MONOPEROXYSULFURIC ACID
1
Monoperoxysulfuric Acid
1
H
2
SO
5
[7722-86-3]
H
2
O
5
S
(MW 114.07)
InChI = 1/H2O5S/c1-5-6(2,3)4/h1H,(H,2,3,4)/f/h2H
InChIKey = FHHJDRFHHWUPDG-QEZKKOIZCO
(strong oxidizing agent for many functional groups;
1
can se-
lectively oxidize amines;
2
in alcohol solvent can directly con-
vert conjugated aldehydes to esters;
3
can effect regioselective
Baeyer–Villiger oxidations;
4
can promote regioselective oxida-
tive rearrangement of tertiary alcohols to ω-hydroxy ketones
5
)
Alternate Name:
Caro’s acid.
Physical Data:
mp 45
◦
C.
Solubility:
sol water (see also Potassium Monoperoxysulfate
(Oxone)).
1c,d
Analysis of Reagent Purity:
a spectrophotometric method is
available for analysis of the components of an H
2
SO
5
/H
2
S
2
O
8
/
H
2
O
2
mixture.
6
Preparative Methods:
prepared as needed from K
2
S
2
O
8
(see
Ammonium Peroxydisulfate), concentrated Sulfuric Acid, and
water;
1b,e,f
or Hydrogen Peroxide (60–90%) and concentrated
H
2
SO
4
.
3
Handling, Storage, and Precautions:
may react explosively with
acetone, and primary or secondary alcohols.
Selective Oxidations. Neutralized Caro’s acid can chemose-
lectively oxidize arylamines to nitroso compounds (eq 1);
1b,2a,7
a simpler procedure for this transformation uses Acetic Acid/
Hydrogen Peroxide 30%.
2b
An alternative pathway leading to
the formation of azoxybenzenes (eq 1);
7
or nitro compounds
(eq 2)
8
is also possible and depends upon substrate, solvent,
pH, and reaction conditions. Caro’s acid oxidation of polyhalodi-
azines is unfruitful, except for pyrazines. While chloropyrazines
and chloroquinoxalines react with 30% H
2
O
2
in glacial acetic
acid to give mono-N-oxides with selective N-4 oxidation,
9
Caro’s
acid affords mono-N-oxides with regioselective oxidation at N-1
(eq 3).
NO
2
AcHN
NH
2
NO
2
AcHN
NO
N
+
N
–
O
AcHN
NO
2
NHAc
NO
2
Caro's acid
K
2
CO
3
, pH 7
H
2
SO
5
H
2
SO
4
50%
(1)
dioxane
56%
N
+
NH
2
O
–
N
+
NO
2
O
–
(2)
25 °C, 96 h
54%
H
2
SO
5
(3)
K
2
S
2
O
8
30% H
2
O
2
N
N
Cl
N
N
+
Cl
N
+
N
Cl
O
–
O
–
H
2
SO
4
40%
AcOH
42%
Conjugated aldehydes can be oxidized directly to α,β-un-
saturated esters by Caro’s acid in alcoholic media (eq 4).
3
The
reaction probably proceeds through a hemiacetal and not the car-
boxylic acid.
(4)
CHO
CO
2
Me
(NH
4
)
2
S
2
O
8
85% H
2
SO
4
, MeOH
86%
Baeyer–Villiger Oxidation. Caro’s acid has proven useful in
the Baeyer–Villiger oxidation of cyclic ketones and steroids.
4
The
regioselective Baeyer–Villiger oxidation of isatins to 2,3-dioxo-
1,4-benzoxazines observed with Caro’s acid contrasts sharply with
formation of isatoic anhydrides using Peracetic Acid (eq 5).
4a
The
related buffered reagent Bis(trimethylsilyl) Monoperoxysulfate is
a strong Baeyer–Villiger oxidant. This aprotic reagent is soluble
in methylene chloride and generally gives higher yields and purer
product than Caro’s acid.
10
N
H
O
O
Cl
Cl
N
H
O
N
H
O
Cl
Cl
Cl
Cl
O
O
O
O
(5)
K
2
S
2
O
8
30% H
2
O
2
H
2
SO
4
95%
AcOH, H
2
SO
4
90%
Alkyl Hydroperoxide Synthesis and Rearrangement.
Caro’s acid oxidizes tertiary alcohols to hydroperoxides, which
rearrange in the acid medium. The procedure is useful for the
conversion of cycloalkanols to ω-hydroxy ketones (eq 6).
5
Cyclic
ω
-hydroxy ketones exist as oxonium ions in sulfuric acid and thus
are resistant to further Baeyer–Villiger oxidation.
OH
O
OH
K
2
S
2
O
8
(6)
H
2
SO
4
90%
1.
(a) Fieser & Fieser 1967, 1, 118. (b) Fieser & Fieser 1977, 6, 97.
(c) Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley:
New York, 1983; Vol. 17, p 14. (d) Kennedy, R. J.; Stock, A. M., J.
Org. Chem. 1960
, 25, 1901. (e) Langley, W. D., Org. Synth., Coll. Vol.
1955, 3, 334. (f) Nielsen, A. T.; Atkins, R. L.; Norris, W. P.; Coon, C.
L.; Sitzmann, M. E., J. Org. Chem. 1980, 45, 2341.
Avoid Skin Contact with All Reagents
2
MONOPEROXYSULFURIC ACID
2.
(a) Coombes, R. G. In Comprehensive Organic Chemistry; Barton, D.
H. R., Ed.; Pergamon: Oxford, 1979; Vol. 3, p 305. (b) Holmes, R. R.;
Bayer, R. P., J. Am. Chem. Soc. 1960, 82, 3454.
3.
Nishihara, A.; Kubota, I., J. Org. Chem. 1968, 33, 2525.
4.
(a) Reissenweber, G.; Mangold, D., Angew. Chem., Int. Ed. Engl. 1980,
19
, 222. (b) Krow, G. R., Org. React. 1993, 43, 251. (c) Hassall, C. H.,
Org. React. 1957
, 9, 73.
5.
Deno, N. C.; Billups, W. E.; Kramer, K. E.; Lastomirsky, R. R., J. Org.
Chem. 1970
, 35, 3080.
6.
Mariano, M. H., Anal. Chem. 1968, 40, 1662.
7.
Atkinson, C. M.; Brown, C. W.; McIntyre, J.; Simpson, J. C. E., J. Chem.
Soc. 1954
, 2023.
8.
Johnson, R. M., J. Chem. Soc. (B) 1966, 1058.
9.
Mixan, C. E.; Pews, R. G., J. Org. Chem. 1977, 42, 1869.
10.
Adam, W.; Rodriguez, A., J. Org. Chem. 1979, 44, 4969.
Grant R. Krow
Temple University, Philadelphia, PA, USA
A list of General Abbreviations appears on the front Endpapers