PROPERTIES OF gAS CLATHRATE HYDRATES
Carolyn A. Koh and E. Dendy Sloan
Gas clathrate hydrates (also known as gas hydrates) are crys-
talline inclusion compounds composed of hydrogen-bonded
water cavities (host) which encage small gas (guest) molecules .
Generally, a maximum of one guest molecule occupies each water
cavity . Typical guest molecules that form gas hydrates are meth-
ane, ethane, carbon dioxide, and propane (see gas hydrate phase
equilibria data in Table II) . The structural and physical properties
of gas hydrates are given in Tables Ia and Ib . Data have been taken
from the references indicated .
Table Ia. gas Hydrate Structural Properties (Ref. 1)
Structure
sI
sII
sH
Crystal system
Cubic
Cubic
Hexagonal
Space group
Pm3n (No . 223)
b
Fd3m (No . 227)
b
P6/mmm (No . 191)
b
Lattice description
Primitive
Face centered
Hexagonal
Lattice parameters
a
a = 12 Å
α
=
β
=
γ
= 90
o
a = 17 .3 Å
α
=
β
=
γ
= 90
o
a = 12 .2 Å, c = 10 .1 Å
α
=
β
=
90
ο
,
γ
= 120
o
Ideal unit cell formula
6(5
12
6
2
)·2(5
12
)
.
46H
2
O
8(5
12
6
4
)·16(5
12
)·136H
2
O
1(5
12
6
3
)·3(5
12
)·2(4
3
5
6
6
3
)·34H
2
O
Cavity
Small
Large
Small
Large
Small
Medium
Large
Description
5
12
5
12
6
2
5
12
5
12
6
4
5
12
4
3
5
6
6
3
5
12
6
8
Number of cavities/unit cell
2
6
16
8
3
2
1
Average cavity radius
c
(Å)
3 .95
4 .33
3 .91
4 .73
3 .94
d
4 .04
d
5 .79
d
H
2
O molecules/cavity
e
20
24
20
28
20
20
36
a
Lattice parameters are a function of temperature, pressure, and guest composition . Typical average values given .
b
Space group reference numbers from the International Tables of Crystallography .
c
The average cavity radius will vary with temperature, pressure, and guest composition .
d
From the atomic coordinates measured using single crystal x-ray diffraction on 2,2-dimethylpentane·5(Xe,H
2
S)·34H
2
O at 173 K (Ref . 2) . The Rietveld refinement package,
GSAS was used to determine the atomic distances for each cage oxygen to the cage center .
e
Number of oxygen atoms at the periphery of each cavity .
Table Ib. Physical Properties of sI, sII Hydrates Compared to Ice, Ih (Ref. 1,3,4,5)
Property
Ice
sI
sII
Dielectric constant at 273 K
94
~58
~58
H
2
O reorientation time at 273 K (µs)
21
~10
~10
H
2
O diffusion jump time (µs)
2 .7
>200
>200
Isothermal Young’s modulus at 268 K (10
9
Pa)
9 .5
8 .4
est
8 .2
est
Poisson’s ratio
0 .3301
f
0 .31403
f
0 .31119
f
Bulk modulus (GPa)
9 .097
f
8 .762
f
8 .482
f
Shear modulus (GPa)
3 .488
f
3 .574
f
3 .6663
f
Compressional velocity, V
p
(m/s)
3870 .1
f
3778
f
3821 .8
f
Shear velocity, V
s
(m/s)
1949
f
1963 .6
2001 .14
g
Linear thermal expansion at 200 K (K
–1
)
56 x 10
–6
77 x 10
–6
52 x 10
–6
Thermal conductivity (W m
–1
K
–1
) at 263 K
2 .18
±
0 .01
h
0 .51
±
0 .01
h
0 .50
±
0 .01
h
Adiabatic bulk compression at 273 K (GPa)
12
14
est
14
est
Heat capacity (J kg
–1
K
–1
)
1700
±
200
h
2080
2130
±
40
h
Refractive index (632.8 nm, –3°C)
1 .3082 (Ref . 9) 1 .346 (Ref . 9) 1 .350 (Ref . 9)
Density (g/cm
3
)
0 .91
j
0 .94
1 .291
k
f
At 253–268 K, 22 .4–32 .8 MPa (ice, Ih), 258–288 K, 27 .1–62 .1 MPa (CH
4
, sI), 258–288 K, 30 .5–91 .6 MPa (CH
4
–C
2
H
6
, sII), Ref . 6 .
g
At 258–288 K, 26 .6–62 .1 MPa, Ref . 7 .
h
At 248–268 K (ice, Ih), 253–288 K (CH
4
, sI), 248–265 .5 K (THF, sII), Ref . 8 .
j
Fractional occupancy (calculated from a theoretical model) in small (S) and large (L) cavities: sI = CH
4
: 0 .87 (S) and CH
4
: 0 .973 (L); sII = CH
4
: 0 .672 (S), 0 .057 (L); C
2
H
6
:
0 .096 (L) only; C
3
H
8
: 0 .84 (L) only .
k
Calculated for 2,2-dimethylpentane
.
5(Xe,H
2
S)
.
34H
2
O, Ref . 2; est = estimated .
6-136
6679X_S06.indb 136
4/11/08 1:30:49 PM
References for Table I
1 . Sloan, E .D . and Koh, C .A ., Clathrate Hydrates of Natural Gases, 3rd
Edition, CRC Press, 2008 .
2 . Udachin, K .A ., Ratcliffe, C .I ., Enright, G .D ., and Ripmeester, J .A .,
Supramol. Chem., 8, 173, 1997 .
3 . Davidson, D .W ., Natural Gas Hydrates (Cox, J .L ., Ed .) Butterworths,
Boston, 1, 1983 .
4 . Davidson, D .W ., Handa, Y .P ., and Ripmeester, J .A ., J. Phys. Chem ., 90,
6549, 1986 .
5 . Ripmeester, J .A ., Ratcliffe, C .I ., Klug, D .D ., and Tse, J .S ., in Proc. First
International Conference on Natural Gas Hydrates, (Sloan, E .D .,
Happel, J ., and Hnatow, M .A ., eds .) Annals of the New York Academy
of Sciences, 715, 161, 1994 .
6 . Helgerud, M .B ., Circone, S ., Stern, L ., Kirby, S ., and Lorenson, T .D .,
in Proc. Fourth International Conference on Gas Hydrates, Yokohama
May 19–23, 2002, 716, 2002 .
7 . Helgerud, M .B ., Waite, W .F ., Kirby, S .H ., and Nur, A ., Can. J. Phys ., 81,
47, 2003 .
8 . Waite, W .F ., Gilbert, L .Y ., Winters, W .J ., and Mason, D .H ., in Proc.
Fifth International Conference on Gas Hydrates, Trondheim, Norway,
June 13–16, Paper 5042, 2005 .
9 . Bylov, M . and Rasmussen, P ., Chem. Eng. Sci., 52, 3295, 1997 .
Table II: Phase equilibria Data of gas Clathrate Hydrates
This table gives measured phase equilibria data of sI and sII gas
clathrate hydrates (see Table I for gas hydrate structure and physical
property data) . The temperature and pressure conditions at which gas
hydrates are stable are listed here for typical guest molecules (Tables
IIa–d) . For example, data for methane hydrate show that at 277 .1 K
methane hydrate will dissociate at pressures below 3 .81 MPa .
Table IIa. Methane Hydrate (Ref. 1)
I–H–V
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
262 .4
1 .79
266 .5
2 .08
268 .6
2 .22
270 .9
2 .39
264 .2
1 .90
L
W
–H–V
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
273 .7
2 .77
275 .9
3 .43
280 .4
5 .35
282 .6
6 .77
274 .3
2 .90
277 .1
3 .81
280 .9
5 .71
284 .3
8 .12
275 .4
3 .24
279 .3
4 .77
281 .5
6 .06
285 .9
9 .78
275 .9
3 .42
Ref . 2
L
W
-H-V
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
295 .7
33 .99
295 .9
35 .30
301 .0
64 .81
302 .0
77 .50
Ref . 3
L
W
–H–V
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
285 .7
9 .62
285 .7
9 .62
295 .9
34 .75
300 .9
62 .40
286 .3
10 .31
289 .0
13 .96
298 .7
48 .68
301 .6
68 .09
286 .1
10 .10
292 .1
21 .13
Ref . 4
L
W
-H-V
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
275 .4
2 .87
277 .2
3 .90
279 .2
4 .90
281 .2
6 .10
276 .2
3 .37
278 .2
4 .50
Ref . 5
I–H–V
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
190 .2
0 .08251
208 .2
0 .222
243 .2
0 .9550
262 .4
1 .798
198 .2
0 .1314
218 .2
0 .3571
Ref . 6
Properties of gas Clathrate Hydrates
6-137
6679X_S06.indb 137
4/11/08 1:30:50 PM
Table IIb. ethane Hydrate (Ref. 1)
T (K)
P (kPa)
Phases
T (K)
P (kPa)
Phases
260 .8
294
I–H–V
285 .8
2537
L
w
–H–V
260 .9
290
I–H–V
287 .0
3054
L
W
–H–V
269 .3
441
I–H–V
287 .7
4909
L
W
–H–L
E
273 .4
545
L
W
–H–V
287 .8
3413
L
W
–H–L
E
275 .4
669
L
W
–H–V
287 .8
4289
L
W
–H–L
E
277 .6
876
L
W
–H–V
288 .1
3716
L
W
–H–L
E
279 .1
1048
L
W
–H–V
288 .1
6840
L
W
–H–L
E
219 .7
1131
L
W
–H–V
288 .2
4944
L
W
–H–L
E
281 .1
1317
L
W
–H–V
288 .2
5082
L
W
–H–L
E
282 .8
1641
L
W
–H–V
288 .3
4358
L
W
–H–L
E
284 .4
2137
L
W
–H–V
288 .4
6840
L
W
–H–L
E
Ref . 7
284 .6
2055
L
W
–H–V
I–H–V
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
263 .6
313
266 .5
357
269 .3
405
272 .0
457
L
W
–H–V
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
273 .7
510
278 .7
931
280 .4
1165
283 .2
1689
273 .7
503
278 .7
931
280 .9
1255
284 .3
1986
274 .8
579
279 .3
1007
281 .5
1345
285 .4
2303
275 .9
662
279 .8
1083
282 .1
1448
285 .4
2310
277 .6
814
280 .4
1165
282 .6
1558
286 .5
2730
Ref . 2
L
W
–H–V
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
277 .5
780
279 .9
1040
283 .3
1660
286 .5
2620
278 .1
840
281 .5
1380
284 .5
2100
Ref . 8
Table IIc. Propane Hydrate (Ref. 1)
I–H–V
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
261 .2
100
267 .4
132
269 .8
149
272 .9
172
264 .2
115
267 .6
135
272 .2
167
L
W
–H–V
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
273 .7
183
274 .8
232
275 .9
301
277 .1
386
273 .7
183
275 .4
270
Ref . 2
I–H–V
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
T (K)
P (kPa)
247 .9
48 .2
251 .6
58 .3
258 .2
81 .1
260 .9
94 .5
251 .4
58 .3
255 .4
69 .6
260 .8
90 .5
262 .1
99 .4
Ref . 9
6-138
Properties of gas Clathrate Hydrates
6679X_S06.indb 138
4/11/08 1:30:51 PM
Feed composition:
x
H O
2
= 0.9503,
x
C H
3 8
= 0.0407
Q
2
at T = 278.62, P = 0.6 MPa
L
W
–H–V
L
W
–H–L
x
C H
3 8
T (K)
P (MPa)
T (K)
P (MPa)
276 .77
0 .368
278 .71
0 .643
277 .01
0 .377
278 .75
0 .893
277 .22
0 .405
278 .75
1 .393
277 .36
0 .425
278 .75
1 .891
277 .44
0 .433
278 .78
1 .893
277 .87
0 .473
278 .80
2 .391
278 .01
0 .527
278 .80
2 .891
278 .22
0 .483
278 .79
2 .893
278 .55
0 .547
278 .75
3 .891
278 .77
3 .391
278 .81
4 .391
278 .79
5 .892
278 .86
6 .392
278 .88
6 .892
278 .80
8 .393
278 .84
8 .893
278 .89
9 .893
Ref . 10
Table IId. Carbon Dioxide Hydrate (Ref. 1)
L
W
–H–V
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
279 .6
2 .74
282 .1
4 .01
282 .8
4 .36
l –H–l
W
CO
2
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
T (K)
P (MPa)
282 .9
5 .03
283 .1
6 .47
283 .6
11 .98
283 .9
14 .36
282 .9
5 .62
283 .2
9 .01
Ref . 11
Overall feed composition:
x
x
H O
CO
2
2
= 0.8668,
= 0.1332
Q
2
at 283.27 K and 4.48 MPa
L
W
–H–V
l –H–l
W
CO
2
T (K)
P (MPa)
T (K)
P (MPa)
276 .52
1 .82
283 .33
5 .97
277 .85
1 .95
283 .36
7 .35
278 .52
2 .21
279 .49
2 .62
280 .44
2 .88
281 .49
3 .35
281 .97
3 .68
282 .00
3 .69
282 .45
3 .85
282 .50
4 .01
Ref . 12
Properties of gas Clathrate Hydrates
6-139
6679X_S06.indb 139
4/11/08 1:30:54 PM
References for Table II
1 . Sloan, E .D . and Koh, C .A ., Clathrate Hydrates of Natural Gases, 3rd
Edition, CRC Press, 2008 .
2 . Deaton, W .M . and Frost, E .M ., Jr ., Gas Hydrates and Their Relation
to the Operation of Natural-Gas Pipe Lines, U .S . Bureau of Mines
Monograph 8, p . 101, 1946 .
3 . Kobayashi, R . and Katz, D .L ., Trans AIME, 186, 66, 1949 .
4 . McLeod, H .O . and Campbell, J .M ., J. Petl Tech ., 222, 590, 1961 .
5 . Thakore, J .L . and Holder, G .D ., Ind. Eng Chem. Res ., 26, 462, 1987 .
6 . Makogon, T .Y . and Sloan, E .D ., J. Chem. Eng. Data, 39, 351, 1994 .
7 . Roberts, O .L ., Brownscombe, E .R ., and Howe, L .S ., Oil Gas J ., 39, 37,
1940 .
8 . Holder, G .D . and Grigoriou, G .C ., J. Chem. Thermodyn ., 12, 1093,
1980 .
9 . Holder, G .D . and Godbole, S .P ., AIChE J., 28, 930, 1982 .
10 . Mooijer-van den Heuvel, M .M ., Peters, C .J ., and de Swaan Arons, J .,
Fluid Phase Equilib., 193, 245, 2002 .
11 . Ng, H .-J . and Robinson, D .B ., Fluid Phase Equilib., 21, 145, 1985 .
12 . Mooijer-van den Heuvel, M .M ., Witteman, R ., and Peters, C .J ., Fluid
Phase Equilib., 21, 145, 1985 .
6-140
Properties of gas Clathrate Hydrates
6679X_S06.indb 140
4/11/08 1:30:54 PM