Elementy L i C w obwodach prądu przemiennego
sinusoidalnego
I n d u k c y j n o ś ć L
Założenia:
L
= const, R = C = 0 oraz i I
t
=
m
sin
ω
Φ
Φ
i
zi
R
zI
R
t
t
=
=
=
µ
µ
ω
ω
m
m
sin
sin
i
u
L
e
L
⎟
⎠
⎞
⎜
⎝
⎛
π
−
=
−
=
−
=
−
=
2
sin
cos
d
d
d
d
m
m
t
L
I
t
L
I
t
i
L
t
z
e
i
L
ω
ω
ω
ω
Φ
⎟
⎠
⎞
⎜
⎝
⎛
π
−
=
2
sin
m
t
E
e
L
L
ω
u
e
u
e
L
L
+
= ⇒ = −
0
⎟
⎠
⎞
⎜
⎝
⎛
π
+
=
⎟
⎠
⎞
⎜
⎝
⎛
π
+
=
=
2
sin
2
sin
cos
m
m
m
t
U
t
L
I
t
L
I
u
ω
ω
ω
ω
ω
t
u, i
2
π
i
e
L
u
L
0
π
π
/2
I
U LI
=
ω
E
L
ϕ π
= + /2
U
I
L
U
I L
m
m
2
2
=
⇒
=
ω
ω
X
L
L
=
ω
U
IX
I
U
X
L
L
=
⇒ =
X
L
fL
L
=
=
ω
2
π
[X
L
]
= [
ω
] [L]
= Ω = (1 s)
−1
⋅1 H =(1 s)
−1
⋅ (Ω⋅s)
t
UI
t
t
I
U
ui
p
ω
ω
ω
2
sin
2
sin
sin
m
m
=
⎟
⎠
⎞
⎜
⎝
⎛
π
+
=
=
t
u, i, p
π
i
p
2
π
u
L
0
π
/2
+
+
−
−
∫
=
T
T
t
p
A
0
d
A
P
A
T
T
T
= ⇒ =
=
0
0
∫
∫
∫
=
=
=
=
=
4
/
0
0
m
2
m
4
/
0
4
/
m
2
d
d
d
d
d
T
I
T
T
W
LI
i
Li
t
i
t
i
L
t
ui
A
⎟
⎠
⎞
⎜
⎝
⎛
π
=
∠
=
2
,I
U
UI
Q
[Q]
= var
A
b
= Qt
[A
b
]
= var⋅s
P o j e m n o ś ć C
Założenia:
C
= const, R = L = 0 oraz u U
t
=
m
sin
ω
t
u
C
i
u
C
q
t
i
q
d
d
d
d
d
d
=
⇓
=
∧
=
i
u
C
u
C
i
C
u
t
CU
t
t
CU
t
=
=
=
d
d
d(sin
d
m
m
ω
ω
ω
)
cos
⎟
⎠
⎞
⎜
⎝
⎛
π
+
=
⎟
⎠
⎞
⎜
⎝
⎛
π
−
−
=
2
sin
2
sin
cos
t
t
t
ω
ω
ω
⎟
⎠
⎞
⎜
⎝
⎛
π
+
=
⎟
⎠
⎞
⎜
⎝
⎛
π
+
=
2
sin
2
sin
m
m
t
I
t
CU
i
ω
ω
ω
Na kondensatorze prąd wyprzedza napięcie o
π/2 (90°).
t
u, i
2
π
i
u
C
0
π
π
/2
I
ϕ π
= − /2
U I C
=
ω
/
I
U
C
I
CU
m
m
2
2
=
⇒ =
ω
ω
X
C
C
= 1
ω
I
U
X
U
IX
C
C
=
⇒
=
X
C
fC
C
=
=
1
1
2
ω
π
[X
C
]
= [
ω
]
−1
[C]
−1
= Ω = 1s:1F = 1s:(1C:1V) = 1V:1A
t
UI
t
t
I
U
ui
p
ω
ω
ω
2
sin
2
sin
sin
m
m
=
⎟
⎠
⎞
⎜
⎝
⎛
π
+
=
=
t
u, i, p
π
i
p
2
π
u
C
0
π
/2
+
+
−
−
∫
=
T
T
t
p
A
0
d
A
P
A
T
T
T
= ⇒ =
=
0
0
∫
∫
∫
=
=
=
=
=
4
/
0
0
e
2
m
4
/
0
4
/
m
2
d
d
d
d
d
T
U
T
T
W
CU
u
Cu
t
t
u
uC
t
ui
A
⎟
⎠
⎞
⎜
⎝
⎛
π
=
∠
=
2
,
c
I
U
UI
Q
Q
CU
c
=
ω
2
[Q
c
]
= var
A
b
= Q
c
t oraz [A
b
]
= var⋅s