P15 068

background image

68.

(a) We consider a point D on the surface of the liquid in the container, in the same tube of flow with

points A, B and C. Applying Bernoulli’s equation to points D and C, we obtain

p

D

+

1

2

ρv

2

D

+ ρgh

D

= p

C

+

1

2

ρv

2

C

+ ρgh

C

which leads to

v

C

=



2(p

D

− p

C

)

ρ

+ 2g(h

D

− h

C

) + v

2

D



2g (d + h

2

)

where in the last step we set p

D

= p

C

= p

air

and v

D

/v

C

0.

(b) We now consider points B and C:

p

B

+

1

2

ρv

2

B

+ ρgh

B

= p

C

+

1

2

ρv

2

C

+ ρgh

C

.

Since v

B

= v

C

by equation of continuity, and p

C

= p

air

, Bernoulli’s equation becomes

p

B

= p

C

+ ρg(h

C

− h

B

) = p

air

− ρg(h

1

+ h

2

+ d) .

(c) Since p

B

0, we must let p

air

− ρg(h

1

+ d + h

2

)

0, which yields

h

1

≤ h

1,max

=

p

air

ρ

− d − h

2

p

air

ρ

= 10.3 m .


Document Outline


Wyszukiwarka

Podobne podstrony:
P15 033
P15 027
P15 034
P29 068
p02 068
P15 074
P15 042
P15 045
068
P15 035
P15 083
p41 068
P15 PRIMOTECQ
P15 018
P15 061
068 2id 6633
P15 001
P15 058

więcej podobnych podstron