Mechanika Ruchu Okrętu I Notatki 03

background image

Course Teacher: Dr. Md. Mashud Karim, Associate Professor, Dept. of NAME, BUET

Course #: NAME 324
Assignment # B.3: Approximate Calculation of Ship Resistance

Hotrop and Mennen’s Method

The total resistance of a ship can be
subdivided into:

R

T

=R

F

(1+k

1

)+R

APP

+R

W

+R

B

+R

TR

+R

A

Where,

R

F

Frictional resistance according to
the ITTC 1957 friction formula

= 0.5.ρV

2

SC

F

.

C

F

= 0.075/(Log

10

Re-2)

2

Re Reynold’s

No.=

ρVL /µ

1+k

1

Form factor describing the viscous
resistance of the hull form in relation
to R

F

R

APP

Appendage resistance

R

W

Wave-making and wave-breaking
resistance

R

B

Additional pressure resistance due
to bulbous bow near the water
surface

R

TR

Additional pressure resistance of
immersed transom stern

R

A

Model-ship correlation resistance


The form factor of the hull can be predicted
by:

}

)

0225

.

0

1

(

)

95

.

0

(

)

/

(

93

.

0

{

1

6906

.

0

521448

.

0

92497

.

0

12

13

1

lcb

C

C

L

B

c

c

k

P

P

R

+

+

=

+

In this formula, C

P

is the prismatic coefficient

based on the waterline length, L and lcb is
the longitudinal centre of buoyancy forward
of 0.5L as a percentage of L. Here, L

R

is a

parameter reflecting the length of the run
according to:
L

R

/L=1-C

P

+0.06C

P

lcb(4C

P

-1)


C

12

=(T/L)

0.2228446

if T/L > 0.05

=48.20(T/L-0.02)

2.078

+0.479948 if

0.02<T/L<0.05

=0.479948 if T/L<0.02

Where T is the average moulded draught.

C

13

=1+0.003C

stern

C

stern

will be -10, 0 and +10 if the afterbody

form is of V-shaped, Normal and U shaped
sections respectively.

The wetted area of the hull can be
approximated by:

B

BT

WP

M

B

M

C

A

C

T

B

C

C

C

B

T

L

S

/

38

.

2

)

3696

.

0

/

003467

.

0

2862

.

0

4425

.

0

453

.

0

(

)

2

(

+

+

+

+

=

where A

BT

is the transverse sectional area of

the bulb at the position where the still-water
surface intersects the stem.

The appendage resistance can be
determined from
R

APP

=0.5ρV

2

S

APP

(1+k

2

)

eq

C

F

Where S

APP

the wetted area of the

appendages,

1+k

2

the appendage

resistance factor

Approximate 1+k

2

values

Rudder behind skeg 1.5~2.0
Rudder behind stern 1.3~1.5
Twin-screw balance rudders 2.8
Shaft brackets 3.0
Skeg

1.5~2.0

Strut bossings 3.0
Hull bossings 2.0
Shafts 2.0~4.0
Stabilizer fins 2.8
Dome 2.7
Bilge keels 1.4
The equivalent 1+k

2

value for a combination

of appendages is determined from:

(1+k

2

)

eq

=

+

APP

APP

S

S

k )

1

(

2

The wave resistance is determined from:

{

}

)

cos(

exp

2

2

1

5

2

1

+

=

n

d

n

W

F

m

F

m

g

c

c

c

R

λ

ρ

with

37565

.

1

07961

.

1

78613

.

3

7

1

)

90

(

)

/

(

2223105

=

E

i

B

T

c

c

33333

.

0

7

)

/

(

229577

.

0

L

B

c

=

if B/L<0.11

= B/L if 0.11<B/L<0.25
= 0.5-0.0625 L/B if B/L>0.25

3

2

89

.

1

exp(

c

c

=

c

5

= 1-0.48A

T

/(BTC

M

)


λ = 1.446C

P

-0.03 L/B if L/B < 12

= 1.446C

P

-0.36 if L/B>12

background image

Course Teacher: Dr. Md. Mashud Karim, Associate Professor, Dept. of NAME, BUET

16

3

/

1

1

/

79323

.

4

/

75254

.

1

/

0140407

.

0

c

L

B

L

T

L

m

=

3

2

16

984388

.

6

8673

.

13

07981

.

8

P

P

P

C

C

C

c

+

=

if C

P

<0.8

= 1.73014-0.7067C

P

if C

P

> 0.8

)

1

.

0

exp(

2

2

15

2

=

n

P

F

C

c

m

c

15

= -1.69385 for L

3

/▼<512

= 0 for L

3

/▼>1727

=-1.69385+(L/▼

1/3

-8.0)/2.36

if 512<L

3

/▼<1727

d=-0.9

}

)

/

100

(

)

/

(

)

0225

.

0

1

(

)

1

(

)

/

(

exp{

89

1

16302

.

0

3

34574

.

0

6367

.

0

30484

.

0

80856

.

0

L

B

L

lcb

C

C

B

L

i

R

P

WP

E

+

=

)}

31

.

0

(

/{

56

.

0

5

.

1

3

B

F

BT

BT

h

T

A

BT

A

c

+

=


where h

B

is the position of the centre of the

transverse area A

BT

above the keel line and

T

F

is the forward draught of the ship.

)

1

/(

)

3

exp(

11

.

0

2

5

.

1

3

2

ni

BT

ni

B

B

F

g

A

F

P

R

+

=

ρ

)

5

.

1

/(

56

.

0

B

F

BT

B

h

T

A

P

=

2

15

.

0

)

25

.

0

(

/

V

A

h

T

g

V

F

BT

B

F

ni

+

=

6

2

5

.

0

c

A

V

R

T

TR

ρ

=

)

2

.

0

1

(

2

.

0

6

nT

F

c

=

if F

nT

<5

= 0 if F

nT

≥5

)

/(

2

/

WP

T

nT

BC

B

gA

V

F

+

=

A

A

SC

V

R

2

2

1

ρ

=
















)

04

.

0

(

5

.

7

/

003

.

0

00205

.

0

)

100

(

006

.

0

4

2

4

16

.

0

c

c

C

L

L

C

B

A

+

+

=

c

4

= T

F

/L when T

F

/L ≤ 0.04

c

4

= 0.04 when T

F

/L>0.04


Problem:

The characteristics of a ship is as

follows:

L.O.W L=205.00 m
L.B.P. L

PP

= 200.00 m

Breadth moulded B = 32.00 m
Draught moulded on F.P, T

F

=10.00 m

Draught moulded on A. P. T

A

=10.00 m

Displacement volume moulded,=37500 m

3

Longitudinal centre of buoyancy 2.02% aft of
1/2L

PP

Transverse bulb area A

BT

= 20.0 m

2

Centre of bulb area above keel line h

B

= 4.0 m

Midship section coefficient C

M

= 0.98

Waterplane area coefficient C

WP

= 0.75

Transom area A

T

= 16.0 m

2

Wetted area appendages S

APP

= 50.0 m

2

Stern shape parameter, C

stern

= 10.0

Propeller diameter, D = 8.0 m
Number of propeller blades Z = 4
Clearance of propeller with keel line 0.20 m
Ship speed V=25.0 knos
Density, ρ = 1025.87
Kinematic Viscosity,

υ

= 1.18831e-006


Find R

F

, R

APP

,R

W

, R

B

, R

TR

, R

A

, R

total

.


Reference:

J. Holtrop and G.G. J. Mennen,

1982: An Approximate Power Prediction
Method

, International Shipbuilding Progress,

Vol. 29, No. 335.


Wyszukiwarka

Podobne podstrony:

więcej podobnych podstron