! " #
$
!
%
&%%
#
'
(
% )& %
) *+
# ,
##
# #
) - ) * #
*
# .
##
)& %
##
% )
&%
,
%#
)
)&#%
%#
$#
*% ) "
%
#
%#
%
&%
,
)
)&#% )&#%*.
- ,
)"
%#
# ,
#&
% )
%
)& %" %*
,
#
" *#
&%
, &%//( % /(/
)
#
% )
#
)
% % #
0&
)1%
# ,
&
%& ) ,*
. % #
,
##
)#
%
&%%
)
%
%
#&
#
% - 2
)
%
"
%
"
% #
%%
)
% %
%
%" % #
,
## ,* 34 - # ) "
) ,*&# %
%%
0&
%# %
2
%
% *
"
% * #
) )
#
%
#&
%
&%%
5
(6
7
" ) "
)
-)
%
,
- %
%
# - #
#
) ,
. % #
,
%
"
% *
) *
# (/%
#
%
%%
%
&
%,
##
#
% )& # , &% 34
%,
##
8
#
)
%&
,
##
,
#
% #
-
8.
-
%
&%# ) )
%
-#
)& *
)
% & &# *
%
%% % % %
) % %
&%)
%
% % #
9
% *//:
#
#% ,
.
*
" *#
&%%
# 9 &% )
MQL Broaching
Wear Resistance
Lubrication
Chip Evacuation
Development of new coating film
Optimization of Tool Material
Optimization of Tool Geometry
Fig.1 Development Target
Adoption of spiral glide
MQL Broaching
Wear Resistance
Lubrication
Chip Evacuation
Development of new coating film
Optimization of Tool Material
Optimization of Tool Geometry
Fig.1 Development Target
Adoption of spiral glide
Work piece
Broach
Broach pitch
Cutting tooth
Cutting depth
Cutting depth
Fig.2 Principle of broaching process
Work piece
Broach
Broach pitch
Cutting tooth
Cutting depth
Cutting depth
Fig.2 Principle of broaching process
%& #
,
##
#
-#
$"
%
%#
"
% )
. % *
## , -
%
# #
% ,
)
%
#& *. # ,
##
#
#
% . ,
%
# #
%
&
* # #% ,
)
%, %*
%#
)
) #&
,
) - %
'*;% (/
* &%%
)
#
) - %
&%% #.
) #
%
&%%
" &
% % # #
. % %
# :
%
#
# " *
#*
)
*#
#2 #
% 0&
)
)
)
*,
## #
. % #
%% %
"
%
,
#
)#
)
%
%
* # ,
) #
# , -
)"
%
&%%
- % &%
<
- %
34 5
& 3& %%*4&,
% 6
% &
34
## - # ) "
)
$&
. %# %
*
# #
) - ) *
% -
7 ) "
)
34 ,
%
-
" -
%#=
5(6
%
)
#
% # %*
%
% ) % %
, )
# >
) ) #% ,&% . #
% %.
?
%
)
-)
- # )
% )
# % #
?
" # %
% # #%
2 , *.
* )
-)
# #& % ,
34 ,
586
&
%
%
%
#
&@2 #
% % ).
& % *
)
%
-
%& #
% # #%
.
9) %
# #%
.
)
9 %
%
)& %"%*.
%
&%%
#
) )
5<6
%
%*
)
% & #
& % ) % #%#. %
2
. , 2
) &
%
5&%%
)
%
% % 6-
%
> )
5A6 B& %
%*
% &
%*
,
#
,
&#
#
&
%& . %
#
)
& % ,
- # ) "
) %
" , %%
" & %
)
&%%
# #%
)& %
5:6
&%%
. %
#* % %
#%
-
# 9 %
%&
)
# %
#
) )
A
A(
34 ,
& )
" %
#
)
" %
,
#
) #
*
:% (/ C
. %
#
-
5?
-
6 ,*
34 ,
- %
% )
-)
,
)
" %
,
- %
" %
<:,
# #
-
<
#
#& %#&
#%# % % 34 ,
#
## , & )
%
&
%
)
#
).
% ,
#
%
> )
% % &
#
9
.
% # % #%. -
&%
,
#% A: 58//
6& % ;(
&%%
%
- % ( : C 9A
>> #
)
) %
-
5? 6
%
# # & )
" %
#
)
34 ,
#
%&
)& %
#
#
-
% , (
A8
34 ,
& )
#
)
)
% &%%
%
*. %
%
) #% ,&%
, %-
&%%
#
)
)
%
%
# #
-
A
B
% )
%& )
#
) ,
# #% - *# %
#
) %
#
)
- *
- 2
#
% #
%& . - ) "
)
#
)
34 ,
)
%
"
)& %" %*
)
% - % &%#
*
Fig3.Wear comparison of MQL and Conventional
Material
S45C(200HB)
Specification
m2xPA30xNT16
Speed
5 m/min
Cut Depth/Tooth 0.06 mm
Machine Type
NBV-5-10SA
Pulling Force
Max.50KN
Stroke
Max.1,000mm
Fig3.Wear comparison of MQL and Conventional
Material
S45C(200HB)
Specification
m2xPA30xNT16
Speed
5 m/min
Cut Depth/Tooth 0.06 mm
Machine Type
NBV-5-10SA
Pulling Force
Max.50KN
Stroke
Max.1,000mm
Material
S45C(200HB)
Specification
m2xPA30xNT16
Speed
5 m/min
Cut Depth/Tooth 0.06 mm
Machine Type
NBV-5-10SA
Pulling Force
Max.50KN
Stroke
Max.1,000mm
Table 1 Operation Case
Work Piece
Outline
Machine
Speed
MQL oil type
Chip Discharge
Carbon steel
Key-way PM-
HSS TiN
Tool Transfer
3ton-pulling
800mm stroke
6m/min
Plant oil
Roller Flushing
Chip conveyor
Carbon steel
Inv-Spline
PM-HSS TiAlN
Tool Transfer
5ton-pulling
1,000mm stroke
5m/min
Synthetic oil
Brush
Vaccum
Cr-Alloy
Inv-Spline
HSS-Co TiN
Work Transfer
5ton-puwshing
1,000mm stroke
5m/min
Plamt oil
Brush
Flushing
Chip conveyor
Cr-Mo alloy
Inv-Spline
HSS-Co TiN
Tool Transfer
5ton-pulling
800mm stroke
3m/min
Plant oil
Brush
Flushing
Chip conveyor
Cr-Mo Alloy
Key-way
PM-HSS TiAlN
Tool Transfer
5ton-pulling
1,000mm stroke
5m/min
Plant oil
Brush
Vaccum
Table 1 Operation Case
Work Piece
Outline
Machine
Speed
MQL oil type
Chip Discharge
Carbon steel
Key-way PM-
HSS TiN
Tool Transfer
3ton-pulling
800mm stroke
6m/min
Plant oil
Roller Flushing
Chip conveyor
Carbon steel
Inv-Spline
PM-HSS TiAlN
Tool Transfer
5ton-pulling
1,000mm stroke
5m/min
Synthetic oil
Brush
Vaccum
Cr-Alloy
Inv-Spline
HSS-Co TiN
Work Transfer
5ton-puwshing
1,000mm stroke
5m/min
Plamt oil
Brush
Flushing
Chip conveyor
Cr-Mo alloy
Inv-Spline
HSS-Co TiN
Tool Transfer
5ton-pulling
800mm stroke
3m/min
Plant oil
Brush
Flushing
Chip conveyor
Cr-Mo Alloy
Key-way
PM-HSS TiAlN
Tool Transfer
5ton-pulling
1,000mm stroke
5m/min
Plant oil
Brush
Vaccum
Work Piece
Outline
Machine
Speed
MQL oil type
Chip Discharge
Carbon steel
Key-way PM-
HSS TiN
Tool Transfer
3ton-pulling
800mm stroke
6m/min
Plant oil
Roller Flushing
Chip conveyor
Carbon steel
Inv-Spline
PM-HSS TiAlN
Tool Transfer
5ton-pulling
1,000mm stroke
5m/min
Synthetic oil
Brush
Vaccum
Cr-Alloy
Inv-Spline
HSS-Co TiN
Work Transfer
5ton-puwshing
1,000mm stroke
5m/min
Plamt oil
Brush
Flushing
Chip conveyor
Cr-Mo alloy
Inv-Spline
HSS-Co TiN
Tool Transfer
5ton-pulling
800mm stroke
3m/min
Plant oil
Brush
Flushing
Chip conveyor
Cr-Mo Alloy
Key-way
PM-HSS TiAlN
Tool Transfer
5ton-pulling
1,000mm stroke
5m/min
Plant oil
Brush
Vaccum
) "
) ,
#
9 & #
)
;/ C
. -
" # %
9 &%%
%
%&
-
% )
-)
%
,
# #%
:#
-# %
##
-
5? 6
#
)
34 ,
.
" %
#
)
34 ,
)
" %
,
#
- % %
" %
,
. %
-
,*
#
)
34
,
- # (C<. & %
.
#
- %
" %
#
)
34 ,
.
%
-
5? 6- # (C8
# #
-
A. %
% )
% # %
#
) %
# & )
#
)
,
. # % %% )
,
# )
# ) ) #% *
9%. - 2
&
*- #
" #% % ) & )
)
% &%%
) %
#
&% )
%
- 2
#
)# % % %
%
,
-
%
&%%
#
) 9
)#
%
A/ C
# #
-
D
%
E/F
% - # %
#
) %
#
) %
%
,
- #
%
#
) %
- 2
. ,&%% %- #
, %
%&
) )
%
- 2
Fig.4 Heat Distribution by the Cutting Speed
2-Dimensional Cutting
S45C
Cut width 2mm Cut depth0.25mm
Fig.4 Heat Distribution by the Cutting Speed
2-Dimensional Cutting
S45C
Cut width 2mm Cut depth0.25mm
Material
S45C(200HB)
Specification
m2xPA30xNT16
Cut Depth/Tooth 0.06 mm
Machine Type
NBV-5-10SA
Pulling Force
Max.50KN
Stroke
Max.1,000mm
Fig.5 Difference of Flank Wear by each cutting Speed
Material
S45C(200HB)
Specification
m2xPA30xNT16
Cut Depth/Tooth 0.06 mm
Machine Type
NBV-5-10SA
Pulling Force
Max.50KN
Stroke
Max.1,000mm
Fig.5 Difference of Flank Wear by each cutting Speed
% %
#
%
. %
%&
# - #
" #%
% )
)
%
% %
,
#
). %
%&
- # )
# ) # #
-
G
)) %
% %
, "
%
) )" %
.
#
) ,
# " # %
-
#&
%
,*(CA#
-
;
2
% #
)" %
#
%
# )
%
.
)& %
#% )& %
- 2
,*
34
#
) ,
#
& % ) (:F
) - % %
" %
,
- %
)
<:,
5
E6
Work Major Dia
Cutting Speed
(mm)
Fig.6 Relation between speed and accuracy(work major dia.)
Broach Dai.=34.000
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Work Major Dia
Cutting Speed
(mm)
Fig.6 Relation between speed and accuracy(work major dia.)
Broach Dai.=34.000
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Temp. rise
24
25
26
27
28
29
30
5
10
20
30
40
50
Cutting Speed
Fig.7 Relation between speed and temperature rise (work piece)
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Temp. rise
24
25
26
27
28
29
30
5
10
20
30
40
50
Cutting Speed
Fig.7 Relation between speed and temperature rise (work piece)
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Actual Load
4.5
5.0
5.5
6.0
5
10
20
30
40
50
Cutting Speed
L
oa
d
(
KN)
Actual Electric Power Consumption
0
10
20
30
40
50
5
10
20
30
40
50
Cutting Speed
Fig.8 Relation between speed and power consumption
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Actual Load
4.5
5.0
5.5
6.0
5
10
20
30
40
50
Cutting Speed
L
oa
d
(
KN)
Actual Electric Power Consumption
0
10
20
30
40
50
5
10
20
30
40
50
Cutting Speed
Fig.8 Relation between speed and power consumption
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
Model :NBV-5-10SA MQL:Bluebe Fat oil Volume :4cc/h 4
nozzles Material :S45C Cutting length 30mm
Broach :34x30x4x4sp PM-HSS+TiAlN
%
energy
coolant
tool
Machine cost
15%
15%
less
less
Fig.9 Cost reduction by MQL high speed broaching
%
energy
coolant
tool
Machine cost
15%
15%
less
less
Fig.9 Cost reduction by MQL high speed broaching
A<
)
# %
%
>
34 ,
# &%%
%
%& # ,
,* 34
#
) ,
.
# -
#*%
)
% ,
& %
) )
& %% " & % &%
% *
2
)" %
% %
%
% %
*1- ) "
) %
#
) ,
5 & % %
) ) & %6 # #
-
(/
* )
-)
)
%
- # ) "
)
) &# )
7
% # #
) ,
- # &# ). # #
-
(( .
% *)
%
). 2
#
.
% %- % %
" %
%*
,
-
) #
)
# #
%*
# -
# * ) #
)
,
& %
& %
.
)& %
&%%
-
#
) ,* )
%
% # #
) ,
# #
-
(8
#
)
34 ,
. #
) %*
# " *
%"
)
) )
Fig.10 Spiral glide broach
Fig.10 Spiral glide broach
Chip form by Spiral glide broach
Chip form by conventional broach
Fig.11 Difference of chip form
Chip form by Spiral glide broach
Chip form by conventional broach
Fig.11 Difference of chip form
Normal
KN
Normal
Fig.12 Difference of power consumption and Max. load
Normal
KN
Normal
KN
Normal
Normal
Fig.12 Difference of power consumption and Max. load
:
&#
## #
% ) &
% *
" ) ,* &#
% #
% #
)
%
% %%
,
## - ,
% & ) % , &# )
&%
,
%#
) %
##
)& %
%# #
%
#%
%"
)& %
%
0& #
- " . % #
%
" #% %
%% %% #
%
,
% ) #
#
- %&
%,*% %
*% %-
" ) "
)
#
).
34 ,
## - %
% )
)
-)
%
,
#
)*,
)
% )
*
#
&
%&
"
%#
& %
.
#
) ,
&#
, ) ,
# # &
% *,
% #% )
)
) "
) - %
&
*
#
## #
) % %
#
)
)
%#
-
& )
%,
) ,* %
" %
,
#
)#
)
)#
)
%
#&,#%%&%
)
# )
%
#%# "
#
) %
*
% # ,
% ).
) # %
% # "
&
"
%.
&@2 #
#
% &
% ) " % #
-
34
,
% ) #
&
#
## ,
'
#
5(6H #&#
- 1
%
" -. ? :G
( .8//(. 8; <8
586H #
2
%#&
% .
%#&*&2
# 2&.
%
" -. ? :G
8.
8//8. AG :(