background image

1

Teoria prawdopodobieństwa i kombinatoryka

 

– poziom podstawowy

Zadanie 1. (3 pkt) 

Źródło: CKE 2005 (PP), zad. 1.

2 

Egzamin maturalny z matematyki 

 

Arkusz I

 

Zadanie 1. (3 pkt

 

W pudeáku są trzy kule biaáe i piĊü kul czarnych. Do pudeáka moĪna albo doáoĪyü jedną kulĊ 

biaáą albo usunąü z niego jedną kulĊ czarną, a nastĊpnie wylosowaü z tego pudeáka jedną kulĊ. 

W którym  z  tych  przypadków  wylosowanie  kuli  biaáej  jest  bardziej  prawdopodobne? 

Wykonaj odpowiednie obliczenia. 

 

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

                           

         

background image

2

Zadanie 2. (3 pkt) 

Źródło: CKE 01.2006 (PP), zad. 2.

 

Egzamin maturalny z matematyki 

3 

 

Arkusz I

 

Zadanie 2. (3 pkt

Po  WiadomoĞciach z kraju i ze  Ğwiata telewizja TVG ma nadaü piĊü reklam: trzy reklamy 

róĪnych proszków do prania oraz dwie reklamy róĪnych past do zĊbów. KolejnoĞü nadawania 

reklam jest ustalona losowo. Oblicz prawdopodobieĔstwo, Īe dwie reklamy produktów tego 

samego  rodzaju  nie  bĊdą  nadane  bezpoĞrednio  jedna  po  drugiej.  Wynik  podaj  w  postaci 

nieskracalnego uáamka zwykáego. 

 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

background image

3

Zadanie 3. (3 pkt) 

Źródło: CKE 05.2006 (PP), zad. 2.

Egzamin maturalny z matematyki 

Arkusz I 

3

Zadanie 2. (3 pkt) 

W  wycieczce  szkolnej  bierze  udziaá  16  uczniów,  wĞród  których  tylko  czworo  zna  okolicĊ. 

Wychowawca  chce  wybraü  w  sposób  losowy  3  osoby,  które  mają  pójĞü  do  sklepu.  Oblicz 

prawdopodobieĔstwo  tego,  Īe  wĞród  wybranych  trzech  osób  bĊdą  dokáadnie  dwie  znające 

okolicĊ. 

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

                                                               

 

Nr czynnoĞci 

2.1.

2.2.

2.3. 

Maks. liczba pkt 

Wypeánia 

egzaminator!  Uzyskana liczba pkt 

 

 

 

background image

4

Zadanie 4. (5 pkt) 

Źródło: CKE 11.2006 (PP), zad. 6.

Próbny egzamin maturalny z matematyki 

Poziom podstawowy

8

Zadanie 6. (5 pkt)

 

W  urnie  znajdują  siĊ  kule  z  kolejnymi  liczbami  10,  11,  12,  13,  ...,  50,  przy  czym  kul  

z liczbą 10 jest 10, kul z liczbą 11 jest 11 itd., a kul z liczbą 50 jest 50. Z urny tej losujemy 

jedną kulĊ. Oblicz prawdopodobieĔstwo, Īe wylosujemy kulĊ z liczbą parzystą.  

 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

 

background image

5

Zadanie 5. (4 pkt) 

Źródło: CKE 2007 (PP), zad. 8.

 

Egzamin maturalny z matematyki 

9

 

Poziom podstawowy

 

 

Zadanie 8. (4 pkt) 

 

Na stole leĪaáo 14 banknotów: 2 banknoty o nominale 100 zá, 2 banknoty o nominale 50 zá  

i  10  banknotów  o  nominale  20 zá.  Wiatr  zdmuchnąá  na  podáogĊ  5  banknotów.  Oblicz 

prawdopodobieĔstwo tego, Īe na podáodze leĪy dokáadnie 130 zá. OdpowiedĨ podaj w postaci 

uáamka nieskracalnego. 

 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

 

Nr czynnoĞci 

8.1.

8.2.

8.3.

8.4. 

Maks. liczba pkt 

Wypeánia 

egzaminator!  Uzyskana liczba pkt 

 

 

 

 

background image

6

Zadanie 6. (4 pkt) 

Źródło: CKE 2008 (PP), zad. 12.

Egzamin maturalny z matematyki 

Poziom podstawowy 

 

18

Zadanie 12. (4 pkt) 

Rzucamy  dwa  razy  symetryczną  szeĞcienną  kostką  do  gry.  Oblicz  prawdopodobieĔstwo 

kaĪdego z nastĊpujących zdarzeĔ: 

a) 

A – w kaĪdym rzucie wypadnie nieparzysta liczba oczek. 

b)  B – suma oczek otrzymanych w obu rzutach jest liczbą wiĊkszą od 9. 

c)  C – suma oczek otrzymanych w obu rzutach jest liczbą nieparzystą i wiĊkszą od 9. 

 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

 

Nr zadania 

12.1  12.2  12.3  12.4 

Maks. liczba pkt 

Wypeánia 

egzaminator!  Uzyskana liczba pkt 

 

 

 

 

background image

7

Zadanie 7. (5 pkt) 

Źródło: CKE 05.2009 (PP), zad. 10.

Egzamin maturalny z matematyki 

Poziom podstawowy 

13

Zadanie 10. (5 pkt) 

Tabela  przedstawia  wyniki  czĊĞci  teoretycznej  egzaminu  na  prawo  jazdy.  Zdający  uzyskaá 

wynik pozytywny, jeĪeli popeániá co najwyĪej dwa báĊdy. 

 

liczba báĊdów 

0  1  2  3  4  5  6  7  8 

liczba zdających 

8  5  8  5  2  1  0  0  1 

 

a)  Oblicz  Ğrednią  arytmetyczną  liczby  báĊdów  popeánionych  przez  zdających  ten  egzamin. 

Wynik podaj w zaokrągleniu do caáoĞci. 

b)  Oblicz prawdopodobieĔstwo, Īe wĞród dwóch losowo wybranych zdających tylko jeden 

uzyskaá wynik pozytywny. Wynik zapisz w postaci uáamka zwykáego nieskracalnego. 

 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

                                                                 

 

Nr zadania 

10.1  10.2  10.3  10.4  10.5 

Maks. liczba pkt 

Wypeánia 

egzaminator!  Uzyskana liczba pkt 

 

 

 

 

 

background image

8

Zadanie 8. (1 pkt) 

Źródło: CKE 11.2009 (PP), zad. 25.

Zadanie 9. (4 pkt) 

Źródło: CKE 2010 (PP), zad. 33.

Próbny egzamin maturalny z matematyki 

Poziom podstawowy 

Zadanie 21.  (1 pkt

Wykres funkcji liniowej okreĞlonej wzorem 

 

3

2

f x

x

 



 jest prostą prostopadáą do prostej 

o równaniu:  
A. 

1

1

3

y

x

  

  

B. 

1

1

3

y

x

 

  

C. 

3 1

y

x

 

  

D. 

3 1

y

x

 

  

 

Zadanie 22.  (1 pkt

Prosta o równaniu 

4

2

7

y

x

m

   



 przechodzi przez punkt 

2, 1

 



. Wtedy  

A. 

7

 

 

B. 

1

2

2

 

 

C. 

1
2

    

D. 

17

  

 

 

Zadanie 23.  (1 pkt

Pole powierzchni caákowitej szeĞcianu jest równe 150 cm

2

. DáugoĞü krawĊdzi tego szeĞcianu 

jest równa 

 

A.  3,5 cm 

B.  4 cm 

C.  4,5 cm 

D.  5 cm 

 

Zadanie 24.  (1 pkt

ĝrednia arytmetyczna piĊciu liczb: 5, 

x, 1, 3, 1 jest równa 3. Wtedy  

 

A. 

2

 

 

B. 

3

 

 

C. 

4

 

 

D. 

5

 

 

 

Zadanie 25.  (1 pkt

Wybieramy liczbĊ 

a ze zbioru 

^

`

2,3,4,5

 

 oraz liczbĊ 

b ze zbioru 

^ `

1,4

 

. Ile jest takich par 

,

a b

, Īe iloczyn 

a b

˜

 jest liczbą nieparzystą? 

A.  

B.  3 

C.  5 

D.  20 

 

 

Egzamin maturalny z matematyki 

Poziom podstawowy 

 

16

 

Zadanie 33. (4 pkt)

 

DoĞwiadczenie losowe polega na dwukrotnym rzucie symetryczną szeĞcienną kostką do gry. 

Oblicz  prawdopodobieĔstwo  zdarzenia  A  polegającego  na  tym,  Īe  w  pierwszym  rzucie 

otrzymamy parzystą liczbĊ oczek i iloczyn liczb oczek w obu rzutach bĊdzie podzielny przez 12. 

Wynik przedstaw w postaci uáamka zwykáego nieskracalnego.