background image

 

 

Classification  Confidential

Date 

Apr 23, 2007

Version 

V 1.0 ENG

 

 

 

 

 

 

Halley RF Troubleshooting 

and Maintenance Guide 

 

 

 

ASUSTeK Computer Inc. 

R&D Division 

IA R&D Department 

 

background image

 

 

1

Table of Contents 

Table of Contents .................................................................................................1 

1. Equipment Requirements ...............................................................................2 

(1) Software requirements..................................................................................2 

(2) Hardware requirements ................................................................................2 

(3) Instrument requirements...............................................................................2 

2. Test Environment Setup ..................................................................................3 

(1) Instrument linking ........................................................................................3 

(2) Fixture ..........................................................................................................4 

3. RF Block Diagram ...........................................................................................6 

(1) GSM block diagram .....................................................................................6 

(2) WCDMA block diagram ..............................................................................7 

4. RF Tx/Rx Path and Test Points.......................................................................8 

(1) GSM Tx/Rx path and test points ..................................................................8 

(2) WCDMA Tx/Rx path and test points ......................................................... 11 

5. Procedures of Repair .....................................................................................14 

(1) Repair Process A: check calibration files...................................................16 

(2) Repair Process B: GSM/WCDMA wireless test ........................................18 

(3) Repair Process C: GSM/WCDMA conductive test....................................20 

(4) Repair Process D1: GSM Tx debug ...........................................................22 

(5) Repair Process E1: GSM Rx debug ...........................................................30 

(6) Repair Process D2: WCDMA Tx debug ....................................................37 

(7) Repair Process E2: WCDMA Rx debug ....................................................44 

 

background image

 

 

2

1. Equipment Requirements 

(1) Software requirements 

XML 

Hermon database 

RFSender 

IFL V1.2.1 

GSM/WCDMA performance test tool 

GSM/WCDMA debug tool 

(2) Hardware requirements 

PCB fixture 

RF adapter 

RF cable 

USB cable 

(3) Instrument requirements 

PC 

Wireless communication test set (Agilent 8960, R&S CMU200, Anritsu 8820) 

Spectrum analyzer (Span > 3.0 GHz) 

RF signal generator (up to 3.0 GHz) 

High impedance RF probe with DC block 

Digital multimeter 

Power supply 

background image

 

 

3

2. Test Environment Setup 

(1) Instrument linking 

 

 

 

background image

 

 

4

(2) Fixture 

  Fixture appearance 

 

  PCB on fixture (front view) 

 

background image

 

 

5

  PCB on fixture (rear view) 

 

  Calibration and RF test setup 

 

background image

 

 

6

3. RF Block Diagram 

(1) GSM block diagram 

 

background image

 

 

7

(2) WCDMA block diagram 

 

 

background image

 

 

8

4. RF Tx/Rx Path and Test Points 

How RF signal is transmitted and received between components on Halley PCB 

is explained in this section. It is important to realize RF transmission path (Tx) and 

receiving path (Rx) before starting out to repair NG PCB, because engineers need to 

choose proper test points which assist us to distinguish where the problem is. The 

following paragraphs describe both Tx and Rx path in GSM and WCDMA bands. The 

related test points are listed in the following figures. 

(1) GSM Tx/Rx path and test points 

  GSM Tx path 

Transceiver, RF6001 (U19), receives IQ signals coming from baseband, and 

output signals of RF6001 Pin22 and Pin23 are transmitted into the buffer of receiver, 

RF2722. Then RF2722 Pin12 and Pin13 emit the low band signal (GSM900) and high 

band signals (DCS1800 or PCS1900) separately. 

In the low band, output signal from RF2722 Pin12 passes through C235, 

attenuator (U21) and RF3166 (U22) Pin7, power amplifier, sequentially. Transmission 

and receiving switch (U20), also named T/R switch, gets the amplified signal from 

RF3166 Pin23 via matching circuits. RF signal coming from T/R switch Pin15 is 

transmitted to connector (Con6) and radiated via the GSM antenna of Halley. 

In the high band, output signal from RF2722 Pin13 passes through C243, 

attenuator (U23) and RF3166 (U22) Pin1, power amplifier, sequentially. Transmission 

and receiving switch (U20), also named T/R switch, gets the amplified signal from 

RF3166 Pin30 via matching circuits. RF signal coming from T/R switch Pin15 is 

transmitted to connector (Con6) and radiated via the GSM antenna of Halley. 

  GSM Rx path 

RF signals, receiving from base stations via the GSM antenna, pass through 

connector (Con6) and T/R switch Pin15 (U20) sequentially. There are three output 

pins of T/R switch, including Pin2, Pin4, and Pin5. The output path which RF signal 

is transmitted depends on band selection of T/R switch. 

In GSM900 band, the output signal which is transmitted from T/R switch Pin2 

passes through SAW filter (BPF1) and matching circuits sequentially. Upon RF2722 

(U18) receiving the signal, it is amplified in the Low Noise Amplifier (LNA) of the 

receiver, down converted the signal’s frequency and transformed into IQ signals. The 

IQ signals from RF2722 Pin20, Pin21, Pin22, and Pin23 travel to the transceiver 

RF6001 (U19). The transceiver RF6001 transfers the signals to the baseband signals. 

background image

 

 

9

In DCS1800 band, the output signal which is transmitted from T/R switch Pin5 

passes through SAW filter (BPF3) and matching circuits sequentially. Upon RF2722 

(U18) receiving the signal, it is amplified in the Low Noise Amplifier (LNA) of the 

receiver, down converted the signal’s frequency and transformed into IQ signals. The 

IQ signals from RF2722 Pin20, Pin21, Pin22, and Pin23 travel to the transceiver 

RF6001 (U19). The transceiver RF6001 transfers the signals to the baseband signals. 

In PCS1900 band, the output signal which is transmitted from T/R switch Pin4 

passes through SAW filter (BPF1) and matching circuits sequentially. Upon RF2722 

(U18) receiving the signal, it is amplified in the Low Noise Amplifier (LNA) of the 

receiver, down converted the signal’s frequency and transformed into IQ signals. The 

IQ signals from RF2722 Pin20, Pin21, Pin22, and Pin23 travel to the transceiver 

RF6001 (U19). The transceiver RF6001 transfers the signals to the baseband signals. 

 

background image

 

 

10

  GSM Tx/Rx test points 

Bottom side 

 

Top side 

 

background image

 

 

11

(2) WCDMA Tx/Rx path and test points 

  WCDMA Tx path 

The output signal from transmitter MAX2390 Pin2 travels to SAW filter (BPF4), 

and RMPA2259 Pin2 sequentially. The boosted power coming from RMPA2259 Pin8 

passes through isolator (U26), duplexer Pin1 (U28), and connector (Con7). At last, the 

RF signal is radiated via WCDMA antenna of Halley. 

  WCDMA Rx path 

RF signal in WCDMA, receiving from base stations via the WCDMA antenna, 

passes through connector (Con7) and duplexer Pin3 sequentially. MAX2391 Pin1 

(U31), built-in LNA, receives the signal from duplexer. Then the signal is transmitted 

to SAW filter (BPF5) and returns to receiver MAX2391 again. After down converting 

the signal’s frequency and transforming into IQ signals, the IQ signals from 

MAX2391 Pin20, Pin21, Pin22, and Pin23 travel to baseband. 

 

background image

 

 

12

  WCDMA Tx/Rx test points 

Bottom side 

 

 

background image

 

 

13

Top side 

 

 

background image

 

 

14

5. Procedures of Repair 

The following flow chart shows repair’s procedures that comprise a series of 

repair processes. The purpose of each repair processes is to check the cause of 

different RF performance defects. 

Calibration files should be confirmed first to guarantee existence of RF 

parameters in FDI. After wireless and conductive test, engineers can find out where 

the problem is. Therefore, engineers properly recognize that the defect comes from 

either antenna contact or RF circuits. If the defect results from RF circuit, the next 

procedure is to disassemble and debug Tx/Rx path. 

It is very important that conductive and wireless test should be done again to 

make sure that Halley operates properly after any debug process. Each repair process 

is described specifically in following sections. 

background image

 

 

15

 

 

background image

 

 

16

(1) Repair Process A: check calibration files 

The flow chart of Repair Process A is shown below. 

 

The purpose of this repair process is to check calibration files in FDI. Without 

calibration files, Halley can’t keep good RF performance. Moreover, making a phone 

call might operate improperly.   

 

background image

 

 

17

The detail steps of Repair Process A are listed as follows. 

a. Clean boot: push “Direction key” upward first, and then press “Power key”. 

When “WARNING” is shown on panel, press “Send key”. The figure below shows 

clean boot method. 

 

b. Check calibration files in FDI by using IFL tool. There shall be three 

calibration files in FDI. The names of the calibration files are as follows, 

PcCalData.nvm 

aplp_rf_analysis.nvm 

aplp_rf_calibration.nvm. 

c. If all calibration files exist in FDI, go to next Repair Process B: Wireless test. 

Otherwise, the PCB which calibration files are lost needs to be calibrated. 

background image

 

 

18

(2) Repair Process B: GSM/WCDMA wireless test 

The flow chart of Repair Process B is shown below. 

 

background image

 

 

19

The purpose of this repair process is to distinguish problems between antenna 

and RF circuit that cause weak RF performance. Besides, wireless test is a previous 

analysis of all RF tests. Moreover, engineers utilize wireless test to confirm that 

antenna performance is not affected after re-assembling.   

The detail steps of Repair Process B are listed as follows. 

a. Put a golden sample of Halley into a shielding box and link to a tester (Agilent 

8960 or R&S CMU200). Then, record its location and path loss. 

b. At the same position that the golden sample was located, put problematic 

Halley into the shielding box. After that, wait for Halley registering at the tester. 

c. After attaching to the network, make a phone call. 

d. Measure maximum output power and sensitivity. The test requirements of 

maximum output power and sensitivity shall not exceed the range listed in the 

following table. 

e. If any of previous steps (b. ~ d.) is failed, consequently enter next process, 

Repair Process C: GSM/WCDMA conductive test. 

f. If all previous steps (b. ~ d.) are passed, it means that nothing happens. 

Therefore, need to clarify customer’s complaints and try to understand user’s 

behaviors. 

 

 Channel 

Power 

Level

Power 

Requirements 

Sensitivity 

Requirements 

GSM 900 

62 5 

29.3~35.3 

dBm 

Refer to   

golden sample 

DCS 1800 

700 0 

26.0~32.0 

dBm 

Refer to   

golden sample 

PCS 1900 

661 0 

26.0~32.0 

dBm 

Refer to   

golden sample 

WCDMA 

10700 

All up   

(24 dBm) 

20.8~25.5 dBm 

Refer to   

golden sample 

 

background image

 

 

20

(3) Repair Process C: GSM/WCDMA conductive test 

The flow chart of Repair Process C is shown below. 

 

background image

 

 

21

The purpose of this repair process is to reduce the scope of RF problems. Due to 

smaller measuring tolerance of conductive test, it is helpful to focus on either GSM 

band or WCDMA band. Moreover, engineers can obtain further information about Tx 

and Rx path of RF circuits. 

The detail steps of Repair Process C are listed as follows. 

a. Connect Halley which needs to repair with a tester by a RF cable. After that, 

wait for registering at the tester. (Agilent 8960 or R&S CMU200) 

b. After attaching to the network, make a phone call. 

c. Measure maximum output power and sensitivity. The test requirements of 

maximum output power and sensitivity shall not exceed the range listed in the 

following table. 

d. If any of previous steps (a. ~ c.) is failed, consequently execute “MMI test 

program” (also named “2577”) and disassemble Halley later for RF hardware circuit 

debug (Repair Process D1: GSM Tx debug or Repair Process D2: WCDMA Tx 

debug).  

e. If all steps (a. ~ c.) are passed but the previous process, wireless test, is failed, 

it means antenna shall be replaced. In another case, Halley needs verification of 

conductive test and shall pass previous steps (a. ~ c.) after other successful debug 

processes. At this time, the next step is to do wireless test. 

 

 Channel 

Power 

Level 

Power 

Requirements 

Sensitivity 

Requirements 

GSM 900 

62 5 

31.3~33.3 

dBm 

 -106.0 dBm 

DCS 1800 

700 0 

28.0~30.0 

dBm 

 -105.0 dBm 

PCS 1900 

661 0 

28.0~30.0 

dBm 

 -105.0 dBm 

WCDMA 

10700 

All up   

(24 dBm) 

21.5~25.0 dBm 

 -108.2 dBm 

 

background image

 

 

22

(4) Repair Process D1: GSM Tx debug 

The flow chart of Repair Process D1 is shown below. 

 

background image

 

 

23

The purpose of this repair process is to find out where the problem is on GSM Tx 

path. In other words, engineers can judge the defect component on RF path by using 

“Debug tool”. Debug tool makes Halley into test mode so that PA can transmit power 

continuously. 

The usage of debug tool can be referred to “Debug tool user guide” provided by 

Halley ATS engineers. Related parameters of debug tool are prescribed in the 

following table. 

 

 Channel 

PCL 

Tx 

Frequency 

PAG_Value 

DAC1V 

GSM 900 

62 5 902.4 

MHz 555 5200 

DCS 1800 

700 0 1747.8 

MHz 560  5200 

PCS 1900 

661 0 1880.0 

MHz 525  5200 

The detail steps of Repair Process D1 are listed as follows. 

  GSM 900 Tx debug 

a. Spectrum analyzer connects with a high impedance probe. Execute GSM 

debug tool and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on GSM Tx path, including antenna pad, L59, C228, and C235. Corresponding 

locations are shown in “4. RF Tx/Rx Path and Test Points.” Furthermore, 

measurement error of RF power on each test point is unavoidable due to measurement 

skills and methods of using high impedance probe. 

c. Antenna pad: all components on Tx path are good if power is measured from 

antenna pad within 25dBm~32dBm. In this case, engineers shall go to next repair 

process, Repair Process E1: GSM Rx debug. 

background image

 

 

24

d. L59: Check whether GSM RF connector (CON6) is good or not. CON6 needs 

to be reworked if power is measured within 25dBm~ 32dBm on L59, and no signal is 

measured from antenna pad. The following figure is an example of L59 signal 

measurement on the spectrum analyzer. 

 

e. C228: Check whether T/R switch (U20) is good or not. T/R switch needs to be 

reworked if power is measured within 25dBm~ 32dBm on C228, and no signal is 

measured on L59. The following figure is an example of C228 signal measurement on 

the spectrum analyzer. 

 

background image

 

 

25

f.  C235: Check whether PA (U22) is good or not. PA needs to be reworked if 

power is measured within -6dBm~ 0dBm on C236, and no signal is measured on 

C228. Besides, if no output power is measured on C235, transceiver (U19) needs to 

be reworked. The following figure is an example of C235 signal measurement on the 

spectrum analyzer. 

 

  DCS 1800 Tx debug 

a. Spectrum analyzer connects with a high impedance probe. Execute GSM 

debug tool and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on GSM Tx path, including antenna pad, L59, C234, and C245. Corresponding 

locations are shown in “4. RF Tx/Rx Path and Test Points.” Furthermore, 

measurement error of RF power on each test point is unavoidable due to measurement 

skills and methods of using high impedance probe. 

c. Antenna pad: all components on Tx path are good if power is measured from 

antenna pad within 25dBm~32dBm. In this case, engineers shall go to next repair 

process, Repair Process E1: GSM Rx debug. 

background image

 

 

26

d. L59: Check whether GSM RF connector (CON6) is good or not. CON6 needs 

to be reworked if power is measured within 25dBm~ 32dBm on L59, and no signal is 

measured from antenna pad. The following figure is an example of L59 signal 

measurement on the spectrum analyzer. 

 

e. C234: Check whether T/R switch (U20) is good or not. T/R switch needs to be 

reworked if power is measured within 25dBm~ 32dBm on C228, and no signal is 

measured on L59. The following figure is an example of C234 signal measurement on 

the spectrum analyzer. 

 

background image

 

 

27

f.  C245: Check whether PA (U22) is good or not. PA needs to be reworked if 

power is measured within -6dBm~ 0dBm on C245, and no signal is measured on 

C234. Besides, if no output power is measured on C245, transceiver (U19) needs to 

be reworked. The following figure is an example of C245 signal measurement on the 

spectrum analyzer. 

 

  PCS 1900 Tx debug 

a. Spectrum analyzer connects with a high impedance probe. Execute GSM 

debug tool and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on GSM Tx path, including antenna pad, L59, C228, and C235. Corresponding 

locations are shown in “4. RF Tx/Rx Path and Test Points.” Furthermore, 

measurement error of RF power on each test point is unavoidable due to measurement 

skills and methods of using high impedance probe. 

c. Antenna pad: all components on Tx path are good if power is measured from 

antenna pad within 25dBm~32dBm. In this case, engineers shall go to next repair 

process, Repair Process E1: GSM Rx debug. 

background image

 

 

28

d. L59: Check whether GSM RF connector (CON6) is good or not. CON6 needs 

to be reworked if power is measured within 25dBm~ 32dBm on L59, and no signal is 

measured from antenna pad. The following figure is an example of L59 signal 

measurement on the spectrum analyzer. 

 

e. C234: Check whether T/R switch (U20) is good or not. T/R switch needs to be 

reworked if power is measured within 25dBm~ 32dBm on C228, and no signal is 

measured on L59. The following figure is an example of C234 signal measurement on 

the spectrum analyzer. 

 

background image

 

 

29

f.  C245: Check whether PA (U22) is good or not. PA needs to be reworked if 

power is measured within -6dBm~ 0dBm on C245, and no signal is measured on 

C234. Besides, if no output power is measured on C245, transceiver (U19) needs to 

be reworked. The following figure is an example of C245 signal measurement on the 

spectrum analyzer. 

 

 

background image

 

 

30

(5) Repair Process E1: GSM Rx debug 

The flow chart of Repair Process E1 is shown below. 

 

background image

 

 

31

The purpose of this repair process is to find out where the problem is on GSM 

Rx path. In other words, engineers can judge the defect component on RF path by 

using “Debug tool” and RF signal generator. Debug tool makes Halley into test mode 

and keeps Rx path receiving CW (continuous wave) from the generator. 

The usage of debug tool can be referred to “Debug tool user guide” provided by 

Halley ATS engineers. Related parameters of debug tool and recommended output 

power from the generator are prescribed in the following table. 

 

 Channel 

Rx 

Frequency 

Generator 

power 

GSM 900 

62 

947.4 MHz 

-20 dBm 

DCS 1800 

700 

1842.8 MHz 

-20 dBm 

PCS 1900 

661 

1960.0 MHz 

-20 dBm 

 

The detail steps of Repair Process E1 are listed as follows. 

  GSM 900 Rx debug 

a. Set RF signal generator to emit CW with corresponding frequency and 

transmit power into Halley GSM connector via RF cable and a RF adapter (MS-162). 

Spectrum analyzer connects with a high impedance probe. Execute GSM debug tool 

and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on GSM Rx path, including L59, C653, and C184. Corresponding locations are 

shown in “4. RF Tx/Rx Path and Test Points.” Furthermore, measurement error of RF 

power on each test point is unavoidable due to measurement skills and methods of 

using high impedance probe. 

c. L59: Check whether GSM RF connector (CON6) is good or not. CON6 needs 

to be reworked if no RF signal is measured on L59. 

background image

 

 

32

d. C653: Check whether T/R switch (U20) is good or not. T/R switch needs to be 

reworked if RF signal emitted by the signal generator is measured on L59, and no 

power is detected on C653. The following figure is an example of C653 signal 

measurement on the spectrum analyzer. 

 

e.  C184: Check whether SAW filter (BPF1) is good or not. BPF1 needs to be 

reworked if RF signal emitted by the signal generator is measured on C653, and no 

power is detected on C184. The following figure is an example of C184 signal 

measurement on the spectrum analyzer. 

 

background image

 

 

33

  DCS 1800 Rx debug 

a. Set RF signal generator to emit CW with corresponding frequency and 

transmit power into Halley GSM connector via a RF cable and a RF adapter (MS-162). 

Spectrum analyzer connects with a high impedance probe. Execute GSM debug tool 

and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on GSM Rx path, including L59, C656, and C210. Corresponding locations are 

shown in “4. RF Tx/Rx Path and Test Points.” Furthermore, measurement error of RF 

power on each test point is unavoidable due to measurement skills and methods of 

using high impedance probe. 

c. L59: Check whether GSM RF connector (CON6) is good or not. CON6 needs 

to be reworked if no RF signal is measured on L59. 

d. C656: Check whether T/R switch (U20) is good or not. T/R switch needs to be 

reworked if RF signal emitted by the signal generator is measured on L59, and no 

power is detected on C656. The following figure is an example of C656 signal 

measurement on the spectrum analyzer. 

 

background image

 

 

34

e.  C210: Check whether SAW filter (BPF3) is good or not. BPF3 needs to be 

reworked if RF signal emitted by the signal generator is measured on C656, and no 

power is detected on C210. The following figure is an example of C210 signal 

measurement on the spectrum analyzer. 

 

background image

 

 

35

  PCS 1900 Rx debug 

a. Set RF signal generator to emit CW with corresponding frequency and 

transmit power into Halley GSM connector via a RF cable and a RF adapter (MS-162). 

Spectrum analyzer connects with a high impedance probe. Execute GSM debug tool 

and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on GSM Rx path, including L59, C655, and C195. Corresponding locations are 

shown in “4. RF Tx/Rx Path and Test Points.” Furthermore, measurement error of RF 

power on each test point is unavoidable due to measurement skills and methods of 

using high impedance probe. 

c. L59: Check whether GSM RF connector (CON6) is good or not. CON6 needs 

to be reworked if no RF signal is measured on L59. 

d. C655: Check whether T/R switch (U20) is good or not. T/R switch needs to be 

reworked if RF signal emitted by the signal generator is measured on L59, and no 

power is detected on C655. The following figure is an example of C655 signal 

measurement on the spectrum analyzer. 

 

background image

 

 

36

e.  C195: Check whether SAW filter (BPF2) is good or not. BPF2 needs to be 

reworked if RF signal emitted by the signal generator is measured on C655, and no 

power is detected on C195. The following figure is an example of C195 signal 

measurement on the spectrum analyzer. 

 

f. The next process returns to “Repair Process C: GSM/WCDMA conductive 

test” after all Rx paths are well in GSM900 band, DCS1800 band, and PCS1900 band. 

In a special case, receiver (U18) needs to be reworked if no problem is found on all 

Rx paths and conductive test is still failed. Furthermore, the process returns to 

wireless test under the condition of passing conductive test. 

background image

 

 

37

(6) Repair Process D2: WCDMA Tx debug 

The flow chart of Repair Process D2 is shown below. 

 

background image

 

 

38

 

background image

 

 

39

 

background image

 

 

40

The purpose of this repair process is to find out where the problem is on 

WCDMA Tx path. In other words, engineers can judge the defect component on RF 

path by using “Debug tool”. Debug tool makes Halley into test mode so that PA can 

transmit power continuously. 

The usage of debug tool can be referred to “Debug tool user guide” provided by 

Halley ATS engineers. Related parameters of debug tool are prescribed in the 

following table. 

 

 

UL Channel 

Tx Frequency 

Vgc DAC 

WCDMA 

9750 1950.0 

MHz 1024 

 

The detail steps of Repair Process D2 are listed as follows. 

a. Spectrum analyzer connects with a high impedance probe. Execute GSM 

debug tool and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on GSM Tx path, including antenna pad, C277, duplexer (U28) Pin1, L42, C268 Pin1, 

C260, C262 Pin1, and L12. Furthermore, the signals of C268 Pin1 and C262 Pin1 are 

both DC signals instead. Corresponding locations are shown in “4. RF Tx/Rx Path 

and Test Points.” Moreover, measurement error of RF power on each test point is 

unavoidable due to measurement skills and methods of using high impedance probe. 

background image

 

 

41

c.  Antenna pad: all components on WCDMA Tx path are good if power is 

measured from antenna pad within -46dBm~-37dBm. In this case, engineers shall go 

to next repair process, Repair Process E2: WCDMA Rx debug. 

 

d. C277: Check whether WCDMA RF connector (CON7) is good or not. CON7 

needs to be reworked if power is measured within -46dBm~-37dBm on C277, and no 

signal is measured from antenna pad. The following figure is an example of C277 

signal measurement on the spectrum analyzer. 

 

background image

 

 

42

e. U28 Pin1: Check whether duplexer (U28) is good or not. Duplexer needs to be 

reworked if power is measured within -46dBm~ -37dBm on U28 Pin1, and no signal 

is measured on C277. The following figure is an example of U28 Pin1 signal 

measurement on the spectrum analyzer. 

 

f. L42: Check whether isolator (U26) is good or not. CON7 needs to be reworked 

if power is measured within -46dBm~-37dBm on C277, and no signal is measured on 

U28 Pin1. The following figure is an example of L42 signal measurement on the 

spectrum analyzer. 

 

background image

 

 

43

g.  C268 Pin1(

DC

): Check whether power detector (U28) is good or not. The 

main function of power detector is to sense RF signal by means of converting RF to 

DC voltage. The voltage level on C268 Pin1 shall be 1.3V ~ 1.5V as maximum output 

power, approximate 23.5 dBm, is emitted. Power detector needs to be reworked if no 

voltage level is measured in the situation of maximum output power. 

h.  C260: Check whether PA (U24) operates normally or not. PA needs to be 

reworked if DC-DC converter supplies DC voltage to PA and power is measured 

within -63dBm~-55dBm on C260. The following figure is an example of C260 signal 

measurement on the spectrum analyzer. 

 

i. C262 Pin1(

DC

): Check whether DC-DC converter (U32) is good or not. The 

voltage level on C262 Pin1 shall be 2.7V ~ 2.9V as RF power is emitted. DC-DC 

converter needs to be reworked if no DC voltage is measured on C262 Pin1. 

 

background image

 

 

44

(7) Repair Process E2: WCDMA Rx debug 

The flow chart of Repair Process E2 is shown below. 

 

background image

 

 

45

The purpose of this repair process is to find out where the problem is on 

WCDMA Rx path. In other words, engineers can judge the defect component on RF 

path by using “Debug tool” and RF signal generator. Debug tool makes Halley into 

test mode and keeps Rx path receiving CW (continuous wave) from the generator. 

The usage of debug tool can be referred to “Debug tool user guide” provided by 

Halley ATS engineers. Related parameters of debug tool and recommended output 

power from the generator are prescribed in the following table. 

 

 

DL Channel 

Rx Frequency 

Generator Power

WCDMA 

10700 

2140.0 MHz 

-30 dBm 

 

The detail steps of Repair Process E2 are listed as follows. 

a. Set RF signal generator to emit CW with corresponding frequency and 

transmit power into Halley WCDMA connector via a RF cable and a RF adapter 

(MS-162). Spectrum analyzer connects with a high impedance probe. Execute 

WCDMA debug tool and set parameters in the above table. 

b. Use the high impedance probe to sequentially measure RF power of test points 

on WCDMA Rx path, including C277, C293, L27 and L14. Corresponding locations 

are shown in “4. RF Tx/Rx Path and Test Points.” Furthermore, measurement error of 

RF power on each test point is unavoidable due to measurement skills and methods of 

using high impedance probe. 

background image

 

 

46

c. C277: Check whether WCDMA RF connector (CON7) is good or not. CON7 

needs to be reworked if no RF signal is measured on C277. The following figure is an 

example of C277 signal measurement on the spectrum analyzer. 

 

d. C293: Check whether duplexer (U28) is good or not. Duplexer needs to be 

reworked if no power is measured on C293. The following figure is an example of 

C293 signal measurement on the spectrum analyzer. 

 

background image

 

 

47

e.  L27: Check whether receiver (U31) is good or not. Receiver needs to be 

reworked if no power is measured on L27. The following figure is an example of L27 

signal measurement on the spectrum analyzer. 

 

f.  L14: Check whether BPF5 is good or not. BPF5 needs to be reworked if no 

power is measured on L14. The following figure is an example of L14 signal 

measurement on the spectrum analyzer. 

 

background image

 

 

48

g. The next process returns to “Repair Process C: GSM/WCDMA conductive 

test” after there is no problem in WCDMA Rx path. Moreover, the process returns to 

wireless test under the condition of passing conductive test.