

ż

ej" p

ę

tli

2

2

2

3

3

0

I R

I R

ε

=

dla wewn

ę

trznej "małej" p

ę

tli

1

1

1

3

3

0

I R

I R

ε

=

0

3

2

1

=

+

I

I

I

dla w

ę

zła P

background image

4

7





+

+

=

=

+

+

=

+

+

=

3

2

1

3

2

1

3

2

1

1

1

1

R

R

R

U

R

U

R

U

R

U

I

I

I

I

poł

ą

czenie równoległe

3

2

1

1

1

1

1

R

R

R

R

+

+

=

Ł

ą

czenie oporników

poł

ą

czenie szeregowe

)

(

3

2

1

3

2

1

3

2

1

R

R

R

I

IR

IR

IR

U

U

U

U

+

+

=

=

+

+

=

+

+

=

3

2

1

R

R

R

R

+

+

=


Wyszukiwarka

Podobne podstrony:
IMIR materialu drgania id 21187 Nieznany
Materialy pomocnicze 4 id 28534 Nieznany
Materialy oprobowanie(1) id 285 Nieznany
Materialy wybuchowe 2 id 285462 Nieznany
materialy z zajec 2 id 286506 Nieznany
materialy metalowe id 286273 Nieznany
Materialy 5 GLIKOLIZA id 767132 Nieznany
Materialy pomocn id 286338 Nieznany
8 IMIR teoria wzglednosci id 46 Nieznany (2)
materialy z zajec 5 id 286508 Nieznany
Material teoretyczny id 284375 Nieznany
materialy szkoleniowe 2 id 2863 Nieznany
materialy 10 id 284528 Nieznany
Materialy Pomocnicze (1) id 285 Nieznany
materialy korespondencja id 28 Nieznany
materialy z zajec 1 id 286505 Nieznany
Materialy 8 FERMENTACJI id 7671 Nieznany

więcej podobnych podstron