background image

12-10-18

1

Multi-storey frame buildings

COMPLEX STEEL STRUCTURES

Konstrukcje metalowe - Wykład 21

12-10-18

2

LECTURE PLAN

MULTI-STOREY FRAME BUILDINGS

LITERATURE

Konstrukcje metalowe - Wykład 21

12-10-18

3

EMPIRE STATE BUILDING

Building years: 1930-31
Height to roof: 381,0 m
Total height

(with a spire)

: 448,7 m

Number of storeys: 103

Ź

ród

ło

w

w

w

.w

ik

ipedia.org

spire

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

4

JOHN HANCOCK CENTER

Building years: 1965-69
Height to roof : 343,5 m
Total height : 457,2 m
Number of storeys: 100

Ź

ród

ło

w

w

w

.w

ik

ipedia.org

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

WARSAW TRADE TOWER
(old name :DAEWOO BUILDING)

Building years: 1997-1999
Height to roof : 184 m
Total height: 208 m
Number of storeys: 43

12-10-18

5

Ź

ród

ło

www.

wi

ki

pedia.org

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

6

ADVANTAGES OF STEEL STRUCTURE TALL BUILDINGS [2]:

- smaller cross-section of elements and weight of structure in 
comparison to masonry and RC structures – easier foundations on 
weak soils,

- better utility of building lot area (eg Empire State Building – lot area 
7800 m

2

, volume 1 000 000 m

3

),

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

background image

12-10-18

7

ADVANTAGES OF STEEL STRUCTURE TALL BUILDINGS [2]:
- fast and easy construction, not influenced by weather conditions,

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

8

ADVANTAGES OF STEEL STRUCTURE TALL BUILDINGS [2]:
- not large area is needed for construction and storage of structural 
elements – tall buildings are usually built in city centres,

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

9

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

10

ADVANTAGES OF STEEL STRUCTURE TALL BUILDINGS [2]:

- high resistance to dynamic forces (earthquake, explosions) – usually 
partitions are destroyed but the main structure is safe,   

Ź

ród

ło

w

w

w

.w

ik

ipedia.org

Ź

ród

ło

w

w

w

.his

toriaradia.

neostrada.pl

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

11

ADVANTAGES OF STEEL STRUCTURE TALL BUILDINGS [2]:

- easy refurbishment,

- flexible architectural design (shape of building, windows, floor plan
etc). 

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

DISADVANTAGES OF STEEL STRUCTURE TALL BUILDINGS [2]:

- need corrosion protection,

- need fire protection. 

12-10-18

12

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

background image

12-10-18

13

Store

y number

Steel use [kg/m

2

]

STEEL DEMAND

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

14

LOADS

IMPOSED LOADS
(acc to. PN-EN 1991-1-1)

Konstrukcje metalowe - Wykład 21

12-10-18

15

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

16

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

17

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

18

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

background image

12-10-18

19

WIND LOAD (acc to. PN-EN 1991-4-1)

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

20

TERRAIN CATEGORIES

Konstrukcje metalowe - Wykład 21

12-10-18

21

WIND LOAD - WIND TUNNEL TESTS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

22

VIBRATIONS RELATED TO WIND LOAD

H

o

rizonta

l def

lect

ion

[cm]

Vibration period [s]

NO 
FEELABLE

FEELABLE

TIRING

EXHAUSTING

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

23

TYPES OF IGH BUILDINGS STRUCTURES:

- Rigid frames

- Pinned frames with bracings

- Core structures

- Shell-like structures

- other

MULTI-STOREY FRAME BUILDINGS

12-10-18

24

RIGID FREAMES

Źródło [2]

- High bending moments in rigid joints,
- Small stiffness to horizontal forces (large horizontal deflections –
large cross-section of columns),
- complicated assembly (rigid joints),
- flexible floor plan design (no additional partitions).

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

background image

12-10-18

25

EFFECT OF DEFORMED GEOMETRY

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

26

EFFECT OF DEFORMED GEOMETRY

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

Konstrukcje metalowe - Wykład 21

27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

6,000

H=6,000

3,300

3,300

3,300

3,300

3,300

V=16,500

EXAMPLE  NO. 1

EFFECT OF DEFORMED GEOMETRY

MULTI-STOREY FRAME BUILDINGS

Data:
Frame with the rigid joints,
fixed at base
Beams section : HEB 240
Columns section : HEB 240 

UDL=30 kN/m

UDL=30 kN/m

UDL=30 kN/m

UDL=30 kN/m

UDL=30 kN/m

W

IN

D

 LOAD (W

) = 3

kN

/m

W

IN

D

 LOAD (L)

 =

 -1 kN/

m

WIND 

12-10-18

Konstrukcje metalowe - Wykład 21

28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

MULTI-STOREY FRAME BUILDINGS

EXAMPLE  NO. 1 cont.

u

1

=0,0398 m

u

2

=0,0369 m

u

3

=0,0306 m

u

4

=0,0208 m

u

5

=0,0086 m

u

6

=0,0000 m

V

Ed

= 180 kN ; H

Ed

= 13,2 kN ; α

cr

= 84,3 > 15

V

Ed

= 360 kN ; H

Ed

= 26,4 kN ; α

cr

= 38,4 > 15

V

Ed

= 540 kN ; H

Ed

= 39,6 kN ; α

cr

= 24,7 > 15

V

Ed

= 720 kN ; H

Ed

= 52,8 kN ; α

cr

= 19,8 > 15

V

Ed

= 900 kN ; H

Ed

= 66,0 kN ; α

cr

= 28,1 > 15

12-10-18

29

BUCKLING LENGTH OF COLUMN IN MULTI-STOREY FRAME

(

)

2

1

;

κ

κ

µ

µ

=

0

K

K

K

C

C

+

=

κ

c

c

c

H

J

K

=

=

b

b

L

J

K

η

0

- Flexibility of joint

(Z1-3)

- stiffness of column:

where: J

c

H

c

– moment of inertia ; length of column

- stiffness of connection

where: J

b

L

b

– moment of inertia ; length of beam,

η - coefficient for support condition of a beam on the far
end.

- Buckling length coefficient

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

30

COEFFICIENT 

η

:

No-sway frames:

η

1,5 – for pinned

η

2 – for rigid.

Sway frames:

η

0,5 – for pinned

η

1,0 – for rigid

For rigid footings K

0

=K

c

; for other footings K

0

=0,1 K

c

.

BUCKLING LENGTH OF COLUMN IN MULTI-STOREY FRAME

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

background image

12-10-18

31

EXAMPLE  NO. 2 – sway frame:

Beams: IPE 300 (L

b

=600 cm ; J

b

=8360 cm

4

)

Columns:

HEB 240 (H

c

=350 cm ; J

c

=11260 cm

4

)

1

,

32

350

11260 =

=

=

c

c

c

H

J

K

0,

0,5 8360

2

13,9

600

b

g

b

J

K

L

η

=

= ⋅

=

0,

0,1

3, 2

d

c

K

K

=

=

Źródło [2]

BUCKLING LENGTH OF COLUMN IN MULTI-STOREY FRAME

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

32

EXAMPLE  NO. 2 cont.

1

0,

32,1

0, 70

32,1 13,9

C

C

g

K

K

K

κ

=

=

=

+

+

2

0,

32,1

0,91

32,1 0,32

C

C

d

K

K

K

κ

=

=

=

+

+

(

)

0,70;0,91

2,5

µ µ

=

=

Hence from Z1-3 can be obtained:

Źródło [3]

BUCKLING LENGTH OF COLUMN IN MULTI-STOREY FRAME

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

33

PINNED FRAMES WITH BRACINGS

Źródło [2]

MULTI-STOREY FRAME BUILDINGS

12-10-18

34

Two structural systems:

- for vertical forces – beams connected to columns with pins,

- for horizontal forces – rigid floor plates distributing the loads on
vertical bracings.

It is used up to 30 storeys.  

PINNED FRAMES WITH BRACINGS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

35

ADVANTAGES:
- simple structure with pinned joints (fast assembly).

DISADVANTAGES:
- Floor plan influenced by bracing system. 

PINNED FRAMES WITH BRACINGS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

36

BRACINGS

Źródło [2]

PINNED FRAMES WITH BRACINGS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

background image

12-10-18

37

Źródło [2]

BRACINGS (IN A FLOOR PLAN):

PINNED FRAMES WITH BRACINGS

VERTICAL BRACINGS

HORIZONTAL BRACINGS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

38

BRACING DESIGN RULES [2]:

- bracings should go from top to basement  in one section,

- bracings must secure the structure during every stage of errection,

- floor plates must be able to distribute the loads to bracings,

- horizontal deflections of the building must be less then 1/500
building heigth,

- the bracings should be arranged in three nonparallel sections.

PINNED FRAMES WITH BRACINGS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

39

CORE BUILDINGS

Ź

ród

ło [4]

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

40

Ź

ród

ło [4]

CORE BUILDINGS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

41

CORE BUILDINGS – CANTILEVER FLOORS

Źródło [2]

Problem – deflection of cantilevers

MULTI-STOREY FRAME BUILDINGS

cantilever 
floors

Konstrukcje metalowe - Wykład 21

12-10-18

42

CORE BUILDINGS – MAIN CANTILEVER (I)

Źródło [2]

Problem - complicated and expensive 
structure of the main cantilever 

MULTI-STOREY FRAME BUILDINGS

main
cantilever 

Konstrukcje metalowe - Wykład 21

background image

12-10-18

43

Źródło [2]

CORE BUILDINGS – MAIN CANTILEVER (II)

Problem - complicated and expensive 
structure of the main cantilever

The max. number of floors hanging on one
tendon is 15 (due to tendon extention)

The lack of columns means better utility of 
the area (up to 89% is free in comparison
to traditional design with columns where
75-80%)

MULTI-STOREY FRAME BUILDINGS

main
cantilever 

tendon

Konstrukcje metalowe - Wykład 21

12-10-18

44

Źródło [2]

The max. number of floors hanging on 
one tendon is 15 (due to tendon 
extention)

Up to 20% of steel weigth savings in 
comparison to traditional design with 
columns.

CORE – TENDON BUILDINGS

MULTI-STOREY FRAME BUILDINGS

tendon

Konstrukcje metalowe - Wykład 21

12-10-18

45

SHELL-LIKE STRUCTURES

The highest buildings are the shell-
like structure.

They are the most rigid and resistant
to wind forces

They are structures with beam to
column rigid joints. The structure is 
like a perforated pipe fixed in 
basement

John Hancock Center 

in Chicago

Źródło [4]

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

46

DESIGN RULES FOR TALL BUILDINGS [2]:

- resistance and stability of steel elements and joints and a stability of 
the whole building (ULS – ultimate limit state),

- stiffness (horizontal deflection) of a whole structure and deflection of 
beams (SLS – serviceability limit state).

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

47

MAIN BEAMS (GIRDERS) AND SECONDARY BEAMS

Źródło [2]

FLOORS

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

48

FLOOR PLATES

Źródło [2]

Źródło [2]

- RC

- COMPOSITE FLOOR

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

background image

12-10-18

49

FLOOR PLATES – SLIM FLOOR

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

50

FLOOR PLATES

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

51

PARTITIONS AND WALLS

Źródło [2]

MULTI-STOREY FRAME BUILDINGS

Konstrukcje metalowe - Wykład 21

12-10-18

52

LITERATURE

1. K. Rykaluk „Konstrukcje stalowe. Kominy, wieże, maszty” Oficyna Wydawnicza PWr,

Wrocław 2004

2. M. Łubiński, W. Żółtowski „Konstrukcje metalowe. Część II” Wydawnictwo Arkady, 

Warszawa 2007

3. PN-90/B-03200 „Konstrukcje stalowe. Obliczenia statyczne i wymiarowanie
4. Materiały edukacyjne ESDEP

Konstrukcje metalowe - Wykład 21