background image

 ! " #

$

!

%

&%%

 #

'

(

% )& %

) *+

# ,

##

# #

) - )  * #

 *

# .

##

)& %

##

% )

&%

,  

%#

)

)&#%  

%#

$#

  *% ) "  

%

#

%#

%

&%

,  

)

)&#%   )&#%*.

- ,

)"

%#

# ,

#&

% )

%

)& %" %*

,

#

" *#

   &%

, &%//( % /(/

)

#

  % )

#

)

% % #

0&

)1%

# ,

&

%& ) ,*

. % #

,

##

)#

 %

&%%

 

)

%

%

#&

#

% - 2

)  

%   

"

%

"

% #

%%

)

% %

%

%" % #

,

## ,* 34 - # ) "  

) ,*&# %

%%

0&

%# %

2

%

% *

"

%   * #

) )

#

%

#&

%

&%%

 5

(6

7

" ) "  

)

-)

%  

,

- %

 

%

# -    #

#

) ,

. % #

,

%

"

%   *

) *

# (/%

#

%

%%

%

&

%,

##

#

% )& # , &% 34

%,

##

8

 #

)

%&

,

##

,

#

%  #

-

8.

-

%

&%# ) )

%

-#

)&   *

)

% & &# *

%

%% % % %

) % %

&%)

%

% % #

9

%  *//:

#

#%  ,

.

 *

" *#

   &%%

# 9 &% )

MQL Broaching

Wear Resistance

Lubrication

Chip Evacuation

Development of new coating film

Optimization of Tool Material

Optimization of Tool Geometry

Fig.1 Development Target

Adoption of spiral glide

MQL Broaching

Wear Resistance

Lubrication

Chip Evacuation

Development of new coating film

Optimization of Tool Material

Optimization of Tool Geometry

Fig.1 Development Target

Adoption of spiral glide

Work piece

Broach

Broach pitch

Cutting tooth

Cutting depth

Cutting depth

Fig.2 Principle of broaching process 

Work piece

Broach

Broach pitch

Cutting tooth

Cutting depth

Cutting depth

Fig.2 Principle of broaching process 

background image

%& #

,

##

#

  -#

$"

%

%#

"

  % )

. % *

## ,  -

%

# #

% ,

)

%

#&   *. # ,

##

#

#

% . ,

%

# #

%

&

* # #% , 

)

%,  %*

%#

)

) #&

,

) - %

'*;% (/

* &%%

)

#

) - %

  

&%% #.

) #

%

&%%

"  &

% % # #

  . % %   

# :

%

#  

# " *

#*

)

*#

 #2    #

% 0&

)

)

)

*,

## #

. % #

%% %

"

%

,

#

)#

)

%

%

  * # ,

) #

# ,  -

)"

%

 

  &%%

- % &%  

<

- %

34 5

& 3& %%*4&,

% 6

 % &

34

## - # ) "  

)

$&

. %# %

  *

# #

) - )  *

% -

7 ) "  

)

34 ,

%

  -

" -

%#=

5(6

 

%

 

)

#

% # %*

%

  % ) % %

, )

# >

) ) #% ,&% . #

% %.

?

%

)

-)

- # )

% )

# % #

?

" # %

% # #%

2 , *.

  * )

-)

# #& % , 

34 ,

586

&

%

%

%

#

&@2 #

% % ).

& %  *

)

 

%

-

%& #

% # #%

.

9) %

# #%

.

)

9    %

%

)& %"%*.

  %

&%%

  #

) )

5<6

%

%*

)

% & #

&  % ) % #%#. %

2

 . , 2

 

) &

%

5&%%

)

%

% % 6-

%

> )

5A6 B&  %

%*

 % &

%*

,

#

,

&#

#

&

%& . %

#

 

 )

&  % ,

- # ) "  

) %

" , %%

" & %

)

&%%

# #%

)& %

5:6

&%%

 

 

 

.   %  

#* % %

#%

 -

# 9    %

%&  

)

# %

#

) )

A
A(

34 ,

& )

" %

 #

)

" %

 ,

#

) #

  *

:% (/ C

. %

#

 

-

5?

-

6 ,*

34 ,

- %

 

% )

-)

,

)

" %

   

 ,

- %

" %

  <:,

# #

-

<

#

#& %#&

#%# % % 34 ,

#

## ,  & )

%

&

%

)

#

).

% ,

#

%

> )

% % &

#

background image

9

 .

% # % #%. -

&%

,

#%   A: 58//

6& % ;(

&%%

 

%

- % ( : C 9A

>> #

)

) %

  -

5? 6

%

# # & )

" %

 #

)

34 ,

#

%&  

)& %

  #

#

-

% , (

A8

34 ,

& )

#

)

)

% &%%

%

*. %

  %

) #% ,&%

, %-

&%%

#

)

)

%

%

# #

-

A

B

% )

%& )

#

) ,

#   #%  - *# %

#

) %

#

)

- *

- 2

#

% #

%& . - ) "  

)

#

)

34 ,

)

%

"

)& %" %*

)  

%    - % &%#

  *

Fig3.Wear comparison of MQL and Conventional

Material

S45C(200HB)

Specification

m2xPA30xNT16

Speed

5 m/min

Cut Depth/Tooth 0.06 mm
Machine Type

NBV-5-10SA

Pulling Force

Max.50KN

Stroke

Max.1,000mm

Fig3.Wear comparison of MQL and Conventional

Material

S45C(200HB)

Specification

m2xPA30xNT16

Speed

5 m/min

Cut Depth/Tooth 0.06 mm
Machine Type

NBV-5-10SA

Pulling Force

Max.50KN

Stroke

Max.1,000mm

Material

S45C(200HB)

Specification

m2xPA30xNT16

Speed

5 m/min

Cut Depth/Tooth 0.06 mm
Machine Type

NBV-5-10SA

Pulling Force

Max.50KN

Stroke

Max.1,000mm

Table 1   Operation Case

Work Piece

Outline

Machine

Speed

MQL oil type

Chip Discharge

Carbon steel
Key-way     PM-
HSS TiN

Tool Transfer
3ton-pulling
800mm stroke

6m/min
Plant oil

Roller  Flushing
Chip conveyor

Carbon steel
Inv-Spline
PM-HSS TiAlN

Tool Transfer
5ton-pulling
1,000mm stroke

5m/min
Synthetic oil

Brush
Vaccum

Cr-Alloy
Inv-Spline
HSS-Co TiN

Work Transfer
5ton-puwshing
1,000mm stroke

5m/min
Plamt oil

Brush
Flushing
Chip conveyor

Cr-Mo alloy
Inv-Spline
HSS-Co TiN

Tool Transfer
5ton-pulling
800mm stroke

3m/min
Plant oil

Brush
Flushing
Chip conveyor

Cr-Mo Alloy
Key-way
PM-HSS TiAlN

Tool Transfer
5ton-pulling
1,000mm stroke

5m/min
Plant oil

Brush
Vaccum

Table 1   Operation Case

Work Piece

Outline

Machine

Speed

MQL oil type

Chip Discharge

Carbon steel
Key-way     PM-
HSS TiN

Tool Transfer
3ton-pulling
800mm stroke

6m/min
Plant oil

Roller  Flushing
Chip conveyor

Carbon steel
Inv-Spline
PM-HSS TiAlN

Tool Transfer
5ton-pulling
1,000mm stroke

5m/min
Synthetic oil

Brush
Vaccum

Cr-Alloy
Inv-Spline
HSS-Co TiN

Work Transfer
5ton-puwshing
1,000mm stroke

5m/min
Plamt oil

Brush
Flushing
Chip conveyor

Cr-Mo alloy
Inv-Spline
HSS-Co TiN

Tool Transfer
5ton-pulling
800mm stroke

3m/min
Plant oil

Brush
Flushing
Chip conveyor

Cr-Mo Alloy
Key-way
PM-HSS TiAlN

Tool Transfer
5ton-pulling
1,000mm stroke

5m/min
Plant oil

Brush
Vaccum

Work Piece

Outline

Machine

Speed

MQL oil type

Chip Discharge

Carbon steel
Key-way     PM-
HSS TiN

Tool Transfer
3ton-pulling
800mm stroke

6m/min
Plant oil

Roller  Flushing
Chip conveyor

Carbon steel
Inv-Spline
PM-HSS TiAlN

Tool Transfer
5ton-pulling
1,000mm stroke

5m/min
Synthetic oil

Brush
Vaccum

Cr-Alloy
Inv-Spline
HSS-Co TiN

Work Transfer
5ton-puwshing
1,000mm stroke

5m/min
Plamt oil

Brush
Flushing
Chip conveyor

Cr-Mo alloy
Inv-Spline
HSS-Co TiN

Tool Transfer
5ton-pulling
800mm stroke

3m/min
Plant oil

Brush
Flushing
Chip conveyor

Cr-Mo Alloy
Key-way
PM-HSS TiAlN

Tool Transfer
5ton-pulling
1,000mm stroke

5m/min
Plant oil

Brush
Vaccum

background image

) "  

) ,

#

9 & #

)

;/ C

. -

" # %

9 &%%

%

%&

-

 

% )

-)

%  

,

# #%

:#

-# %

##

  -

5? 6

#

)

34 ,

.

" %

 

#

)

34 ,

)

" %

   ,

#

- % %

" %

   ,

. %

  -

,*

#

)

34

,

- # (C<. & %

.

#

- %

" %

 #

)

34 ,

.

%

  -

5? 6- # (C8

# #

-

A. %

% )

% # %

#

) %

# & )

#

)

,

. # % %% )

,

# )

# ) ) #%   *

9%. - 2

&

*- #

" #% % ) & )

)

% &%%

) %

#

&% )

%

- 2

#

)# % % %

%

,

-

%

&%%

#

) 9

)#

%

A/ C

# #

-

D

%

E/F

% - # %

#

) %

#

) %

 

%

,  

- #

%

#

) %

- 2

. ,&%% %- #

  ,  %

%&

) )

%

- 2

Fig.4 Heat Distribution by the Cutting Speed

2-Dimensional Cutting

S45C

Cut width 2mm Cut depth0.25mm

Fig.4 Heat Distribution by the Cutting Speed

2-Dimensional Cutting

S45C

Cut width 2mm Cut depth0.25mm

Material

S45C(200HB)

Specification

m2xPA30xNT16

Cut Depth/Tooth 0.06 mm
Machine Type

NBV-5-10SA

Pulling Force

Max.50KN

Stroke

Max.1,000mm

Fig.5 Difference of Flank Wear by each cutting Speed

Material

S45C(200HB)

Specification

m2xPA30xNT16

Cut Depth/Tooth 0.06 mm
Machine Type

NBV-5-10SA

Pulling Force

Max.50KN

Stroke

Max.1,000mm

Fig.5 Difference of Flank Wear by each cutting Speed

background image

% %

#

%

. %

%&

# - #

" #%

% )

)

%

% %

,

#

). %

%&

- # )

# ) # #

-

G

)) %

% %

, "

%

) )" %

.

#

) ,

# " # %

-

#&

%

,*(CA#

-

;

2

% #

)" %

#

%

# )

%

.

)& %

#% )& %

- 2

,*

34

#

) ,

#

 &  % ) (:F

) - % %

" %

 ,

- %

  )

<:,

5

E6

Work Major Dia

Cutting Speed

(mm)

Fig.6 Relation between speed and accuracy(work major dia.)

Broach Dai.=34.000

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Work Major Dia

Cutting Speed

(mm)

Fig.6 Relation between speed and accuracy(work major dia.)

Broach Dai.=34.000

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Temp. rise

24

25

26

27

28

29

30

5

10

20

30

40

50

Cutting Speed

Fig.7 Relation between speed and temperature rise (work piece)

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Temp. rise

24

25

26

27

28

29

30

5

10

20

30

40

50

Cutting Speed

Fig.7 Relation between speed and temperature rise (work piece)

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Actual Load

4.5

5.0

5.5

6.0

5

10

20

30

40

50

Cutting Speed

L

oa

d

(

KN)

Actual Electric Power Consumption

0

10

20

30

40

50

5

10

20

30

40

50

Cutting Speed

Fig.8 Relation between speed and power consumption

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Actual Load

4.5

5.0

5.5

6.0

5

10

20

30

40

50

Cutting Speed

L

oa

d

(

KN)

Actual Electric Power Consumption

0

10

20

30

40

50

5

10

20

30

40

50

Cutting Speed

Fig.8 Relation between speed and power consumption

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

Model :NBV-5-10SA  MQL:Bluebe Fat oil Volume :4cc/h 4 

nozzles  Material :S45C Cutting length   30mm  

Broach :34x30x4x4sp PM-HSS+TiAlN

%

energy

coolant

tool

Machine cost

15% 

15% 

less

less

Fig.9 Cost reduction by MQL high speed broaching

%

energy

coolant

tool

Machine cost

15% 

15% 

less

less

Fig.9 Cost reduction by MQL high speed broaching

background image

A<

)

# %

%

>

34 ,

# &%%

%

%& # ,

,* 34

#

) ,

.

# -

#*%

)

% ,

&  %

) )

& %% " & % &%

%   *

2

)" %

% %

%  

% %

 *1- ) "  

) %

#

 

 ) ,

5 & % %

) ) &  %6 # #

-

(/

  * )

-)

)

 

%

- # ) "  

)

) &# )

7

% # #

   ) ,

- # &# ). # #

-

(( .

 %  *)

%

).  2

   #

.

% %- % %

" %

 

%*

,

-

) #

)

# #

%*

# -

#  * ) #

)

,

&  %

& %

.

)& %

&%%

-

#

) ,* )

%

% # #

   ) ,

# #

-

(8

#

)

34 ,

. #

   ) %*

# " *

%"

)

) )

Fig.10 Spiral glide broach

Fig.10 Spiral glide broach

Chip form by Spiral glide broach

Chip form by conventional broach

Fig.11 Difference of chip form

Chip form by Spiral glide broach

Chip form by conventional broach

Fig.11 Difference of chip form

Normal

KN

Normal

Fig.12 Difference of power consumption  and Max. load

Normal

KN

Normal

KN

Normal

Normal

Fig.12 Difference of power consumption  and Max. load

background image

:

 &#

## #

% ) &

% *

" ) ,* &#

%  #

% #

)

%

% %%

,

## -   ,

% & ) % , &# )

&%

,  

%#

) %

##

)& %

%# #

%

#%

%"

)& %

%

0& #

- " . % #

%

" #% %

%% %% #  

%

,

% )  #

#

- %&

%,*% %

  *% %-

" ) "  

)

#

).

34 ,

## - %

 

% )

)

-)

%  

,

#  

)*,

)

% )

*

#

&

%&

"

%#

& %

.

#

) ,

&#

, ) ,

# # &

% *,

% #% )

)

) "  

) - %

&

*

#

## #

  ) % %

#

)

)

%#

-

& )

%,

) ,* %

" %

 ,

#

)#

)

)#

)

%

#&,#%%&%

)

# )

%

#%# "

#

) %

*

% # ,

% ).

)  # %

 % # "

&

"

%.

&@2 #

#

% &

% ) "   % #

-

34

,

% ) #

&

#

## , 

'

#

5(6H #&#

- 1

%

  " -. ?  :G

( .8//(. 8; <8

586H #

2

%#&

% .

%#&*&2

# 2&.

%

  " -. ?  :G

8.

8//8. AG :(