background image

1. LICZBY ZESP

background image

Def. 1.1.4 (odejmowanie i dzielenie liczb zespolonych)
Niech z

1

z

2

 

 C będą dowolnymi liczbami zespolonymi.

1. odejmowanie liczb zespolonych określamy wzorem:

)

(

2

1

2

1

z

z

z

z

def

2. dzielenie liczb zespolonych określamy wzorem:

2

1

2

1

1

z

z

z

z

def

, o ile z

2

 

 0.

Uwaga. Wszystkie reguły czterech podstawowych działań algebraicznych (dodawanie, odejmowanie, mnożenie, dzielenie) 
znane z liczb rzeczywistych obowiązują także w zbiorze liczb zespolonych. W szczególności prawdziwe są wzory skróconego 
mnożenia, wzory na sumę wyrazów ciągu arytmetycznego i geometrycznego itd.

Fakt 1.1.5 (zbiór liczb rzeczywistych jest podzbiorem zbioru liczb zespolonych)
Podzbiór R zbioru liczb zespolonych C złożony z liczb postaci (x,0), gdzie x 

 R, ma następujące własności:

1.

)

0

,

(

)

0

,

(

)

0

,

(

2

1

2

1

x

x

x

x

,

2.

)

0

,

(

)

0

,

(

)

0

,

(

2

1

2

1

x

x

x

x

,

3.

)

0

,

(

)

0

,

(

)

0

,

(

2

1

2

1

x

x

x

x

,

4.





0

,

)

0

,

(

)

0

,

(

2

1

2

1

x

x

x

x

, gdzie x

2

 

 0.

Uwaga. Z własności tych wynika, zbiór R można utożsamiać ze zbiorem liczb rzeczywistych R. Będziemy pisali  x zamiast 
(x,0); w szczególności 0 = (0,0) oraz 1 = (1,0).

1.2 POSTAĆ ALGEBRAICZNA LICZBY ZESPOLONEJ

Def. 1.2.1 (jednostka urojona)
Liczbę zespoloną (0,1) nazywamy jednostką urojoną i oznaczamy ją przez i;

)

1

,

0

(

def

i

.

Fakt 1.2.2 (postać algebraiczna liczby zespolonej)
Każdą liczbę zespoloną można jednoznacznie zapisać w postaci:

iy

x

z

,

gdzie 

R

y

x

,

.

Uwaga. Ten sposób przedstawienia liczb zespolonych nazywamy ich postacią algebraiczną. Nie każde przedstawienie liczby 
zespolonej w postaci x + iy jest jej postacią algebraiczną. Niezbędne jest dodanie warunku xy 

 R.

Def. 1.2.3 (część rzeczywista i urojona liczby zespolonej)
Niech x + iy będzie postacią algebraiczną liczby zespolonej z. Wówczas
1. liczbę x nazywamy częścią rzeczywistą liczby zespolonej z, co zapisujemy

x

z

def

Re

,

2. liczbę y nazywamy częścią urojoną liczby zespolonej z, co zapisujemy

y

z

def

Im

.

Liczbę zespoloną postaci 

iy

, gdzie y 

 \ {0}, nazywamy liczbą czysto urojoną.

Rys. 1.2.1 Interpretacja geometryczna jednostek rzeczywistej i urojonej oraz liczby zespolonej 

w postaci algebraicznej.

2

background image

Uwaga. Dodawanie, odejmowanie i mnożenie liczb zespolonych w postaci algebraicznej wykonujemy tak, jak dodawanie, 
odejmowanie i mnożenie wielomianów zmiennej  i, przy warunku  

1

2

i

. Przy dzieleniu przez liczbę zespoloną  x  +  iy

gdzie xy 

 R, należy dzielną i dzielnik pomnożyć przez liczbę x – iy, aby w mianowniku uzyskać liczbę rzeczywistą.

Fakt 1.2.4 (o równości liczb zespolonych w postaci algebraicznej)
Dwie liczby zespolone są równe wtedy i tylko wtedy, gdy ich części rzeczywiste i urojone są równe, tzn.

2

1

2

1

2

1

Im

Im

Re

Re

z

z

z

z

z

z

.

1.3 SPRZĘŻENIE I MODUŁ LICZBY ZESPOLONEJ

Def. 1.3.1 (sprzężenie liczby zespolonej)
Sprzężeniem liczby zespolonej z = x + iy, gdzie xy 

 R, nazywamy liczbę zespoloną 

z

 określoną wzorem:

iy

x

z

def

.

Liczba sprzężona do liczby zespolonej jest jej obrazem w symetrii osiowej względem osi Rez.

Fakt 1.3.2 (własności sprzężenia liczb zespolonych)
Niech zz

1

z

2

 

 C. Wtedy

1. 

2

1

2

1

z

z

z

z

5. 

z

z

z

Re

2

2. 

2

1

2

1

z

z

z

z

6. 

z

i

z

z

Im

2

3. 

2

1

2

1

z

z

z

z

7. 

 

z

z

4. 

2

1

2

1

z

z

z

z





, o ile z

2

 

 0

8. 

 

 

z

z

Im

Im

Uwaga. Równości podane w punktach 1 i 3 prawdziwe są odpowiednio dla dowolnej liczby składników i czynników.

Def. 1.3.3 (moduł liczby zespolonej)
Modułem liczby zespolonej z = x + iy, gdzie xy 

 R, nazywamy liczbę rzeczywistą |z| określoną wzorem:

2

2

y

x

z

def

.

Moduł   liczby   zespolonej   jest   uogólnieniem   wartości   bezwzględnej   liczby   rzeczywistej.   Geometrycznie   moduł   liczby 
zespolonej z jest odległością punktu z od początku układu współrzędnych.
Uwaga. Moduł różnicy liczb zespolonych z

1

z

2

 jest długością odcinka łączącego punkty z

1

z

2

 płaszczyzny zespolonej.

Fakt 1.3.4 (własności modułu liczby zespolonej)
 Niech zz

1

z

2

 

 C. Wtedy

1. 

z

z

z

5. 

2

1

2

1

z

z

z

z

2. 

2

1

2

1

z

z

z

z

6. 

2

z

z

z

3. 

2

1

2

1

z

z

z

z

, o ile z

2

 

 0

7. 

z

z

Re

4. 

2

1

2

1

z

z

z

z

8. 

z

z

Im

Uwaga. Warunki podane w punktach 2 i 4 powyższego faktu prawdziwe są także dla dowolnej liczby odpowiednio czynników 
i składników. Przy obliczaniu ilorazu liczb zespolonych w i z 

 0 wygodnie jest stosować tożsamość:

2

z

z

w

z

.

3

background image

1.4 POSTAĆ TRYGONOMETRYCZNA LICZBY ZESPOLONEJ

Def. 1.4.1 (argument i argument główny liczby zespolonej)
Argumentem liczby zespolonej z = x + iy 

 0, gdzie xy  R, nazywamy każdą liczbę 

  R spełniającą układ równań:



z

y

z

x

sin

cos

.

Przyjmujemy, że argumentem liczby z = 0 jest każda liczba 

  R. Argumentem głównym liczby zespolonej z  0 nazywamy 

argument 

 tej liczby spełniający nierówność 0   < 2. Przyjmujemy, że argumentem głównym liczby z = 0 jest 0. Argument 

główny liczby zespolonej z oznaczamy przez 

z

arg

. Każdy argument 

 liczby zespolonej z  0 ma postać

k

z

2

arg

, gdzie k 

 Z.

Rys. 1.4.1 Argument liczby zespolonej

Rys. 1.4.2 Argument główny liczby zespolonej

Uwaga. Argumenty liczby zespolonej są miarami  z  są miarami kąta zorientowanego utworzonego przez dodatnią część osi 
rzeczywistej i wektor wodzący tej liczby (rys. 1.4.1). Argument główny liczby zespolonej jest najmniejszą nieujemną miarą 
kąta zorientowanego utworzonego przez dodatnią część osi rzeczywistej i wektor wodzący tej liczby (rys. 1.4.2). Czasem 
przyjmuje się, że argument główny liczby zespolonej jest liczbą z przedziału (-

,].

Fakt 1.4.2 (postać trygonometryczna liczby zespolonej)
Każdą liczbę zespoloną z można przedstawić w postaci:

sin

cos

i

r

z

,

gdzie r 

 0 oraz 

  R. Liczba r jest wówczas modułem liczby z, a  jednym z jej argumentów.

Fakt 1.4.3 (równość liczb zespolonych postaci trygonometrycznej)
Liczby zespolone 

1

1

1

1

sin

cos

i

r

z

2

2

2

2

sin

cos

i

r

z

, gdzie r

1

r

2

 

 0 oraz 

1

 R, są równe 

wtedy i tylko wtedy, gdy:

0

2

1

 r

r

     albo     

0

2

1

 r

r

oraz 

k

2

2

1

 dla pewnego k 

 Z.

Fakt 1.4.4 (mnożenie i dzielenie liczb zespolonych w postaci trygonometryczne)
Niech  

1

1

1

1

sin

cos

i

r

z

,  

2

2

2

2

sin

cos

i

r

z

,  gdzie  r

1

,  r

2

 

  0 oraz  

1

,  

2  

  R  będą liczbami 

zespolonymi. Wtedy
1.

)

sin(

)

cos(

2

1

2

1

2

1

2

1

i

r

r

z

z

2.

)

sin(

)

cos(

2

1

2

1

2

1

2

1

i

r

r

z

z

, o ile z

2

 

 0.

Inaczej mówiąc, przy mnożeniu liczb zespolonych ich moduły mnożymy, a argumenty dodajemy. Podobnie, przy dzieleniu 
liczb zespolonych ich moduły dzielimy, a argumenty odejmujemy.

Uwaga. Pierwszy ze wzorów w ostatnim fakcie jest prawdziwy także dla dowolnej liczby czynników.

Fakt 1.4.5 (o argumentach iloczynu, ilorazu, sprzężenia oraz liczby przeciwnej)
Niech zz

1

z

2

 

 C oraz niech n  N. Wtedy

1.

k

z

z

z

z

2

arg

arg

)

arg(

2

1

2

1

 dla pewnego k 

 Z;

2.

 

k

z

n

z

n

2

arg

arg

 dla pewnego k 

 Z;

4

background image

3.

k

z

z

z

z

2

arg

arg

arg

2

1

2

1





 dla pewnego k 

 Z, o ile z

2

 

 0;

4.

 

k

z

z

2

arg

arg

 dla pewnego k 

 Z;

5.

k

z

z

2

arg

)

arg(

 dla pewnego k 

 Z;

6.

k

z

z

2

arg

1

arg

 dla pewnego k 

 Z, o ile z  0;

Uwaga. W rzeczywistości k może przyjmować wartości 1. 0 lub –1; 2. dowolne; 3. 0 lub 1; 4. 1; 5. 0, 1 lub –1; 6. 1.

Fakt 1.4.6 (wzór de Moivre’a)
Niech 

sin

cos

i

r

z

, gdzie r 

 0, 

 

 R oraz niech n

 

 N. Wtedy

n

i

n

r

z

n

n

sin

cos

.

Def. 1.4.7 (symbol 

i

e

)

Dla 

 

 R liczbę zespoloną cos

 + isin oznaczamy krótko przez 

i

e

;

sin

cos

i

e

def

i

.

Fakt 1.4.8 (własności symbolu 

i

e

)

Niech 

, 

1

2

 będą dowolnymi liczbami rzeczywistymi oraz niech k będzie dowolną liczbą całkowitą. Wtedy

1. 

2

1

2

1

i

i

i

e

e

e

5. 

0

i

e

2. 

2

1

2

1

i

i

i

e

e

e

6. 

l

e

e

i

i

2

2

1

2

1

, gdzie l 

 Z

3. 

 

ik

k

i

e

e

7. 

1

i

e

4. 

i

k

i

e

e

2

8. 

 

l

e

i

2

arg

 dla pewnego l 

 Z

Fakt 1.4.9 (postać wykładnicza liczby zespolonej)
Każdą liczbę zespoloną z można zapisać w postaci wykładniczej, tj. w postaci

i

re

z

,

gdzie r 

 0, 

 

 R. Liczba r jest wówczas modułem liczby z, a 

 jej argumentem.

Fakt 1.4.10 (o równości liczb zespolonych w postaci wykładniczej)
Niech r

1

r

2

 

 0 oraz 

1

 R. Wówczas

0

2

1

2

1

2

1

r

r

e

r

e

r

i

i

   albo   

0

2

1

 r

r

 oraz 

k

2

2

1

, gdzie k 

 Z.

Fakt 1.4.11 (działania na liczbach zespolonych w postaci wykładniczej)
Niech  

i

e

z

1

1

i

e

z

2

2

i

e

z

, gdzie  rr

1

,  r

2

 

 0 oraz  

, 

1

2  

 R, będą liczbami zespolonymi oraz niech 

będzie liczbą całkowitą. Wtedy

1. 

i

re

z

4. 

ik

k

k

e

r

z

2. 

)

(

 

i

re

z

5. 

)

(

2

1

2

1

2

1

 

i

e

r

r

z

z

3. 

i

e

r

z

1

1

, o ile z 

 0

6. 

)

(

2

1

2

1

2

1

i

e

r

r

z

z

, o ile z

2

 

 0

1.5 PIERWIASTKOWANIE LICZB ZESPOLONYCH

Def. 1.5.1 (pierwiastek z liczby zespolonej)
Pierwiastkiem stopnia n 

 N z liczby zespolonej z nazywamy każdą liczbę zespoloną w spełniającą równość:

z

w

n

.

5

background image

Zbiór pierwiastków stopnia n z liczby zespolonej z oznaczamy przez 

n

z

.

Uwaga. Symbol  

n

  ma inne znaczenie w odniesieniu do liczb rzeczywistych, a inne do liczb zespolonych (w tym także 

rzeczywistych traktowanych jak zespolone). Pierwiastek w dziedzinie  rzeczywistej  jest  określony jednoznacznie  i jest to 
funkcja  R 

  R  dla  n  nieparzystych oraz [0,)  [0,) dla  n  parzystych. Pierwiastkowanie w dziedzinie zespolonej jest 

natomiast rozwiązywaniem równania 

z

w

n

, zatem 

n

z

 jest zbiorem rozwiązań tego równania. Symbolu pierwiastka w 

dziedzinie zespolonej nie wolno używać do żadnych działań i obliczeń, gdyż podstawowe wzory dla pierwiastków, prawdziwe 
w dziedzinie rzeczywistej tutaj nie mają sensu, np. 

2

4

z

z

.

Fakt 1.5.2 (wzór na pierwiastki z liczby zespolonej)
Każda liczba zespolona 

sin

cos

i

r

z

, gdzie r 

 0 oraz 

  R, ma dokładnie n pierwiastków stopnia n. Zbiór 

tych pierwiastków ma postać:

1

1

0

,

,

,

n

n

w

w

w

z

,

gdzie

n

k

i

n

k

r

w

n

k

2

sin

,

2

cos

 dla k = 0, 1, …, n – 1.

Uwaga. Dla k = 0, 1, …, n – 2 prawdziwa jest zależność:

k

k

k

n

i

n

w

n

i

n

w

w

2

sin

,

2

cos

2

sin

,

2

cos

0

1

.

Fakt 1.5.2 (interpretacja geometryczna zbioru pierwiastków z liczby zespolonej)
Zbiór pierwiastków stopnia n 

 3 z liczby zespolonej 

sin

cos

i

r

z

, gdzie r = |z| oraz 

 = argz, pokrywa się ze 

zbiorem wierzchołków n–kąta foremnego wpisanego w okrąg o promieniu 

n

r

 i środku w początku układu współrzędnych. 

Pierwszy wierzchołek tego wielokąta jest w punkcie 

n

i

n

r

w

n

sin

cos

0

, a kąt między promieniami wodzącymi 

kolejnych wierzchołków jest równy 

n

2

 (rys. 1.5.1).

Rys. 1.5.1 Interpretacja geometryczna zbioru pierwiastków z liczby zespolonej

2. WIELOMIANY

2.1 PODSTAWOWE POJĘCIA I WŁASNOŚCI

Def. 2.1.1 (wielomian rzeczywisty)
Wielomianem rzeczywistym stopnia n 

 N  {0} nazywamy funkcję WR  R określoną wzorem:

0

1

1

1

)

(

a

x

a

x

a

x

a

x

W

n

n

n

n

,

gdzie a

k

 

 R dla 0  k  n oraz a

n

 

 0. Ponadto przyjmujemy, że funkcja W(x)  0 jest wielomianem stopnia –. Liczby a

k

, 0 

 

k 

 n, nazywamy współczynnikami wielomianu W.

Def. 2.1.2 (wielomian zespolony)
Wielomianem zespolonym stopnia n 

 N  {0} nazywamy funkcję WC  C określoną wzorem:

0

1

1

1

)

(

c

z

c

z

c

z

c

z

W

n

n

n

n

,

gdzie c

k

 

 C dla 0  k  n oraz c

n

 

 0. Ponadto przyjmujemy, że funkcja W(z)  0 jest wielomianem stopnia –. Liczby c

k

, 0 

 

k 

 n, nazywamy współczynnikami wielomianu W.

6

background image

Uwaga. Każdy wielomian rzeczywisty można traktować jako wielomian zespolony rozszerzając jego dziedzinę z R na C. Tak 
będziemy postępować przy omawianiu  pierwiastków zespolonych  wielomianów  rzeczywistych. Wielomian zespolony lub 
rzeczywisty będziemy nazywali krótko wielomianem.

Def. 2.1.3 (suma, różnica i iloczyn wielomianów)
Niech P i Q będą wielomianami. Sumę, różnicę i iloczyn wielomianów P i Q określamy w sposób naturalny, tj. przyjmujemy:

)

(

)

(

)

(

x

Q

x

P

x

Q

P

def

,

)

(

)

(

)

(

x

Q

x

P

x

Q

P

def

.

Def. 2.1.4 (podzielność wielomianów)
Mówimy, że wielomian S jest ilorazem, a wielomian R resztą z dzielenia wielomianu P przez wielomian Q, jeżeli dla każdego 
x 

R (x  C) spełniony jest warunek

)

(

)

(

)

(

)

(

x

R

x

S

x

Q

x

P

oraz stopień reszty R jest mniejszy od stopnia dzielnika Q.
Jeżeli R(x

 0, to mówimy, że wielomian P jest podzielny przez wielomian Q.

2.2 PIERWIASTKI WIELOMIANÓW

Def. 2.2.1 (pierwiastek wielomianu)
Liczbę rzeczywistą (zespoloną) x

0

 nazywamy pierwiastkiem rzeczywistym (zespolonym) wielomianu W, jeżeli W(x

0

) = 0.

Tw. 2.2.2 (Bezout)
Liczba x

jest pierwiastkiem wielomianu W wtedy i tylko wtedy, gdy istnieje wielomian P taki, że

)

(

)

(

)

(

0

x

P

x

x

x

W

.

Uwaga. Reszta z dzielenia wielomianu W przez dwumian x – x

0

 jest równa W(x

0

).

Def. 2.2.3 (pierwiastek wielokrotny wielomianu)
Liczba x

0

 jest pierwiastkiem k–krotnym wielomianu W wtedy i tylko wtedy, gdy istnieje wielomian P taki, że

)

(

)

(

)

(

0

x

P

x

x

x

W

k

  oraz  

0

)

(

0

x

P

.

Fakt 2.2.4 (o pierwiastkach wielokrotnych wielomianu)
Liczba x

0

 jest pierwiastkiem k–krotnym wielomianu W wtedy i tylko wtedy, gdy

0

)

(

)

(

)

(

0

)

1

(

0

/

0

x

W

x

W

x

W

k

  oraz  

0

)

(

0

)

(

x

W

k

.

Tw. 2.2.5 (o pierwiastkach całkowitych wielomianu)
Niech

0

1

1

1

)

(

a

x

a

x

a

x

a

x

W

n

n

n

n

będzie wielomianem o współczynnikach całkowitych oraz niech liczba całkowita p 

 0 będzie pierwiastkiem wielomianu W

Wtedy p jest dzielnikiem wyrazu wolnego a

0

.

Tw. 2.1.6 (o pierwiastkach wymiernych wielomianu)
Niech

0

1

1

1

)

(

a

x

a

x

a

x

a

x

W

n

n

n

n

będzie wielomianem   stopnia  n  o współczynnikach całkowitych oraz niech liczba wymierna  

q

p

, gdzie  p  i  q  są liczbami 

całkowitymi względnie pierwszymi, będzie pierwiastkiem wielomianu W. Wtedy p jest dzielnikiem współczynnika a

0

, a q jest 

dzielnikiem współczynnika a

n

 tego wielomianu.

Uwaga. Jeżeli a

n

 = 1, to wszystkie wymierne pierwiastki wielomianu są całkowite.

2.3 ZASADNICZE TWIERDZENIE ALGEBRY

Tw. 2.3.1 (zasadnicze twierdzenie algebry)
Każdy wielomian zespolony stopnia dodatniego ma co najmniej jeden pierwiastek zespolony.

Fakt 2.3.2 (o przedstawieniu wielomianu w postaci iloczynu dwumianów)
1. Każdy   wielomian   zespolony   stopnia  n 

  N  ma   dokładnie  n  pierwiastków   zespolonych   (uwzględniając   pierwiastki 

wielokrotne).

2. Niech wielomian W stopnia n 

 N  ma pierwiastki zespolone z

j

 o krotnościach odpowiednio k

j

, gdzie k

j

 

 N dla 1  j  

oraz k

1

 + k

2

 + … + k

m

 = n. Wtedy 

m

k

m

k

k

n

z

z

z

z

z

z

c

z

W

)

(

)

(

)

(

)

(

2

1

2

1

,

7

background image

gdzie c

n

 jest współczynnikiem stojącym przy z

n

 w wielomianie W.

Fakt 2.3.3 (wzory Viete’a)
Niech 

0

1

1

1

)

(

c

z

c

z

c

z

c

z

W

n

n

n

n

 będzie wielomianem zespolonym stopnia n 

 N. Wówczas liczby 

z

1

z

2

, ..., z

n

 są pierwiastkami wielomianu W (z uwzględnieniem krotności) wtedy i tylko wtedy, gdy

 

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

c

c

z

z

z

z

z

c

c

z

z

z

z

z

z

z

z

z

c

c

z

z

z

z

z

z

c

c

z

z

z

0

1

3

2

1

3

1

2

4

2

1

3

2

1

2

1

3

1

2

1

1

2

1

1

...

...

...

...

.

Uwaga.   Jeżeli   znamy   niektóre   pierwiastki   wielomianu,   to   wzory   Viete’a   pozwalają   znaleźć   pozostałe   pierwiastki   tego 
wielomianu.

Fakt 2.3.4 (o pierwiastkach zespolonych wielomianu rzeczywistego)
Niech W będzie wielomianem o współczynnikach rzeczywistych. Wówczas liczba zespolona z

0

 jest k–krotnym pierwiastkiem 

wielomianu W wtedy i tylko wtedy, gdy liczba 

0

z

 jest pierwiastkiem k–krotnym tego wielomianu.

Tw. 2.3.5 (o rozkładzie wielomianu rzeczywistego na czynniki rzeczywiste)
Niech W będzie wielomianem stopnia n 

 N o współczynnikach rzeczywistych. Ponadto niech x

j

 będą pierwiastkami rzeczywi-

stymi tego wielomianu o krotności  k

j

, gdzie  k

j

 

  N  dla 1    j   r oraz niech  

j

j

z

,

, gdzie Imz

j

  > 0, będą pierwiastkami 

zespolonymi tego wielomianu o krotności l

j

, gdzie 1 

 j  s, przy czym 

n

l

l

k

k

s

r

...

2

...

1

1

. Wtedy

s

r

l

s

s

l

k

r

k

n

q

x

p

x

q

x

p

x

x

x

x

x

a

x

W

)

(

...

)

(

)

(

...

)

(

)

(

2

1

1

2

1

1

1

,

gdzie p

j

 =  –2Rez

j

 oraz q

j

 = |z

j

|

2

 dla 1 

 j  s, a a

n

 jest współczynnikiem wielomianu W stojącym przy x

n

.

Inaczej mówiąc, każdy wielomian rzeczywisty można przedstawić w postaci iloczynu wielomianów rzeczywistych stopnia co 
najwyżej drugiego. Mówimy wówczas o rozkładzie wielomianu rzeczywistego na rzeczywiste czynniki nierozkładalne.

2.4 UŁAMKI PROSTE

Def. 2.4.1 (funkcja wymierna)
Funkcją wymierną rzeczywistą (zespoloną) nazywamy iloraz dwóch wielomianów rzeczywistych (zespolonych).

Def. 2.4.2 (funkcja wymierna właściwa)
Funkcję wymierną nazywamy właściwą, jeżeli stopień wielomianu w liczniku ułamka określającego tę funkcję jest mniejszy 
od stopnia wielomianu w mianowniku.
Uwaga. Każda funkcja wymierna jest sumą wielomianu oraz funkcji wymiernej właściwej.

Def. 2.4.3 (ułamki proste)
1. Zespolonym ułamkiem prostym nazywamy zespoloną funkcję wymierną postaci:

n

a

z

A

)

(

, gdzie Aa 

 C oraz n  N.

2. Rzeczywistym ułamkiem prostym pierwszego rodzaju nazywamy rzeczywistą funkcję wymierną postaci:

n

a

x

A

)

(

, gdzie Aa 

 R oraz n  N.

3. Rzeczywistym ułamkiem prostym drugiego rodzaju nazywamy rzeczywistą funkcję wymierną postaci:

n

q

px

x

B

Ax

)

(

2

, gdzie pqAB 

 R oraz n  N, przy czym 

0

4

2

q

p

8

background image

Tw. 2.4.4 (o rozkładzie funkcji wymiernej na ułamki proste)
Każda   funkcja   wymierna   właściwa   rzeczywista   (zespolona)   jest   sumą   rzeczywistych   (zespolonych)   ułamków   prostych. 
Przedstawienie to jest jednoznaczne.

1. Zespolona funkcja wymierna właściwa postaci 

)

(

)

(

z

Q

z

P

, gdzie

m

k

m

k

k

n

z

z

z

z

z

z

c

z

Q

)

(

...

)

(

)

(

)

(

2

1

2

1

,

jest sumą k

1

 + k

2

 + ... + k

m

 zespolonych ułamków prostych, przy czym czynnikowi 

i

k

i

z

z

)

(

 odpowiada suma k

i

 ułamków 

prostych postaci:

i

i

k

i

ik

i

i

i

i

z

z

A

z

z

A

z

z

A

...

2

2

1

,

gdzie A

i1

A

i2

, …, 

i

k

Ai

 C dla 1  i  m.

2. Rzeczywista funkcja wymierna właściwa postaci 

)

(

)

(

x

Q

x

P

, gdzie

s

r

l

s

s

l

l

k

r

k

k

n

q

x

p

x

q

x

p

x

q

x

p

x

x

x

x

x

x

x

a

x

Q

)

(

...

)

(

)

(

)

(

...

)

(

)

(

)

(

2

2

2

2

1

1

2

2

1

2

1

2

1

,

jest sumą k

1

 + k

2

 + ... + k

m

 rzeczywistych ułamków prostych pierwszego rodzaju oraz l

1

 + l

2

 + ... + l

s

 rzeczywistych ułamków 

prostych drugiego rodzaju, przy czym
 czynnikowi 

i

k

i

x

x

)

(

 odpowiada suma k

i

 ułamków prostych pierwszego rodzaju postaci

i

i

k

i

ik

i

i

i

i

x

x

A

x

x

A

x

x

A

...

2

2

1

,

gdzie A

i1

A

i2

, …, 

i

k

Ai

 R dla 1  i  r.

 czynnikowi 

j

l

j

j

q

x

p

x

)

(

2

 odpowiada suma l

j

 ułamków prostych drugiego rodzaju postaci

j

j

j

l

j

j

jl

jl

j

j

j

j

j

j

j

j

q

x

p

x

C

x

B

q

x

p

x

C

x

B

q

x

p

x

C

x

B

2

2

2

2

2

2

1

1

...

,

gdzie 

R

C

C

C

B

B

B

j

j

jl

j

j

jl

j

j

,...

,

,

,...,

,

2

1

2

1

 dla 1 

 j  s.

3. MACIERZE I WYZNACZNIKI

3.1 MACIERZE – PODSTAWOWE OKREŚLENIA

Def. 3.1.1 (macierz rzeczywista i zespolona)
Macierzą  rzeczywistą   (zespoloną)  wymiaru  m 

  n, gdzie  m,  n    N, nazywamy prostokątną tablicę złożoną  z  mn  liczb 

rzeczywistych (zespolonych) ustawionych w m wierszach i n kolumnach.

Uwaga. Macierze będziemy oznaczali dużymi literami alfabetu np. ABX itp. Element macierzy A stojący w i–tym wierszu 
oraz w j–tej kolumnie oznaczamy przez a

ij

. Macierz A można także zapisywać w postaci 

n

m

ij

a

]

[

 lub [a

ij

], gdy znany jest 

jej wymiar. Macierze A lub B są równe, gdy mają te same wymiary m 

 n oraz a

ij

 = b

ij

 dla każdego 1 

 i  m oraz 1  j  n.

Def. 3.1.2 (rodzaje macierzy)
1. Macierz wymiaru m 

 n, której wszystkie elementy są równe 0 nazywamy macierzą zerową wymiaru m  n i oznaczmy 

n

m

0

 lub przez 

0

, gdy znamy jej wymiar.

9

background image

0

0

0

0

0

0

0

0

0

2. Macierz, której liczba wierszy równa się liczbie kolumn nazywamy macierzą  kwadratową. Liczbę  wierszy (kolumn) 

nazywamy wtedy stopniem macierzy kwadratowej. Elementy macierzy, które mają ten sam numer wiersza co kolumny, 
tworzą główną przekątną macierzy.

3. Macierz kwadratową stopnia  n 

 2, w której wszystkie elementy stojące nad główną przekątną są równe 0, nazywamy 

macierzą trójkątną dolną stopnia n.

nn

n

n

n

a

a

a

a

a

a

a

a

a

a

3

2

1

33

32

31

22

21

11

0

0

0

0

0

0

Podobnie określa się macierz trójkątną górną.

nn

n

n

n

a

a

a

a

a

a

a

a

a

a

0

0

0

0

0

0

3

33

2

23

22

1

13

12

11

4. Macierz kwadratową stopnia  n, w której wszystkie elementy nie stojące na głównej przekątnej są równe 0, nazywamy 

macierzą diagonalną lub przekątniową stopnia n.

nn

a

a

a

a

0

0

0

0

0

0

0

0

0

0

0

0

33

22

11

Macierz   diagonalną   stopnia  n,   w   której   wszystkie   elementy   głównej   przekątnej   są   równe   1,   nazywamy   macierzą 
jednostkową stopnia n. Macierz jednostkową stopnia n oznaczamy przez I

n

 lub przez I, gdy znany jest jej stopień.

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

3.2 DZIAŁANIA NA MACIERZACH

Def. 3.2.1 (suma i różnica macierzy)
Niech A = [a

ij

] i B = [b

ij

] będą macierzami wymiaru m 

 n. Sumą (różnicą) macierzy A i B nazywamy macierz C = [c

ij

], której 

elementy określone są wzorem:

ij

ij

def

ij

b

a

c

   

ij

ij

def

ij

b

a

c

dla 1 

 i  m oraz 1  j  n. Piszemy wtedy C = A + B  (C = A – B).

10

background image

Def. 3.2.2 (mnożenie macierzy przez liczbę)
Niech A = [a

ij

] będzie macierzą wymiaru m 

 n oraz niech 

 będzie liczbą rzeczywistą lub zespoloną. Iloczynem macierzy 

przez liczbę 

 nazywamy macierz B = [b

ij

], której elementy są określone wzorem:

ij

def

ij

a

b

dla 1 

 i  m oraz 1  j  n. Piszemy wtedy B = 

A.

Fakt 3.2.3 (własności działań na macierzach)
Niech  A,  B,  C  będą dowolnymi macierzami tego samego wymiaru rzeczywistymi lub zespolonymi oraz niech  

,    będą 

odpowiednio liczbami rzeczywistymi lub zespolonymi. Wtedy

1. A + B = B + A

5. 

(A + B) = A + B

2. A + (B + C) = (A + B) + C

6. (

 + )A = A + A

3. A + 0 =  0 + A = A

7. 1

A = A

4. A + (–A)   = 0  

8. (

)A = (A)

Def. 3.2.4 (iloczyn macierzy)
Niech A = [a

ij

] ma wymiar m 

 n, a macierz B = [b

ij

] wymiar n 

 k. Iloczynem macierzy A i B nazywamy macierz C = [c

ij

], 

wymiaru m 

 k, której elementy określone są wzorem:

nj

in

j

i

j

i

def

ij

b

a

b

a

b

a

c

...

2

2

1

1

dla 1 

 i  m oraz 1  j  n. Piszemy wtedy C = AB.

Uwaga. Element c

ij

 iloczynu macierzy A i B otrzymujemy sumując iloczyny odpowiadających sobie elementów i–tego wiersza 

macierzy A i j–tej kolumny macierzy B. Iloczyn macierzy A i B można obliczyć tylko wtedy, gdy liczba kolumn macierzy 
równa się liczbie wierszy macierzy B.

Rys. 3.2.1 Schemat obliczania elementów iloczynu macierzy A i B

Fakt 3.2.5 (własności iloczynu macierzy)
1. Niech macierz A ma wymiar m 

 n, a macierze B i C wymiar n  k. Wtedy 

AC

AB

C

B

A

 )

(

.

2. Niech macierze AB mają wymiar m 

 n, a macierz C wymiar n  k. Wtedy

BC

AC

C

B

A

 )

(

.

3. Niech macierz  A  ma wymiar  m 

 n, a macierz  B wymiar n  k oraz niech 

 będzie liczbą rzeczywistą lub zespoloną. 

Wtedy

)

(

)

(

)

(

AB

B

A

B

A

.

4. Niech macierz A ma wymiar m 

 n, macierz B ma wymiar n  k, a macierz C wymiar k  l. Wtedy

)

(

)

(

BC

A

C

AB

.

5. Niech macierz A ma wymiar m 

 n. Wtedy

A

A

I

AI

m

n

.

Uwaga. Własności podane w punktach 1 i 2 nazywamy rozdzielnością dodawania względem mnożenia, a własność podaną w 
punkcie 4 łącznością mnożenia. Mnożenie macierzy kwadratowych nie jest przemienne, bowiem na ogół AB 

 BA. Zamiast 

czynników

n

A

AA...

 będziemy pisali A

n

.

11

background image

Def. 3.2.6 (macierz transponowana)
Niech A = [a

ij

] będzie macierzą wymiaru m 

 n. Macierzą transponowaną do macierzy A nazywamy macierz B = [b

ij

] wymiaru 

n 

 m określoną wzorem:

ji

def

ij

a

b

dla 1 

 i  m oraz 1  j  n. Macierz transponowaną do macierzy A oznaczamy A

T

.

Uwaga. Przy transponowaniu, kolejne wiersze macierzy wyjściowej stają się kolejnymi kolumnami macierzy transponowanej. 
Ilustrujemy to na przykładzie macierzy wymiaru 3 

 4.

34

24

14

33

23

13

32

22

12

31

21

11

34

33

32

31

24

23

22

21

14

13

12

11

,

a

a

a

a

a

a

a

a

a

a

a

a

A

a

a

a

a

a

a

a

a

a

a

a

a

A

T

.

Fakt 3.2.7 (własności transpozycji macierzy)
1. Niech A i B będą macierzami wymiaru m 

 n. Wtedy

T

T

T

B

A

B

A

 )

(

.

2. Niech A będzie macierzą wymiaru m 

 n oraz niech 

 będzie liczbą rzeczywistą lub zespoloną. Wtedy

 

A

A

T

T

  oraz  

 

T

T

A

A

.

3. Niech A będzie macierzą wymiaru m 

 n, a B macierzą wymiaru n  k. Wtedy

T

T

T

A

B

AB

)

(

.

4. Niech A będzie macierzą kwadratową oraz niech r 

 N. Wtedy

r

T

T

r

A

A

)

(

)

(

.

Def. 3.2.8 (macierz symetryczna i antysymetryczna)
Niech A będzie macierzą kwadratową.
1. Macierz A jest symetryczna wtedy i tylko wtedy, gdy

A

A

T

.

2. Macierz A jest antysymetryczna wtedy i tylko wtedy, gdy

A

A

T

.

Uwaga. Macierz jest symetryczna, gdy jej elementy położone symetrycznie względem głównej przekątnej są sobie równe. 
Macierz   jest   antysymetryczna,   gdy   jej   elementy   położone   symetrycznie   względem   głównej   przekątnej   różnią   się   tylko 
znakiem, a elementy głównej przekątnej są równe 0.

Fakt 3.2.9 (własności macierzy symetrycznych i antysymetrycznych)
1. Niech A będzie dowolną macierzą kwadratową. Wtedy 

a) macierz A + A

T

 jest symetryczna,

b) macierz A – A

T

 jest antysymetryczna.

2. Niech A będzie dowolną macierzą. Wtedy macierze AA

T

 i A

T

A są symetryczne.

3. Każdą macierz kwadratową można jednoznacznie przedstawić w postaci sumy macierzy symetrycznej i antysymetrycznej:

 

T

T

A

A

A

A

A

2

1

2

1

.

3.3 DEFINICJA INDUKCYJNA WYZNACZNIKA

Def. 3.3.1 (wyznacznik macierzy)
Wyznacznikiem macierzy kwadratowej nazywamy funkcję, która każdej macierzy rzeczywistej (zespolonej) A = [a

ij

] przypi-

suje liczbę rzeczywistą (zespoloną) detA. Funkcja ta jest określona wzorem indukcyjnym:
1. jeżeli macierz A ma stopień n = 1, to

11

det

a

A

,

2. jeżeli macierz A ma stopień n 

 2, to

n

n

n

A

a

A

a

A

a

A

1

1

1

12

12

2

1

11

11

1

1

det

)

1

(

...

det

)

1

(

det

)

1

(

det

gdzie A

ij

 oznacza macierz otrzymaną z macierzy A przez skreślenie i–tego wiersza i j–tej kolumny.

Uwaga. Wyznacznik macierz A oznaczamy także przez det[a

ij

] lub |A|, a w formie rozwiniętej przez

12

background image

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

2

1

2

22

12

1

12

11

det

   lub   

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

2

1

2

22

12

1

12

11

.

Będziemy mówili wymiennie stopień wyznacznika  

 stopień macierzy, element wyznacznika  element macierzy, wiersz 

wyznacznika 

 wiersz macierzy, kolumna wyznacznika  kolumna macierzy.

Fakt 3.3.2 (reguły obliczania wyznaczników 2-go i 3-go stopnia)

1. Niech 

d

c

b

a

A

 będzie macierzą stopnia 2. Wtedy 

.

2. Niech

i

h

g

f

e

d

c

b

a

A

 będzie nacierzą stopnia 3. Wtedy

.

Uwaga.   Podany   wyżej   sposób   obliczania   wyznaczników   stopnia   3   nazywamy   regułą   Sarrusa.   Ten   sposób   obliczania 
wyznaczników nie przenosi się na wyznaczniki wyższych stopni.

Fakt 3.3.3 (interpretacja geometryczna wyznaczników 2-go i 3-go stopnia)
1. Niech  D  oznacza równoległobok rozpięty na wektorach  

)

,

(

1

1

y

x

a

,  

)

,

(

2

2

y

x

b

  (rys. 3.3.1). Pole |D| tego 

równoległoboku wyraża się wzorem:

|

det

|

2

2

1

1

y

x

y

x

D

.

Rys. 3.3.1 Interpretacja geometryczna wyznacznika drugiego stopnia

2. Niech  V  oznacza   równoległościan   rozpięty   na   wektorach  

 

)

,

,

(

1

1

1

z

y

x

a

,  

)

,

,

(

2

2

2

z

y

x

b

)

,

,

(

3

3

3

z

y

x

c

 (rys. 3.3.2). Objętość |V| tego równoległościanu wyraża się wzorem:

|

det

|

3

3

3

2

2

2

1

1

1

z

y

x

z

y

x

z

y

x

V

.

13

background image

Rys. 3.3.2 Interpretacja geometryczna wyznacznika trzeciego stopnia

Def. 3.3.4 (dopełnienie algebraiczne)
Niech A = [a

ij

] będzie macierzą kwadratową stopnia n 

 2. Dopełnieniem algebraicznym elementu a

ij

 macierzy A nazywamy 

liczbę:

ij

j

i

def

ij

A

D

det

)

1

(

,

gdzie A

ij

 oznacza macierz stopnia n – 1 powstałą przez skreślenie i–tego wiersza i j–tej kolumny macierzy A.

Tw. 3.3.5 (rozwinięcia Laplace’a wyznacznika)
Niech A będzie macierzą kwadratową stopnia n 

 2 oraz niech liczby 1  ij  n będą ustalone. Wtedy wyznacznik macierzy 

można obliczyć ze wzorów:
1. 

in

in

i

i

i

i

D

a

D

a

D

a

A

...

det

2

2

1

1

.

Inaczej mówiąc, wyznacznik macierzy jest równy sumie iloczynów elementów i–tego wiersza i ich dopełnień algebraicznych. 
Wzór ten nazywamy rozwinięciem Laplace’a wyznacznika względem i–tego wiersza.
2. 

nj

nj

j

j

j

j

D

a

D

a

D

a

A

...

det

2

2

1

1

.

Inaczej mówiąc, wyznacznik macierzy jest równy sumie iloczynów elementów j–tej kolumny i ich dopełnień algebraicznych. 
Wzór ten nazywamy rozwinięciem Laplace’a wyznacznika względem j–tej kilumny.

Uwaga. Dla ustalonych liczb 1 

 rs  n, gdzie r  s, prawdziwe są wzory:

0

...

0

...

2

2

1

1

2

2

1

1

nr

ns

r

s

r

s

rn

sn

r

s

r

s

D

a

D

a

D

a

D

a

D

a

D

a

.

Inaczej mówiąc, suma iloczynów elementów dowolnego wiersza i dopełnień algebraicznych elementów innego wiersza jest 
równa 0. Podobnie, suma iloczynów dowolnej kolumny i odpowiadających im dopełniń algebraicznych innej kolumny jest 
równa 0.

Fakt 3.3.6 (wyznacznik macierzy trójkątnej)
Niech A = [a

ij

] będzie macierzą trójkątną dolną lub górną stopnia n 

 2. Wtedy

nn

a

a

a

A

...

det

22

11

.

Inaczej mówiąc, wyznacznik macierzy trójkątnej jest równy iloczynowi elementów stojących na głównej przekątnej.

3.4 DEFINICJA PERMUTACYJNA WYZNACZNIKA

*

Def. 3.4.1 (permutacja)
Permutacją n–elementową, gdzie n 

 N, nazywamy każde różnowartościowe odwzorowanie p zbioru {1, 2, …, n} na siebie. 

Permutację taką zapisujemy w postaci





n

i

p

p

p

p

n

i

p

2

1

2

1

,

gdzie p

i

 oznacza wartość permutacji p dla i, 1 

 i  n. Zbiór wszystkich permutacji n–elementowych oznaczamy przez P

n

.

Uwaga. Istnieje 

n!

 różnych permutacji n–elementowych.

Def. 3.4.2 (inwersja, znak permutacji)

Niech  





n

j

i

p

p

p

p

p

n

j

i

p

2

1

2

1

  będzie   permutacją  n–elementową.   Para   {p

i

,  p

j

}   elementów   tej 

permutacji tworzy inwersję, gdy

j

i

p

p

 oraz 

j

i

.

Znak permutacji p jest określony wzorem

k

def

p

)

1

(

)

sgn(

,

gdzie k oznacza liczbę par elementów tej permutacji, które tworzą inwersje.

14

background image

Def. 3.4.3 (wyznacznik macierzy)
Niech A = [a

ij

] będzie macierzą kwadratową stopnia n. Wyznacznikiem macierzy A nazywamy liczbę detA określoną wzorem:

n

n

P

p

np

p

p

def

a

a

a

p

A

...

)

sgn(

det

2

1

2

1

,

gdzie 





n

p

p

p

n

p

2

1

2

1

, a sumowanie obejmuje wszystkie (tj. n!) permutacje n–elementowe.

Uwaga. Obie definicje wyznacznika, indukcyjna i permutacyjna, są równoważne.

3.5 WŁASNOŚCI WYZNACZNIKÓW

Fakt 3.5.1 (własności wyznaczników)
1. Wyznacznik macierzy kwadratowej mającej kolumnę (wiersz) złożoną z samych zer jest równy 0.

0

0

0

0

0

2

1

2

22

21

1

12

11

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

2. Wyznacznik macierzy kwadratowej zmieni znak jeżeli między sobą przestawimy dwie kolumny (wiersze).

ni

nk

i

k

i

k

nk

ni

k

i

k

i

a

a

a

a

a

a

a

a

a

a

a

a

2

2

1

1

2

2

1

1

.

3. wyznacznik macierzy kwadratowej mającej dwie jednakowe kolumny (wiersze) jest równy 0.

0

.

4. Jeżeli wszystkie elementy pewnej kolumny (wiersza) macierzy kwadratowej zawierają wspólny czynnik, to czynnik ten 

można wyłączyć przed wyznacznik tej macierzy.

nn

ni

n

n

n

i

n

i

nn

ni

n

n

n

i

n

i

a

a

a

a

a

a

a

a

a

a

a

a

c

a

ca

a

a

a

ca

a

a

a

ca

a

a

2

1

2

2

22

21

1

1

12

11

2

1

2

2

22

21

1

1

12

11

.

Ponadto

nn

ni

n

n

n

i

n

i

n

nn

ni

n

n

n

i

n

i

a

a

a

a

a

a

a

a

a

a

a

a

c

ca

ca

ca

ca

ca

ca

ca

ca

ca

ca

ca

ca

2

1

2

2

22

21

1

1

12

11

2

1

2

2

22

21

1

1

12

11

.

5. Wyznacznik macierzy kwadratowej, której elementy pewnej kolumny (wiersza) są sumami dwóch składników jest równy 

sumie wyznaczników macierzy, w których elementy tej kolumny (wiersza) są zastąpione tymi składnikami.

nn

ni

n

n

n

i

n

i

nn

ni

n

n

n

i

n

i

nn

ni

ni

n

n

n

i

i

n

i

i

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

/

2

1

2

/

2

22

21

1

/

1

12

11

2

1

2

2

22

21

1

1

12

11

/

2

1

2

/

2

2

22

21

1

/

1

1

12

11

.

6. Wyznacznik   macierzy  nie   zmieni   się,   jeżeli   do   elementów   dowolnej   kolumny  (wiersza)   dodamy  odpowiadające   im 

elementy innej kolumny (innego wiersza) tej macierzy pomnożone przez dowolną liczbę.

15

background image

nn

nk

nk

nj

n

n

n

k

k

j

n

k

k

j

nn

nk

nj

n

n

n

k

j

n

k

j

a

a

ca

a

a

a

a

a

ca

a

a

a

a

a

ca

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

2

1

2

2

2

2

22

21

1

1

1

1

12

11

2

1

2

2

2

22

21

1

1

1

12

11

.

Ogólnie: wyznacznik macierzy nie zmieni się, jeżeli do elementów dowolnego wiersza (kolumny) dodamy sumę odpowia-
dających im elementów innych wierszy (kolumn) tej macierzy pomnożonych przez dowolną liczbę.

7. Wyznaczniki macierzy kwadratowej i jej transpozycji są równe.

nn

n

n

n

n

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

2

1

2

22

12

1

21

11

2

1

2

22

21

1

12

11

Uwaga.   Korzystając   z   powyższych   własności   wyznaczników   można   istotnie   uprościć   jego   obliczanie.   W   tym   celu   w 
wybranym wierszu lub kolumnie wyznacznika staramy się uzyskać możliwie najwięcej zer. Do oznaczenia podanych wyżej 
operacji na macierzach będziemy stosowali następujące symbole:
1. w

i

 

 w

j

 – oznacza zamianę między sobą i–tego oraz j–tego wiersza,

2. k

i

 

 k

j

 – oznacza zamianę między sobą i–tej oraz j–tej kolumny,

3. cw

i

 – oznacza pomnożenie i–tego wiersza przez liczbę c,

4. ck

i

 – oznacza pomnożenie i–tej kolumny przez liczbę c,

5. w

i

 + cw

j

 – oznacza dodanie do elemnetów i–tego wiersza odpowiadających im elementów j–tego wiersza pomnożonych 

przez liczbę c,

6. k

i

  +  ck

j

  – oznacza dodanie do elemnetów  i–tej kolumny odpowiadających im elementów  j–tej kolumny pomnożonych 

przez liczbę c,

Wymienione wyżej przekształcenia macierzy nazywamy operacjami elementarnymi.

Fakt 3.5.2 (algorytm Chió obliczania wyznaczników)
Niech A = [a

ij

] będzie macierzą kwadratową stopnia 

 3 oraz niech a

11

 

 0. Wówczas

/

/

3

/

2

/

3

/

33

/

32

/

2

/

23

/

22

2

11

det

)

(

1

det

nn

n

n

n

n

n

a

a

a

a

a

a

a

a

a

a

A

, gdzie 

ij

i

j

ij

a

a

a

a

a

1

1

11

/

det

dla ij = 2, 3, …, n.
Uwaga. Algorytm Chió stosujemy głównie do obliczania wyznaczników macierzy niwielkich stopni, których elementy są 
liczbami całkowitymi. Algorytm ten w prosty sposób pozwala obniżać stopnie obliczanych wyznaczników.

/

/

/

3

/

2

/

/

/

3

/

2

/

3

/

3

/

33

/

32

/

2

/

2

/

23

/

22

2

11

3

2

3

2

3

3

33

32

2

2

23

22

1

1

13

12

1

1

31

21

11

)

(

1

nn

nj

n

n

in

ij

i

i

n

j

n

j

n

nn

nj

n

n

in

ij

i

i

n

j

n

j

n

j

n

i

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

, gdzie 

ij

i

j

ij

a

a

a

a

a

1

1

11

/

.

Rys. 3.5.1 Schemat algorytmu Chió obliczania wyznaczników

Tw. 3.5.3 (Cauchy’ego o wyznaczniku iloczynu macierzy)
Niech A i B będą macierzami kwadratowymi tego samego stopnia. Wtedy

B

A

B

A

det

det

)

det(

.

Fakt 3.5.4 (wyznacznik Vandermonde’a)
Niech n 

 2 oraz niech z

1

z

2

, …, z

n

 będą liczbami zespolonymi. Wtedy

16

background image

n

l

k

k

l

n

n

n

n

n

n

def

n

z

z

z

z

z

z

z

z

z

z

z

z

z

z

V

1

1

2

1

2

2

2

2

1

1

2

1

1

2

1

)

(

1

1

1

)

,...,

,

(

.

Jeżeli liczby z

1

z

2

, …, z

n

 są parami różne, to 

0

)

,...,

,

(

2

1

n

z

z

z

V

.

3.6 MACIERZ ODWROTNA

Def. 3.6.1  (macierz odwrotna)
Niech A będzie macierzą stopnia n. Macierzą odwrotną do macierzy A nazywamy macierz B spełniającą warunek:

AB = BA = I

,

gdzie I

n

 oznacza macierz jednostkową stopnia n. macierz odwrotną do macierzy A oznaczamy przez A

–1

.

Uwaga. Jeżeli macierz A ma macierz odwrotną, to nazywamy ją odwracalną i wówczas detA 

 0. Macierz odwrotna do danej 

macierzy jest określona jednoznacznie.

Def. 3.6.2 (macierz osobliwa i nieosobliwa)
Macierz kwadratową A nazywamy macierzą osobliwą, gdy

0

det

A

.

W przeciwnym przypadku mówimy, że macierz A jest nieosobliwa.

Fakt 3.6.3 (warunek odwracalności macierzy)
Macierz kwadratowa jest odwracalna wtedy i tylko wtedy, gdy jest nieosobliwa.

Tw. 3.6.4 (o postaci macierzy odwrotnej)
Niech macierz A = [a

ij

] stopnia będzie nieosobliwa. Wtedy

T

nn

n

n

n

n

D

D

D

D

D

D

D

D

D

A

A

2

1

2

22

21

1

12

11

1

det

1

,

gdzie D

ij

 oznaczają dopełnienia algebraiczne elementów a

ij

 macierzy A.

Uwaga. Dla macierzy nieosobliwej 

d

c

b

a

A

 wzór na macierz odwrotną ma postać:

a

c

b

d

bc

ad

A

1

1

.

Fakt 3.6.5 (własności macierzy odwrotnych)
Niech macierze A i B tego samego stopnia będą odwracalne oraz niech 

  C\{0}. Wtedy macierze A

–1

A

T

AB

A także są 

odwracalne i prawdziwe są równości:

1. 

1

1

det

det

A

A

4. 

1

1

1

A

B

AB

2. 

 

A

A

1

1

5. 

 

 

1

1

1

A

A

3. 

 

 

T

T

A

A

1

1

Fakt 3.6.6 (bezwyznacznikowy sposób znajdowania macierzy odwrotnej)
Niech A będzie macierzą nieosobliwą. Aby znaleźć macierz odwrotną do macierzy A postępujemy w następujący sposób. Z 
prawej strony macierzy A dopisujemy macierz jednostkową I tego samego stopnia. Na  wierszach otrzymanej w ten sposób 
macierzy blokowej [A|I] będziemy wykonywać następujące operacje elementarne:
1. przestawiać między sobą dwa dowolne wiersze (w

i

 

 w

j

),

2. dowlny wiersz mnożyć przez stałą różną od zera (cw

i

),

3. do elementów dowolnego wiersza dodawać sumy odpowiadających im elementów innych wierszy pomnożonych przez 

dowolne liczby (w

i

 + cw

j

).

Przy pomocy tych operacji sprowadzamy macierz blokową [A|I] do postaci [I|B]. Macierz B jest wtedy macierzą odwrotną do 
macierzy A, tj. B = A

–1

.

17

background image

1

wierszach

na

  

ania

dzia

|

|

A

I

I

A

l

Rys. 3.6.1 Schemat bezwyznacznikowego sposobu znajdowania macierzy odwrotnej.

3.7 ALGORYTM SPROWADZANIA MACIERZY DO POSTACI JEDNOSTKOWEJ

Fakt 3.7.1 (algorytm Gaussa)
Niech  A  będzie   macierzą   stopnia  n 

  2  o  wyznaczniku  różnym   od  zera.  Macierz  tę  można   przekształcić   do  macierzy 

jednostkowej I

n

 wykonując na jej wierszach następujące operacje elementarne:

1. zamiana między sobą dwóch dowolnych wierszy,
2. mnożenie dowolnego wiersza przez liczbę różną od zera,
3. dodawanie   do   elementów   dowolnego   wiersza   odpowiadających   im   elementów   innego   wiersza   pomnożonych   przez 

dowolną liczbę.

Macierz jednostkową uzyskamy w dwóch krokach:
I krok. Otrzymanie macierzy trójkątnej górnej z jedynkami na głównej przekątnej postaci:

1

0

0

0

1

0

0

1

0

1

3

2

23

1

13

12

n

n

n

b

b

b

b

b

b

Operacje   elementarne   wykonujemy   tak,   aby   kolejne   kolumny   macierzy  A  uzyskały   przedstawioną   powyżej   postać. 
Przekształcenia zaczynamy od uzyskania odpowiedniej postaci pierwszej kolumny. Jeżeli  a

11

 

 0, to wiersze  w

1

,  w

2

, …,  w

macierzy A przekształacamy kolejno na wiersze 

/

/

2

/

1

,...,

,

n

w

w

w

 według wzorów:



/

1

1

/

/

1

21

2

/

2

11

1

/

1

w

a

w

w

w

a

w

w

a

w

w

n

n

n

.

Jeżeli natomiast a

11

 = 0, to wiersze macierzy A przestawiamy tak, aby w jej lewym górnym rogu znalazł się element niezerowy 

i dalej wykonujemy wymienione wcześniej operacje.
Kolejne kolumny z jedynkami na przekątnej i zerami poniżej przekątnej uzyskujemy stosując przedstawione wyżej postępowa-
nie do macierzy coraz niższych stopni, począwszy od stopnia n – 1 aż do stopnia 1 włącznie.
II krok. Otrzymanie macierzy jednostkowej postaci:

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

Wiersze 

/

1

/

1

/

,...,

,

w

w

w

n

n

 otrzymanej macierzy trójkątnej przekształcamy kolejno na wiersze 

//

1

//

1

//

,...,

,

w

w

w

n

n

 

macierzy jednostkowej w następujący sposób:

//

1

//

3

13

//

2

12

/

1

//

1

//

2

//

1

1

2

/

22

//

2

//

1

/

1

//

1

/

//

...

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

w

b

w

b

w

b

w

w

w

b

w

b

w

w

w

b

w

w

w

w

.

18

background image

Uwaga. Macierzy o wyznaczniku 0 nie można sprowadzić do macierzy jednostkowej. Algorytm Gaussa jest bardzo wygodnym 
narzędziem przy obliczaniu wyznaczniow, odwracaniu macierzy, określaniu ich rzędów oraz przy rozwiązywaniu układów 
równań liniowych.

4. UKŁADY RÓWNAŃ LINIOWYCH

4.1 PODSTAWOWE OKREŚLENIA

Def. 4.1.1 (układ równań liniowych, rozwiązanie układu równań)
Układem m równań liniowych z n niewiadomymi x

1

x

2

, …, x

n

, gdzie mn 

 N, nazywamy układ równań postaci:



m

n

mn

m

m

n

n

n

n

b

x

a

x

a

x

a

b

x

a

x

a

x

a

b

x

a

x

a

x

a

...

...

...

2

2

1

1

2

2

2

22

1

21

1

1

2

12

1

11

,

gdzie a

ij

 

 Rb

i

 

 R dla 1  i  m, 1  j  n.

Rozwiązaniem układu równań liniowych nazywamy każdy ciąg (x

1

x

2

, …, x

n

n liczb rzeczywistych spełniających ten układ. 

Układ równań, który nie ma rozwiązań nazywamy układem sprzecznym.
Uwaga. Powyższy układ równanń liniowych można zapisać w postaci macierzowej:

AX = B,

gdzie 

mn

m

m

n

n

def

a

a

a

a

a

a

a

a

a

A

2

1

2

22

12

1

12

11

,     

n

def

x

x

x

X

2

1

,     

m

def

b

b

b

B

2

1

.

Macierz A nazywamy macierzą główną układu równań liniowych, macierz X macierzą (kolumną) niewiadomych, a B macierzą 
(kolumną) wyrazów wolnych. Rozważa się także układy równań liniowych, w których macierze AX oraz B są zespolone. W 
przypadku  „małej liczby” niewiadomych będziemy je oznaczać literami xyztuvw.

Def. 4.1.2 (układ jednorodny i niejednorodny)
Układ równań liniowych postaci 

AX = 0,

gdzie A jest macierzą wymiaru m 

 n, natomiast 0 jest macierzą zerową wymiaru m  1, nazywamy układem jednorodnym.

Układ równań liniowych postaci

AX = B,

w  którym B jest macierzą niezerową nazywamy układem niejednorodnym.

Uwaga. Jednym z rozwiązań każdego układu jednorodnego AX = 0 jest macierz zerowa 

0

0

0

X

wymiaru n 

 1, gdzie n oznacza liczbę kolumn macierzy A.

4.2 UKŁADY CRAMERA

Def. 4.2.1 (układ Cramera)
Układem Cramera nazywamy układ równań liniowych AX = B, w którym A jest macierzą nieosobliwą.

Tw. 4.2.2 (wzór Cramera)
Układ Cramera AX = B ma dokładnie jedno rozwiąznie. Rozwiązanie to jest określone wzorem

19

background image

n

A

A

A

A

X

det

det

det

det

1

2

1

,

gdzie n oznacza stopień macierzy A, natomiast A

j

, dla 1 

 j  n, oznacza macierz A, w której j–tą kolumnę zastąpiono kolumną 

wyrazów wolnych B, tzn.

nn

n

n

n

n

n

def

j

a

b

a

a

a

b

a

a

a

b

a

a

A

2

1

2

2

22

21

1

1

12

11

.

Uwaga. Równość określającą rozwiązanie układu równań liniowych nazywamy wzorem Cramera. Równość ta po rozpisaniu 
przyjmuje postać:

A

A

x

det

det

1

1

,   

A

A

x

det

det

2

2

,   …,   

A

A

x

n

n

det

det

,

zwaną wzorami Cramera.

Fakt 4.2.3 (metoda macierzy odwrotnej)
Rozwiązanie układu Cramera AX = B jest określone wzorem: 

B

A

X

1

.

4.3 METODA ELIMINACJI GAUSSA DLA UKŁADÓW CRAMERA

Fakt 4.3.1 (metoda eliminacji Gaussa dla układów Cramera)
Niech AX = B będzie układem Cramera, w którym A jest macierzą stopnia n. Rozwiązanie tego układu znajdujemy w następu-
jący sposób:
1. budujemy macierz rozszerzoną układu postaci

n

nn

n

n

n

n

b

b

b

a

a

a

a

a

a

a

a

a

B

A

2

1

2

1

2

22

21

1

12

11

|

.

2. przekształcamy macierz rozszerzoną do postaci 

X

|

 wykonując na jej wierszach następujące operacje elementarne:

a) zamianę między sobą dwóch dowolnych wierszy (w

i

 

 w

j

),

b) pomnożenie dowolnego wiersza przez liczbę różną od zera (cw

i

),

c) dodanie do elementów dowolnego wiersza odpowiadających im elementów innego wiersza pomnożonego przez dowolną 

liczbę (w

i

 + cw

j

).

Operacje te mają na celu doprowadzenie macierzy rozszerzonej do postaci:

n

x

x

x

X

I

2

1

1

0

0

0

1

0

0

0

1

|

.

Ostatnia kolumna macierzy rozszerzonej (macierz X) jest wtedy rozwiązaniem wyjściowego układu równań.

X

I

B

A

|

|

wierszach

na

e

elementarn

operacje

Rys. 4.3.1 Schemat metody eliminacji Gaussa rozwiązywania układów równań liniowych.

Uwaga. Przy przekształcaniu macierzy rozszerzonej  układu do postaci  końcowej możemy wykorzystać  algorytm  Gaussa 
sprowadzania macierzy nieosobliwej do postaci jednostkowej podany w fakcie 3.7.1.

Uwaga. Praktyczną wersją metody eliminacji Gaussa dla układów Cramera jest metoda kolumn jednostkowych. Polega ona 
na przekształceniu macierzy rozszerzonej układu w celu doprowadzenia wszystkich kolumn macierzy tego układu do postaci 
jednostkowej (tzn. z jedną jedynką i resztą zer). Jedynki z różnych kolumn muszą się przy tym znaleźć w różnych wierszach. 
Końcowa   postać   [I

/

|X

/

]   macierzy  rozszerzonej   będzie   się   różnić   od   postaci[I|X]   jedynie   kolejnością   wierszy.   Dla   układu 

20

background image

Cramera z n niwiadomymi metoda ta wymaga n kroków, gdyż w każdym kroku przekształca się ostatecznie całą kolumnę. 
Kolejność   przekształcanych   kolumn   oraz   położenie   końcowych  „jedynek”   jest   dowolna,   przy   czym   wygodnie   jest   do 
przekształcenia wybrać kolumnę składającą się z jedynki, „małych” liczb całkowitych i „dużej” liczby zer. W porównaniu z 
klasycznym algorytmem Gaussa metoda ta nie wymaga przestawiania wierszy ani budowania macierzy trójkątnej. Wymaga 
jednak wykonania większej liczby mnożeń.

Fakt 4.3.2 (algorytm przekształcania j–tej kolumny)
Chcąc   w   miejsce   niezerowego   elementu  a

ij

  otrzymać  „jedynkę”,   a   na   pozostałych   miejscach  j–tej   kolumny   same   zera 

wystarczy  i–ty   wiersz   macierzy   rozszerzonej   podzielić   przez  a

ij

.   Następnie   należy   od   pozostałych   kolejnych   wierszy 

odejmować i–ty wiersz mnożony odpowiednio przez a

1j

a

2j

, …, a

i-1j

a

i+1j

, …, a

nj

. Schematycznie przedstawimy to poniżej

 

.

.

.

.

.

0

0

1

0

0

.

.

.

.

.

1

.

.

.

.

.

1

1

1

1

1

1

1

1

1

:

1

1

1

i

nj

n

i

j

i

i

i

j

i

i

i

j

ij

i

w

a

w

w

a

w

w

a

w

w

a

w

nj

j

i

j

i

j

a

w

nj

j

i

ij

j

i

j

a

a

a

a

a

a

a

a

a

.

4.4 METODA ELIMINACJI GAUSSA DLA DOWOLNYCH UKŁADÓW RÓWNAŃ LINIOWYCH

Def. 4.4.1 (równoważność układów równań liniowych)
Niech AA

/

BB

/

 będą macierzami o wymiarach odpowiednio m 

 nk  nm  1, k  1. Ponadto niech

n

x

x

x

X

2

1

  

/

/

2

/

1

/

n

x

x

x

X

będą macierzami niewiadomych, przy czym ciąg  

/

/

2

/

1

,...,

,

n

x

x

x

  jest permutacją ciągu (x

1

,  x

2

, …,  x

n

). Mówimy, że 

układy równań liniowych AX = B i A

/

X

/

 = B

/

 są równoważne, jeżeli zbiory ich rozwiązań są identyczne.

Fakt 4.4.2 (o równoważnym przekształcaniu układów równań)
Podane poniżej operacje na  wierszach  macierzy rozszerzonej [A|B] układu równań liniowych  AX  =  B  przekształcają go na 
układ równoważny:
1. zamiana między sobą wierszy (w

i

 

 w

j

),

2. mnożenie wiersza przez stałą różną od zera (cw

i

),

3. dodawanie do ustalonego wiersza innego wiersza wyraz po wyrazie (w

i

 + w

j

),

4. skreślenie wiersza złożonego z samych zer (w

i

),

5. skreślenie jednego z wierszy równych lub proporcjonalnych  (w

i

 ~ w

j

).

Dodatkowo otrzymuje się układ równoważny, jeżeli w macierzy  A  zamienimy miejscami dwie kolumny przy jednoczesnej 
zamianie niewiadomych (k

i

 

 k

j

).

21

background image

/

1

2

2

2

21

1

1

1

11

1

2

2

2

21

1

1

1

11

niewiadome

1

niewiadome

1

A

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

A

x

x

x

x

x

x

x

x

mn

mi

mj

m

n

i

j

n

i

j

k

k

mn

mj

mi

m

n

j

i

n

j

i

n

i

j

n

j

i

j

i

 

Fakt 4.4.3. (metoda eliminacji Gaussa)
Niech AX = B będzie układem równań liniowych, gdzie A jest macierzą wymiaru m 

 n. Wówczas układ ten rozwiązujemy 

następująco:
1. budujemy macierz rozszerzoną układu postaci:

m

mn

m

m

n

n

n

b

b

b

a

a

a

a

a

a

a

a

a

B

A

x

x

x

2

1

2

1

2

22

21

1

12

11

niewiadome

2

1

|

2. na macierzy rozszerzonej dokonujemy równoważnych przekształceń układu sprowadzając ją do postaci:

1

2

1

1

2

1

2

1

1

1

/

/

parametry

/

/

1

niewiadome

/

/

2

/

1

0

0

|

0

0

0

|

1

0

0

|

|

0

1

0

|

0

0

1

|

r

r

rn

rr

n

r

n

r

n

r

r

z

z

z

z

s

s

s

s

s

s

B

A

x

x

x

x

x

.

Wówczas,
a) jeżeli z

r+1

 

 0, to układ AX = B jest sprzeczny,

b) jeżeli z

r+1

 = 0 i n = r, to układ AX = B jest równoważny układowi Cramera i jego jedyne rozwiązanie ma postać x

1

 = z

1

x

z

2

, …, x

n

 = z

n

,

c) jeżeli z

r+1

 = 0 i n > r, to układ AX = B ma nieskończenie wiele rozwiązań, przy czym r spośród zmiennych x

1

x

2

, …, x

oznaczanych   symbolami  

/

/

2

/

1

,...,

,

r

x

x

x

  zależy   od   pozostałych  n  –  r  zmiennych   oznaczanych   symbolami 

/

/

2

/

1

,...,

,

n

r

r

x

x

x

 w następujący sposób:

/

/

2

/

1

2

1

2

2

2

1

2

1

2

1

1

1

3

2

1

/

/

2

/

1

n

r

r

rn

rr

rr

n

r

r

n

r

r

r

x

x

x

s

s

s

s

s

s

s

s

s

z

z

z

x

x

x

.

Uwaga.  Liczba  r  jest   wyznaczona   jednoznacznie.  Jest   to  tzw. rząd  macierzy  A.  Zmienne  

/

/

2

/

1

,...,

,

r

x

x

x

  będziemy 

nazywać   zmiennymi   zależnymi,   a   zmienne  

/

/

2

/

1

,...,

,

n

r

r

x

x

x

  zmiennymi   niezależnymi   lub   parametrami.   Podział 

zmiennych na zależne i parametry nie jest jednoznaczny, ale nie jest też dowolny. Przy przekształcaniu macierzy rozszerzonej 
układu do postaci końcowej możemy wykorzystać algorytm sprowadzania macierzy nieosobliwej do postaci jednozstkowej 
(patrz fakt 3.7.1). W przeciwieństwie do układu Cramera, omówionego w poprzednim paragrafie, mogą pojawić się tu trzy 
nowe sytuacje:
1. wiersz złożony z samych zer – wtedy go skreślamy,
2. dwa wiersze równe lub proporcjonalne – wtedy skreślamy jeden z nich,

22

background image

3. brak elementu niezerowego w kolejnej kolumnie powodujący niemożność ustawienia kolejnej jedynki na przekątnej – 

wtedy   całą   kolumnę   wraz   z   jej   zmienną   przestawiamy   na   miejsce   przedostatnie   przed   kolumnę   wyrazów   wolnych 
(zmienna ta staje się parametrem).

Uwaga.   Praktyczną   wersją  metody   eliminacji   Gaussa  dla   dowolnych   układów   równań   liniowych   jest  metoda   kolumn 
jednostkowych
. Jest ona rozszerzeniem metody opisanej dla układów Cramera (patrz fakt 4.3.2) na przypadek ogólny. Polega 
ona na równoważnym przekształceniu macierzy rozszerzonej układu, w celu doprowadzenia możliwie największej liczby 
kolumn   do   postaci   jednostkowej.   Jedynki   z   różnych   kolumn   jednostkowych   powinny  się   przy  tym   znależć   w   różnych 
wierszach. Przekształcenie poszczególnych kolumn wykonujemy dokładnie tak samo, jak dla układów Cramera. Przy wyborze 
tych kolumn oraz miejsc na jedynki mamy pełną dowolność. Jednoznacznie określona jest tylko liczba tych kolumn, ale 
pojawia się ona w naturalny sposób na końcu postępowania. Najwygodniej jest brać do przekształceń kolumny zawierające 
„małe” liczby całkowite i  „dużo” zer. W przypadku dowolnych układów równań w trakcie postępowania mogą pojawić się 
wiersze zerowe – wtedy je skreślamy, wiersze równe lub proporcjonalne – wtedy skreślamy jeden z nich. Może się także 
zdarzyć,  że  w   macierzy rozszerzonej   układu   pojawi  się  wiersz  zerowy  z  elementem  niezerowym w   kolumnie  wyrazów 
wolnych. Taki układ równań jest oczywiście sprzeczny. Jeśli tak się nie zdarzy, to postępowanie kończy się wtedy, gdy liczba 
wyróżnionych kolumn  jest  równa liczbie wierszy,  które pozostały w macierzy. Rozwiązanie  układu odczytujemy teraz z 
końcowej postaci macierzy, wyróżnione „jedynki” wskazują zmienne zależne.

5. GEOMETRIA ANALITYCZNA W PRZESTRZENI

5.1 WEKTORY

Def. 5.1.1 (przestrzeń R

3

)

Przestrzenią R

3

 nazywamy zbiór wszystkich uporządkowanych trójek (x,y,z) liczb rzeczywistych;

R

z

y

x

z

y

x

R

def

,

,

:

)

,

,

(

3

.

Uwaga. Przestrzeń R

3

 będziemy interpretować geometrycznie na trzy sposoby, tzn. jako:

1. zbiór wszystkich punktów  P  = (x,y,z) w przestrzeni (rys. 5.1.1). W tej interpretacji elementy przestrzeni  R

3

  nazywamy 

punktami i oznaczamy przez ABCPQ itd. Liczby xyz nazywamy wtedy współrzędnymi punktu P = (x,y,z).

Rys. 5.1.1 Punkty w przestrzeni

2. zbiór wszystkich wektorów zaczepionych  

OP

a

  w przestrzeni. Wektory te mają wspólny początek O = (0,0,0), a 

końce w punktach P = (x,y,z) (rys. 5.1.2). Wektor 

OP

 nazywamy wektorem wodzącym punktu P. W tej interpretacji 

elementy przestrzeni R

3

 nazywamy wektorami i oznaczamy przez 

w

v

u

c

b

a

,

,

,

,

,

 itd. Wektory wodzące punktów 

będziemy oznaczali przez 

1

0

,

,

r

r

r

 itd. Liczby xyz nazywamy współrzędnymi wektora 

)

,

,

(

z

y

x

a

.

Rys. 5.1.2 Wektory zaczepione

3. zbiór wszystkich wektorów swobodnych w przestrzeni. Przez wektor swobody  

u

  (rys. 5.1.3) rozumiemy tutaj zbiór 

wszystkich wektorów zaczepionych w różnych punktach, które mają ten sam kierunek, a zwrot oraz długość co wektor 

u

. W tej interpretacji elementy przestrzeni R

3

 także nazywamy wektorami.

Rys. 5.1.3 Wektory swobodne

23

background image

Def. 5.1.2 (punkty współliniowe i współpłaszczyznowe)
1. Mówimy, że punkty ABC przestrzeni R

3

 są współliniowe, gdy istnieje prosta, do której należą te punkty (rys. 5.1.4).

Rys. 5.1.4 Punkty ABC są współliniowe

2. Mówimy, że punkty  K,  L,  M,  N  przestrzeni  R

3

  są współpłaszczyznowe, gdy istnieje płaszczyzna, do której należą te 

punkty.

Rys. 5.1.5 Punkty KLMN są współpłaszczyznowe

Def. 5.1.3 (wektory współliniowe i współpłaszczyznowe)
1. Mówimy, że wektory 

b

a

,

 są współliniowe, gdy istnieje prosta, w której zawarte są te wektory (rys. 5.1.6). Wektory 

współliniowe będziemy nazywać także wektorami równoległymi; piszemy wtedy 

b

a

||

. Przyjmujemy, że wektor  

o

 

jest równoległy do dowolnego wektora.

Rys. 5.1.6 Wektory 

b

a

,

 są współliniowe

2. Mówimy, że wektory  

w

v

u

,

,

  są współpłaszczyznowe, gdy istnieje  płaszczyzna,  w której zawarte są te wektory. 

Przyjmujemy, że wektor 

o

 i dwa dowolne wektory są współpłaszczyznowe.

Rys. 5.1.7 Wektory 

w

v

u

,

,

 są współpłaszczyznowe

Def. 5.1.4 (działania na wektorach)
Niech  

)

,

,

(

z

y

x

u

,  

)

,

,

(

1

1

1

z

y

x

w

,  

)

,

,

(

2

2

2

z

y

x

v

  oraz   niech  

    R.   Sumę   wektorów  

w

  i  

v

 

określamy wzorem:

)

,

,

(

2

1

2

1

2

1

z

z

y

y

x

x

v

w

def

.

Różnicę wektorów 

w

 i 

v

 określamy wzorem:

)

,

,

(

2

1

2

1

2

1

z

z

y

y

x

x

v

w

def

.

Iloczyn wektora 

u

 przez liczbę rzeczywistą 

 określamy wzorem:

)

,

,

(

z

y

x

u

def

.

24

background image

Dodatkowo przyjmujemy oznaczenia  

)

0

,

0

,

0

(

def

o

 oraz 

)

,

,

(

z

y

x

u

def

. Wektor 

o

 nazywamy wektorem 

zerowym, a wektor 

u

 wektorem przeciwmym do wektora 

u

.

Fakt 5.1.5 (warunki równoległości i współpłaszczyznowości wektorów)
1. Mówimy, że wektory 

a

 i 

b

 są równoległe wtedy i tylko wtedy, gdy istnieje liczba rzeczywista 

 taka, że 

a

b

.

2. Mówimy, że wektory 

a

,  

b

,  

c

 są współpłaszczyznowe wtedy i tylko wtedy, gdy istnieją liczby rzeczywiste  

 i  

takie, że

b

a

c

.

Fakt 5.1.6 (własności dziłań na wektorach)
Niech 

w

v

u

,

,

 będą wektorami w R

3

 oraz niech 

,   R. Wtedy

1. dodawanie wektorów jest działaniem przemiennym,tj. 

u

v

v

u

,

2. dodawanie wektorów jest działaniem łącznym, tj. 

w

v

u

w

v

u

)

(

)

(

,

3. wektor 

o

 jest elementem neutralnym dodawania, tj. 

u

o

u

,

4. wektor 

u

 jest elementem przeciwnym do wektora 

u

, tj. 

o

u

u

)

(

,

5.

u

u

 

1

,

6.

)

(

)

(

u

u



,

7.

)

)

(

u

u

u

,

8.

v

u

v

u

 )

(

.

Fakt 5.1.7 (o własnościach rzutów wektorów)
Niech 

w

v

u

,

,

 będą dowolnymi wektorami w R

3

 oraz niech 

  R. Ponadto niech l będzie dowolną prostą w przestrzeni. 

Wtedy
1. rzut prostokątny sumy wektorów 

v

u

,

 na prostą l jest równy sumie rzutów tych wektorów na tę prostą,

2. rzut prostokątny iloczynu wektora 

w

 przez liczbę 

 na prostą l jest równy iloczynowi rzutu tego wektora na tę prostą 

przez liczbę 

. 

Def. 5.1.8 (układ współrzędnych w przestrzeni)
Układem współrzędnych w przestrzeni nazywamy trzy ustalone proste xyz przecinające się w jednym punkcie 0, które są 
wzajemnie prostopadłe. Taki układ współrzędnych oznaczamy przez Oxyz. Proste OxOyOz nazywamy osiami, a płaszczyzny 
xOyyOzxOz płaszczyznami układu współrzędnych.

Def. 5.1.9 (orientacja układu współrzędnych w przestrzeni)
W zależności  od wzajemnego położenia  osi Ox, Oy, Oz układu współrzędnych wyróżniamy dwie jego orientacje: układ 
prawoskrętny (rys. 5.1.8) i układ lewoskrętny (rys. 5.1.9).

Rys. 5.1.8 Układ współrzędnych o orientacji 

prawoskrętnej

Rys. 5.1.9 Układ współrzędnych o orientacji 

lewoskrętnej

Uwaga.   Nazwa   układ   prawoskrętny   pochodzi   z   następującej   interpretacji:   jeżeli   prawą   rękę   umieścimy   tak,   aby   kciuk 
wskazywał dodatnią część osi Oz, to zgięte palce wskażą kierunek obrotu od osi Ox do osi Oy. Podobną interpretację ma układ 
lewoskrętny.

Def. 5.1.10 (wersory na osiach układu współrzędnych)
Wektory 

)

1

,

0

,

0

(

),

0

,

1

,

0

(

),

0

,

0

,

1

(

k

j

i

 nazywamy wersorami odpowiednio na osiach Ox, Oy, Oz (rys. 5.1.8 

i 5.1.9).

Def. 5.1.11 (długość wektora)
Długość wektora 

)

,

,

(

z

y

x

v

 jest określona wzorem:

25

background image

2

2

2

z

y

x

v

def

.

Uwaga. Długość wektora 

)

,

,

(

z

y

x

v

 jest równa odległości punktu P = (x,y,z) od początku układu współrzędnych (rys. 

5.1.10).

Rys. 5.1.10 Interpretacja geometryczna długości wektora

Fakt 5.1.12 (własności długości wektora)
Niech 

v

u

,

 będą wektorami w R

3

 oraz niech 

  R. Wtedy

1. 

0

u

, przy czym 

o

u

u

 0

3. 

v

u

v

u

2. 

u

u

4. 

v

u

v

u

Uwaga. Nierówność 3 jest prawdziwa także dla dowolnej liczby składników. Nierówność tę ze względu na jej interpretację 
geometryczną   nazywamy  nierównością   trójkąta   (rys.   5.1.11).   równość   w   tej   nierówności   jest   możliwa   tylko  wtedy,   gdy 

o

u

 

 lub 

o

v

 

 albo, gdy 

u

v

 dla pewnego 

 > 0.

Rys. 5.1.11 Ilustracja nierówności trójkąta

Fakt 5.1.13 (położenie punktu podziału odcinka)
Niech 

1

r

 oraz 

2

r

 będą wektorami wodzącymi odpowiednio punktów A i B. Punkt P podziału odcinka AB w stosunku 1 : 

, 

gdzie 

 > 0, ma wektor wodzący

1

2

1

r

r

r

.

Uwaga.   Jeżeli  

)

,

,

(

),

,

,

(

2

2

2

2

1

1

1

1

z

y

x

r

z

y

x

r

,   to   współrzędne   wektora  

)

,

,

(

z

y

x

r

  wyrażają   się 

wzorami:

1

1

1

2

1

2

1

2

1

z

z

z

y

y

y

x

x

x

.

Rys. 5.1.12 Podział odcinka AB w stosunku 1 : 

Fakt 5.1.14 (współrzędne środka masy układu punktów materialnych)

26

background image

Niech 

i

r

, gdzie 1 

 i  k, będą wektorami wodzącymi punktów materialnych P

i

 o masach m

i

. Wektor wodzący środka masy 

C tego układu punktów materialnych ma postać:

k

k

k

m

m

m

r

m

r

m

r

m

r

...

...

2

1

2

2

1

1

.

Uwaga. Jeżeli 

)

,

,

(

i

i

i

i

z

y

x

r

, gdzie 1 

 i  k, to współrzędne wektora 

)

,

,

(

z

y

x

r

 wyrażają się wzorami:



k

k

k

k

k

k

k

k

k

m

m

m

z

m

z

m

z

m

z

m

m

m

y

m

y

m

y

m

y

m

m

m

x

m

x

m

x

m

x

...

...

...

...

...

...

2

1

2

2

1

1

2

1

2

2

1

1

2

1

2

2

1

1

.

5.2 ILOCZYN SKALARNY

Def. 5.2.1 (iloczyn skalarny)
Niech 

v

u

,

 będą dowolnymi wektorami w R

3

. Iloczyn skalarny wektorów 

u

 i 

v

 określamy wzorem:

cos

v

u

v

u

def

,

gdzie 

 jest miarą kąta między wektorami 

u

 i 

v

 (rys. 5.2.1).

Rys. 5.2.1 Ilustracja do definicji iloczynu skalarnego

Uwaga. Miara kąta między wektorami niezerowymi 

u

 i 

v

 wyraża się wzorem:

v

u

v

u

cos

arc

.

Rzut prostopadły wektora 

u

 na wektor 

v

 wyraża się wzorem:

v

v

v

u

w

2

.

Fakt 5.2.2 (wzór do obliczania iloczynu skalarnego)
Niech 

)

,

,

(

1

1

1

z

y

x

u

 oraz 

)

,

,

(

2

2

2

z

y

x

v

 będą wektorami w R

3

. Wtedy

2

1

2

1

2

1

z

z

y

y

x

x

v

u

.

Fakt 5.2.3 (własności iloczynu skalarnego)
Niech 

w

v

u

,

,

 będą dowolnymi wektorami w R

3

 oraz niech 

  R. Wtedy

1.

u

v

v

u

,

2.

 

u

v

v

u

,

3.

w

v

w

u

w

v

u

,

4.

2

u

u

u

,

5.

v

u

v

u

,

6. wektory 

u

 i 

v

 są prostopadłe 

 

0

v

u

.

27

background image

Uwaga. Równość podana w punkcie 3 jest prawdziwa także dla dowolnej liczby wektorów składników. Równość w nierówno-
ści 5 jest możliwa tylko wtedy, gdy wektory 

u

 i 

v

 są równoległe.

5.3 ILOCZYN WEKTOROWY

Def. 5.3.1 (iloczyn wektorowy)
Niech 

u

 i 

v

 będą niewspółliniowymi wektorami w R

3

. Iloczynem wektorowym uporządkowanej pary wektorów 

u

 i 

v

 

nazywamy wektor 

w

, który spełnia warunki:

1. jest prostopadły do płaszczyzny rozpiętej na wektorach 

u

 i 

v

 (rys. 5.3.1),

2. jego długość jest równa polu równoległoboku rozpiętego na wektorach 

u

 i 

v

, tj. równa 

sin

 v

u

, gdzie 

 jest 

miarą kąta między wektorami 

u

 i 

v

,

3. orientacja trójki wektorów 

w

v

u

,

,

 jest zgodna z orientacją układu współrzędnych Oxyz.

Iloczyn wektorowy pary wektorów  

u

  i  

v

  oznaczamy przez  

v

u

 

. Jeżeli jeden z wektorów  

u

,  

v

  jest wektorem 

zerowym lub wektory te są współliniowe, to przyjmujemy, że 

o

v

u

.

Rys.5.3.1 Wektor 

w

 jest iloczynem wektorowym wektorów  

u

 i 

v

.

Fakt 5.3.2 (wzór do obliczania iloczynu wektorowego)
Niech 

)

,

,

(

1

1

1

z

y

x

u

 oraz 

)

,

,

(

2

2

2

z

y

x

v

 będą wektorami w R

3

. Wtedy

2

2

2

1

1

1

z

y

x

z

y

x

k

j

i

v

u

,

gdzie 

k

j

i

,

,

 oznaczają wersory odpowiednio na osiach OxOyOz.

Fakt 5.3.3 (własności iloczynu wektorowego)
Niech 

w

v

u

,

,

 będą dowolnymi wektorami w R

3

 oraz niech 

  R. Wtedy

1.

u

v

v

u

,

2.

 

v

u

v

u

,

3.

w

v

w

u

w

v

u

,

4.

w

u

v

u

w

v

u

)

(

,

5.

v

u

v

u

,

6. wektory 

u

 i 

v

 są równoległe 

 

0

 v

u

.

Uwaga. Równość w nierówności 5 jest możliwa  tylko wtedy, gdy wektory  

u

  i  

v

  są prostopadłe. Iloczyn wektorów 

zapisanych jako kombinacje liniowe wersorów 

k

j

i

,

,

 można obliczyć stosując powyższe własności oraz wykorzystując 

tabelkę:

i

j

k

i

o

k

j

j

k

o

i

k

j

i

o

Def. 5.3.4 (moment siły)
Momentem siły 

F

 przyłożonej w punkcie P, względem punktu O nazywamy wektor 

M

 określony wzorem:

F

OP

M

.

28

background image

Rys. 5.3.2 Moment siły

5.4 ILOCZYN MIESZANY

Def. 5.4.1 (iloczyn mieszany)
Niech 

w

v

u

,

,

 będą wektorami w R

3

. Iloczyn mieszany uporządowanej trójki wektorów 

w

v

u

,

,

 określamy wzorem:

 

w

v

u

w

v

u

def

,

,

.

Fakt 5.4.2 (interpretacja geometryczna iloczynu mieszanego wektorów)
Iloczyn mieszany wektorów  

w

v

u

,

,

  jest równy (z dokładnością do znaku) objętości równoległościanu  V  rozpiętego na 

wektorach 

w

v

u

,

,

 (rys. 5.4.1).

w

v

u

V

,

,

.

Rys. 5.4.1 Równoległościan rozpięty ma wektorach 

w

v

u

,

,

Fakt 5.4.3 (wzór do obliczania iloczynu mieszanego)
Niech 

)

,

,

(

1

1

1

z

y

x

u

)

,

,

(

2

2

2

z

y

x

v

)

,

,

(

3

3

3

z

y

x

w

 będą wektorami w R

3

. Wtedy

3

3

3

2

3

2

1

1

1

,

,

z

y

x

z

y

x

z

y

x

w

v

u

.

Fakt 5.4.4 (własności iloczynu mieszanego)
Niech 

r

w

v

u

,

,

,

 będą wektorami w R

3

 oraz niech 

  R. Wtedy 

1.

)

,

,

(

)

,

,

(

u

w

v

w

v

u

,

2.

)

,

,

(

)

,

,

(

w

u

v

w

v

u

,

3.

)

,

,

(

)

,

,

(

)

,

,

(

w

v

r

w

v

u

w

v

r

u

,

4.

)

,

,

(

)

,

,

(

w

v

u

w

v

u

,

5. wektory 

w

v

u

,

,

 leżą w jednej płaszczyźnie 

 

0

)

,

,

(

w

v

u

,

6.

w

v

u

w

v

u

)

,

,

(

.

Uwaga. Równość w ostatniej nierówności jest możliwa tylko wtedy, gdy przynajmniej jeden z wektorów  

w

v

u

,

,

  jest 

zerowy albo, gdy te wektory są wzajemnie prostopadłe.

Objętość czworościanu V o wierzchołkach A

1

 = (x

1

,y

1

,z

1

), A

2

 = (x

2

,y

2

,z

2

), A

3

 = (x

3

,y

3

,z

3

), A

4

 = (x

4

,y

4

,z

4

) wyraża się wzorem:

1

1

1

1

det

6

1

4

4

4

3

3

3

2

2

2

1

1

1

z

y

x

z

y

x

z

y

x

z

y

x

V

.

29

background image

5.5 RÓWNANIA PŁASZCZYZNY

Fakt 5.5.1 (równanie normalne płaszczyzny)
Równanie płaszczyzny  

  przechodzącej przez punkt  P

0

  = (x

0

,y

0

,z

0

) o wektorze wodzącym  

0

r

  i prostopadłej do wektora 

o

C

B

A

n

)

,

,

(

 (rys. 5.5.1) ma postać:

0

)

(

:

0

n

r

r

,

gdzie 

)

,

,

(

0

0

0

z

y

x

r

 jest wektorem wodzącym punktów przestrzeni. Wektor 

n

 nazywamy wektorem normalnym tej 

płaszczyzny.

Rys. 5.5.1 Płaszczyzna 

 przechodzi przez punkt P

0

 i jest  prostopadła do wektora 

n

W formie rozwiniętej równanie płaszczyzny 

 przyjmuje postać:

0

)

(

)

(

)

(

:

0

0

0

z

z

C

y

y

B

x

x

A

.

Powyższe zależności nazywamy równaniami normalnymi płaszczyzny.

Fakt 5.5.2 (równanie ogólne płaszczyzny)
Każde równanie postaci:

0

:

D

Cz

By

Ax

,

gdzie |A| + |B| + |C| > 0, przedstawia płaszczyznę. Płaszczyzna ta ma wektor normalny 

)

,

,

(

C

B

A

n

 i przecina oś Oz w 

punkcie 

C

D

z

, o ile C 

 0 (rys. 5.5.2).

Rys. 5.5.2 Płaszczyzna 

 jest opisana przez równanie Ax + By + Cz + D = 0, C  0

Fakt 5.5.3 (równanie parametryczne płaszczyzny)
Równanie   płaszczyzny  

  przechodzącej   przez   punkt  P

0

  =   (x

0

,y

0

,z

0

)   o   wektorze   wodzącym  

0

r

  i   rozpiętej   na 

niewspółliniowych wektorach 

)

,

,

(

1

1

1

c

b

a

u

 i 

)

,

,

(

2

2

2

c

b

a

v

 (rys. 5.5.3) ma postać:

v

t

u

s

r

r

0

:

,   gdzie st 

 R

lub inaczej:

)

,

,

(

)

,

,

(

)

(

)

,

,

(

:

2

2

2

1

1

1

0

0

0

c

b

a

t

c

b

a

s

z

y

x

z

y

x

, gdzie st 

 R.

W formie rozwiniętej równanie tej płaszczyzny przyjmuje postać:

2

1

0

2

1

0

2

1

0

:

tc

sc

z

z

tb

sb

y

y

ta

sa

x

x

,   gdzie st 

 R.

Powyższe zależności nazywamy równaniami parametrycznymi płaszczyzny.

30

background image

Rys. 5.5.3 Płaszczyzna 

 przechodzi przez punkt P

0

 i jest równoległa do wektorów 

u

 i 

v

 

Fakt 5.5.4 (równanie płaszczyzny przechodzącej przez 3 punkty)
Równanie płaszczyzny 

 przechodzącej przez 3 niewspółliniowe punkty P

i

 = (x

i

,y

i

,z

i

), gdzie 1 

 i  3, (rys. 5.5.4) ma postać:

0

1

1

1

1

:

3

3

3

2

2

2

1

1

1

z

y

x

z

y

x

z

y

x

z

y

x

.

Rys. 5.5.4 Płaszczyzna wyznaczona przez trzy punkty

Fakt 5.5.5 (równanie odcinkowe płaszczyzny)
Równanie   płaszczyzny  

  odcinającej  na  osiach  Ox,  Oy,  Oz  układu  współrzędnych  odpowiednio  odcinki (zorientowane) 

abc 

 0 (rys. 5.5.5) ma postać:

1

:

c

z

b

y

a

x

.

Powyższą zależność nazywamy równaniem odcinkowym płaszczyzny.

Rys. 5.5.5 Płaszczyzna odcinająca na osiach układu odcinki abc

5.6 RÓWNANIA PROSTEJ

Fakt 5.6.1 (równanie parametryczne prostej)
Równanie prostej  l  przechodzącej przez punkt  P

0

  = (x

0

,y

0

,z

0

) o wektorze wodzącym  

0

r

  i wyznaczonej przez niezerowy 

wektor kierunku 

)

,

,

(

c

b

a

v

 (rys. 5.6.1) ma postać:

v

t

r

r

l

0

:

,   gdzie t 

 R

lub inaczej:

)

,

,

(

)

,

,

(

)

,

,

(

:

0

0

0

c

b

a

t

z

y

x

z

y

x

l

,   gdzie t 

 R.

Powyższą zależność nazywamy równaniem parametrycznym prostej w postaci wektorowej.

31

background image

Rys. 5.6.1 Prosta l przechodzi przez punkt P

0

 i jest równoległa do wektora 

v

 

Po rozpisaniu na współrzędne parametryczne prosta przyjmuje postać:

ct

z

z

bt

y

y

at

x

x

l

0

0

0

:

,   gdzie t 

 R.

Fakt 5.6.2 (równanie kierunkowe prostej)
Równanie prostej l przechodzącej przez punkt P

0

 = (x

0

,y

0

,z

0

) i wyznaczonej przez niezerowy wektor kierunku 

)

,

,

(

c

b

a

v

 

(rys. 5.6.2) ma postać:

c

z

z

b

y

y

a

x

x

l

0

0

0

:

.

Ten sposób zapisu równania parametrycznego prostej nazywamy jej równaniem kierunkowym.

Rys. 5.6.2 Prosta l przechodzi przez punkt P

0

 i jest równoległa do wektora 

v

 

Uwaga. Ponieważ jest to zapis umowny równania prostej, w mianownikach powyższych ułamków mogą wystąpić zera.
Fakt 5.6.3 (równanie krawędziowe prostej)
Równanie prostej  l, która jest częścią wspólną dwóch nierównoległych płaszczyzn  

0

:

1

1

1

1

1

D

z

C

y

B

x

A

0

:

2

2

2

2

2

D

z

C

y

B

x

A

 (rys. 5.6.3), ma postać:

0

0

:

2

2

2

2

1

1

1

1

D

z

C

y

B

x

A

D

z

C

y

B

x

A

l

.

Ten sposób zapisu prostej nazywamy jej równaniem krawędziowym.
Uwaga. Wektor kierunkowy 

v

 prostej l ma postać 

2

1

n

n

v

, gdzie 

)

,

,

(

1

1

1

1

C

B

A

n

)

,

,

(

2

2

2

2

C

B

A

n

.

32

background image

Rys. 5.6.3 Prosta l jest częścią wspólną płaszczyzn 

1

 i 

2

5.7 WZAJEMNE POŁOŻENIA PUNKTÓW, PROSTYCH I PŁASZCZYZN

Def. 5.7.1 (rzut punktu na płaszczyznę i na prostą)
Rzutem prostopadłym punktu P na płaszczyznę 

 nazywamy punkt P

/

 tej płaszczyzny (rys. 5.7.1) spełniający warunek:

/

PP

.

Rys. 5.7.1 Rzut prostopadły P

/

 punktu P na płaszczyznę 

 oraz odległość d punktu P od tej płaszczyzny

Podobnie rzutem prostopadłym punktu P na prostą l nazywamy punkt P

/

 tej prostej (rys. 5.7.2) spełniający warunek:

l

PP

/

.

Rys. 5.7.2 Rzut prostopadły P

/

 punktu P na prostą l oraz odległość d punktu P od tej prostej

Uwaga. W podobny sposób definiuje się rzut ukośny punktu na płaszczyznę lub prostą w kierunku ustalonego wktora.

Fakt 5.7.2 (odległość punktu od płaszczyzny)
Odległość d punktu P

0

 = (x

0

,y

0

,z

0

) od płaszczyzny 

0

:

D

Cz

By

Ax

 wyraża się wzorem:

2

2

2

0

0

0

C

B

A

D

Cz

By

Ax

d

.

Uwaga. Odległość punktu P od płaszczyzny 

 jest równa długości odcinka PP

/

, gdzie P

/

 jest rzutem prostopadłym punktu P na 

płaszczyznę  

 (rys. 5.7.1). Podobnie, odległość punktu P od prostej l jest równa długości odcinka PP

/

, gdzie P

/

 jest rzutem 

prostopadłym punktu P na prostą l (rys. 5.7.2).

Fakt 5.7.3 (odległość płaszczyzn równoległych)
Odległość

 d 

między

 

płaszczyznami

 

równoległymi

 

0

:

1

1

1

1

1

D

z

C

y

B

x

A

0

:

2

2

2

2

2

D

z

C

y

B

x

A

 (rys. 5.7.3) wyraża się wzorem:

2

2

2

2

1

C

B

A

D

D

d

.

33

background image

Rys. 5.7.3 Odległość między płaszczyznami 

1

 i 

2

Def. 5.7.4 (kąt nachylenia prostej do płaszczyzny)
Kątem   nachylenia   prostej  l  do   płaszczyzny  

  nazywamy kąt ostry    między prostą  l, a jej rzutem  prostopadłym  l

/

  na 

płaszczyznę  

  (rys. 5.7.4). Jeżeli prosta  l  jest równoległa do płaszczyzny  , to przyjmujemy, że kąt jej nachylenia do tej 

płaszczyzny jest równy 0.

Rys. 5.7.4 Kąt nachylenia prostej l do płaszczyzny 

Fakt 5.7.5 (miara kąta nachylenia prostej do płaszczyzny)
Kąt nachylenia 

 prostej o wektorze kierunkowym 

v

 do płaszczyzny o wektorze normalnym 

n

 wyraża się wzorem:

v

n

v

n

cos

arc

   lub   

v

n

v

n

cos

arc

2

.

Def. 5.7.6 (kąt między prostymi)
Kątem między prostymi nazywamy kąt ostry utworzony przez wektory kierunkowe tych prostych (rys. 5.7.5). Przyjmujemy, że 
kąt między prostymi równoległymi jest równy 0.

Rys. 5.7.5 Kąt między prostymi przecinającymi się oraz między prostymi skośnymi

Fakt 5.7.7 (miara kąta między prostymi)
Miarą kąta 

 między prostymi o wektorach kierunkowych 

1

v

 i 

2

v

 wyraża się wzorem:

2

1

2

1

cos

v

v

v

v

arc

.

Def. 5.7.8 (kąt między płaszczyznami)
Kątem między płaszczyznami nazywamy kąt ostry między wektorami normalnymi tych płaszczyzn (rys. 5.7.6). Przyjmujemy, 
że kąt między płaszczyznami równoległymi jest równy 0.

Rys. 5.7.6 Kąt między płaszczyznami

34

background image

Fakt 5.7.9 (miara kąta między płaszczyznami)
Miarą kąta 

 między płaszczyznami 

1

 i 

2

 o wektorach normalnych odpowiednio 

1

n

 i 

2

n

 wyraża się wzorem:

2

1

2

1

cos

n

n

n

n

arc

.

6. GEOMETRIA ANALITYCZNA NA PŁASZCZYŹNIE

6.1 PROSTA NA PŁASZCZYŹNIE

Fakt 6.1.1 (równanie prostej)
1. Równanie prostej l przechodzącej przez punkt P

0

 = (x

0

,y

0

) i nachylonej od dodatniej części osi Ox pod kątem 

 (rys. 6.1.1) 

ma postać:

)

(

tg

:

0

0

x

x

y

y

l

.

Rys. 6.1.1 

Rys. 6.1.2 

2. Równanie prostej l przechodzącej przez punkty P

1

 = (x

1

,y

1

), P

2

 = (x

2

,y

2

) (rys. 6.1.2) ma postać:

)

)(

(

)

)(

(

:

1

1

2

1

1

2

x

x

y

y

y

y

x

x

l

.

3. Równanie prostej l odcinającej na osiach Ox i Oy odcinki (skierowane) o długościach odpowiednio a i b, gdzie ab 

 0, 

(rys. 6.1.3) ma postać:

1

:

b

y

a

x

l

.

Jest to tzw. równanie odcinkowe prostej.

Rys. 6.1.3 

Rys. 6.1.4 

4. Równanie prostej l przechodzącej przez punkt P

0

 = (x

0

,y

0

) i mającej wektor normalny 

0

)

,

(

B

A

n

 (rys. 6.1.4) ma 

postać:

0

)

(

)

(

:

0

0

y

y

B

x

x

A

l

.

Jest to tzw. równanie normalne prostej.

Rys. 6.1.5 

Rys. 6.1.6 

5. Równanie parametryczne prostej l przechodzącej przez punkty P

1

 = (x

1

,y

1

), P

2

 = (x

2

,y

2

) (rys. 6.1.5) ma postać:

35

background image

t

y

y

y

y

t

x

x

x

x

l

)

(

)

(

:

1

2

1

1

2

1

,   t 

 R.

6. Równanie parametryczne (postać wektorowa) prostej l przechodzącej przez punkt P

0

 o wektorze wodzącym 

0

r

 i mającej 

kierunek zadany przez wektor 

v

 (rys. 6.1.6) ma postać:

v

t

r

r

l

0

:

,   t 

 R,

gdzie 

r

 jest promieniem wodzącym punktu P płaszczyzny.

Fakt 6.1.2 (warunki równoległości prostych)
1. Proste l

1

A

1

x + B

1

y + C

1

 = 0,  l

2

A

2

x + B

2

y + C

2

 = 0 są równoległe wtedy i tylko, gdy 

0

1

2

2

1

B

A

B

A

.

2. Proste l

1

y = m

1

x + b

1

l

2

y = m

2

x + b

2

 są równoległe wtedy i tylko wtedy, gdy 

2

1

m

m

.

3. Proste 

1

1

1

:

v

t

r

r

l

t 

 R

2

2

2

:

v

t

r

r

l

t 

 R, są równoległe wtedy i tylko wtedy, gdy 

2

1

v

k

v

 

 dla 

pewnego k 

 0.

Rys. 6.1.7 Proste równoległe

Fakt 6.1.3 (warunki prostopadłości prostych)
1. Proste l

1

A

1

x + B

1

y + C

1

 = 0,  l

2

A

2

x + B

2

y + C

2

 = 0 są prostopadłe wtedy i tylko, gdy 

0

2

1

2

1

B

B

A

A

.

2. Proste l

1

y = m

1

x + b

1

l

2

y = m

2

x + b

2

 są prostopadłe wtedy i tylko wtedy, gdy 

1

2

1

m

m

.

3. Proste 

1

1

1

:

v

t

r

r

l

t 

 R

2

2

2

:

v

t

r

r

l

t 

 R, są prostopadłe wtedy i tylko wtedy, gdy 

0

2

1

v

v

.

Rys. 6.1.8 Proste prostopadłe

Fakt 6.1.4 (kąt między prostymi)
1. Miara kąta ostrego 

 utworzonego przez proste l

1

A

1

x + B

1

y + C

1

 = 0,  l

2

A

2

x + B

2

y + C

2

 = 0 wyraża się wzorem:

2

2

2

2

2

1

2

1

2

1

2

1

)

(

)

(

)

(

)

(

cos

arc

B

A

B

A

B

B

A

A

.

2. Miara kąta ostrego 

 utworzonego przez proste l

1

y = m

1

x + b

1

l

2

y = m

2

x + b

2

 wyraża się wzorem:

2

1

2

1

1

g

arc

m

m

m

m

t

.

Jeżeli m

1

m

2

 = – 1, to przyjmujemy, że 

2

.

36

background image

Rys. 6.1.9 Kąt ostry między prostymi l

1

 i l

2

Fakt 6.1.5 (odległości punktów i prostych)
1. Odległość d punktów P

1

 = (x

1

,y

1

), P

2

 = (x

2

,y

2

) wyraża się wzorem:

2

1

2

2

1

2

2

1

)

(

)

(

y

y

x

x

P

P

d

.

Rys. 6.1.10 Odległość punktów P

1

 i P

2

Rys. 6.1.11 Odległość punktu P

0

 od prostej l

2. Odległość d punktu P

0

 = (x

0

,y

0

) od prostej lAx + By + C = 0 wyraża się wzorem:

2

2

0

0

0

)

,

(

B

A

C

By

Ax

l

P

d

d

.

3. Odległość d prostych l

1

A

1

x + B

1

y + C

1

 = 0,  l

2

A

2

x + B

2

y + C

2

 = 0 wyraża się wzorem:

2

2

2

1

2

1

)

,

(

B

A

C

C

l

l

d

d

.

Rys. 6.1.12 Odległość dwóch prostych równoległych

6.2 PRZEKSZTAŁCENIA PŁASZCZYZNY

Fakt 6.2.1 (przekształcenia płaszczyzny)
1. Współrzędne  punktu  P

/

  otrzymanego w wyniku  przesunięcia punktu  P  =  (x,y)  o wektor  

)

,

(

b

a

v

  wyrażają  się 

wzorami:



b

y

y

a

x

x

P

/

/

/

:

.

Rys. 6.2.1 Przesunięcie punktu P o wektor 

v

Rys. 6.2.2 Symetrie względem osi układu współrzędnych

2. Współrzędne punktów  P

/

  i  P

//

  otrzymanych w wyniku symetrii punktu  P  = (x,y) odpowiednio względem osi  Ox  i  Oy 

wyrażają się wzorami:

37

background image





y

y

x

x

P

/

/

/

:

,





y

y

x

x

P

//

//

//

:

.

3. Współrzędne punktu  P

/

  otrzymanego w wyniku symetrii punktu  P  = (x,y) względem początku układu współrzędnych 

wyrażają się wzorami:







y

y

x

x

P

/

/

/

:

.

Rys. 6.2.3 Symetria względem początku układu 

współrzędnych

Rys. 6.2.4 Obrót wokół początku układu współrzędnych o 

kąt 

4. Współrzędne punktu P

/

 otrzymanego w wyniku obrotu punktu P = (x,y) wokół początku układu współrzędnych o kąt 

 (w 

kierunku przeciwnym do ruchu wskazówek zegara) wyrażają się wzorami:



cos

sin

sin

cos

:

/

/

/

y

x

y

y

x

x

P

.

5. Współrzędne punktów P

/

 i P

//

 otrzymanych w wyniku podobieństw (powinowactw) punktu P = (x,y) w skali k względem 

odpowiednio osi Ox i Oy wyrażają się wzorami:



ky

y

x

x

P

/

/

/

:

,



y

y

kx

x

P

//

//

//

:

.

Rys. 6.2.5 Podobieństwo w skali k=-

1

/

2

 względem osi 

Ox oraz podobieństwo w skali k=

1

/

3

 względem osi 

Oy

Rys. 6.2.6 Jednokładność w skali k=2 względem 

początku układu współrzędnych

6. Współrzędne punktu  P

/

  otrzymanego w wyniku jednokładności (podobieństwa) punktu  P  = (x,y) w skali  k  względem 

początku układu współrzędnych wyrażają się wzorami:



ky

y

kx

x

P

/

/

/

:

.

Fakt 6.2.2 (równania krzywych przesuniętych i obróconych)

38

background image

1. Niech  

  oznacza zbiór punktów (x,y)    R

2

  spełniających równanie  F(x,y) = 0. Wtedy zbiór  

/

  otrzymany w wyniku 

przesunięcia zbioru 

 o wektor 

)

,

(

b

a

v

 jest opisany przez równanie:

0

)

,

(

:

/

b

y

a

x

F

.

Rys. 6.2.7 Zbiór 

/

 

powstał w wyniku przesunięcia zbior 

 o wektor 

v

2. Niech 

 oznacza zbiór punktów (x,y)  R

2

 spełniających równanie F(x,y) = 0. Wtedy zbiór 

/

 otrzymany w wyniku obrotu 

zbioru 

 wokół początku układu współrzędnych o kąt 

 jest opisany przez równanie:

0

)

cos

sin

,

sin

cos

(

:

/

y

x

y

x

F

.

Rys. 6.2.8 Zbiór 

/

 

powstał ze zbioru 

 w wyniku jego obrotu wokół początku układu współrzędnych o kąt  

Uwaga. Podobną postać mają równania zbiorów 

/

 otrzymanych w wyniku zastosowania do zbioru 

 = {(x,y)R

2

F(x,y) = 0} 

pozostałych przekształceń płaszczyzny, tj. symetrii osiowej lub punktowej, podobieństwa względem prostej lub punktu.

6.3 KRZYWE STOŻKOWE

Def. 6.3.1 (okrąg)
Okręgiem o środku w punkcie  O  i promieniu  r  > 0 nazywamy zbiór punktów płaszczyzny położonych w odległości  r  od 
punktu O (rys. 6.3.1).

Rys. 6.3.1 Okrąg o środku w punkcie O i promieniu r

Fakt 6.3.2 (równanie okręgu)
Równanie okręgu o środku w początku układu współrzędnych i promieniu r > 0 ma postać:

2

2

2

r

y

x

.

Def 6.3.3 (elipsa)
Elipsą o ogniskach w punktach  F

1

,  F

2

  oraz o dużej osi 2a, gdzie 2a  > 2c  = |F

1

F

2

|, nazywamy zbiór punktów płaszczyzny, 

których suma odległości od ognisk F

1

 i F

2

 jest stała i równa 2a (rys. 6.3.2)

a

PF

PF

2

2

1

.

Rys. 6.3.2 Elipsa o ogniskach F

1

 i F

2

39

background image

Fakt 6.3.4 (równanie elipsy)
Równanie elipsy o środku w początku układu współrzędnych i półosiach a > 0 i b > 0 ma postać:

1

2

2

2

2

b

y

a

x

.

Zależność między półosiami ab oraz ogniskową c elipsy ma postać:

2

2

2

c

b

a

.

Def. 6.3.5 (hiperbola)
Hiperbolą o ogniskach w punktach F

1

F

2

 oraz o dużej osi 2a, gdzie 2a < 2c = |F

1

F

2

|, nazywamy zbiór punktów płaszczyzny, 

których wartość bezwzględna różnicy odległości od ognisk F

1

 i F

2

 jest stała i równa 2a (rys. 6.3.3)

a

PF

PF

2

2

1

.

Rys. 6.3.3 Hiperbola o ogniskach F

1

 i F

2

Fakt 6.3.6 (równanie hiperboli)
Równanie hiperboli o środku w początku układu współrzędnych i półosiach rzeczywistej a > 0 i urojonej b > 0 ma postać:

1

2

2

2

2

b

y

a

x

.

Zależność między półosiami ab oraz ogniskową c hiperboli ma postać:

2

2

2

c

b

a

.

Asymptoty hiperboli mają równania:

x

a

b

y

l

:

,

x

a

b

y

l

:

/

.

Def. 6.3.7 (parabola)
Parabolą o ognisku w punkcie  F  i kierownicy  k, nazywamy zbiór punktów płaszczyzny, których odległość od ogniska jest 
równa ich odległości od kierownicy (rys. 6.3.4).

)

,

(

k

P

d

PK

PF

.

Rys. 6.3.4 Parabola o ognisku F i kierownicy k

Fakt 6.3.8 (równania paraboli)

1. Równanie paraboli, której ognisko F ma współrzędne 

0

,

2

p

, gdzie p 

 0, a kierownica k ma równanie 

2

p

x

 ma 

postać:

px

y

2

2

.

40

background image

2. Równanie  

c

bx

ax

y

2

,   gdzie  a 

  0,   przedstawia   parabolę.   Osią   tej   paraboli   jest   prosta  

a

b

x

2

,   a 

wierzchołek 

)

,

(

w

w

y

x

W

 ma współrzędne określone wzorami:

a

b

x

w

2

,  

a

y

w

4

,  gdzie 

ac

b

4

2

.

Jeżeli a > 0, to parabola ma ramiona skierowane do góry, a dla a < 0 na dół.

Rys. 6.3.5 Parabola o równaniu y = ax

2

 + bx + c, gdzie a 

 0

Uwaga. Okrąg, elipsę, parabolę i hiperbolę nazywamy krzywymi stożkowymi, gdyż każda z nich jest przekrojem powierzchni 
bocznej stożka pewną płaszczyzną.

Fakt 6.3.9 (równania parametryczne krzywych stożkowych)
1. Równanie parametryczne elipsy E o środku w początku układu współrzędnych i półosiach a > 0, b > 0 ma postać

t

b

y

t

a

x

E

sin

cos

:

,   t 

 [0,2).

Gdy przyjmiemy a = b = r, to otrzymany równanie parametryczne okręgu.

2. Równanie paramrtryczne hiperboli H o środku w początku układu współrzędnych i półosi rzeczywistej a > 0 oraz półosi 

urojonej b > 0 ma postać:



t

b

y

t

a

x

H

sh

ch

:

t 

 R.

Uwaga. Przyjmując we wzorze znak „+” otrzymamy prawą gałąź hiperboli, a przyjmując znak  „–” otrzymamy lewą gałąź.

Fakt 6.3.10 (równania stycznych do krzywych stożkowych)
1. Równanie stycznej s do okręgu Ox

2

 + y

2

 = r

2

 wystawionej w punkcie P

1

 = (x

1

,y

1

) należącym do tego okręgu ma postać:

2

1

1

:

r

y

y

x

x

s

.

Rys. 6.3.6 Styczna do okręgu O w punkcie P

1

2. Równanie stycznej s do elipsy 

1

:

2

2

2

2

b

y

a

x

E

 wystawionej w punkcie P

1

 = (x

1

,y

1

) należącym do tej elipsy ma postać:

1

:

2

1

2

1

b

y

y

a

x

x

s

.

41

background image

Rys. 6.3.7 Styczna do elipsy E w punkcie P

1

3. Równanie stycznej s do hiperboli 

1

:

2

2

2

2

b

y

a

x

H

 wystawionej w punkcie P

1

 = (x

1

,y

1

) należącym do tej hiperboli ma 

postać:

1

:

2

1

2

1

b

y

y

a

x

x

s

.

Rys. 6.3.8 Styczna do hiperboli h w punkcie P

1

4. Równanie stycznej s do paraboli Py

2

 = 2px wystawionej w punkcie P

1

 = (x

1

,y

1

) należącym do tej paraboli ma postać:

)

(

:

1

1

x

x

p

y

y

s

.

Rys. 6.3.9 Styczna do paraboli P w punkcie P

1

42


Document Outline