BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
1 (8)
Document Number 85004
N–Channel Dual Gate MOS-Fieldeffect Tetrode,
Depletion Mode
Electrostatic sensitive device.
Observe precautions for handling.
Applications
Input- and mixer stages especially UHF-tuners.
Features
D
Integrated gate protection diodes
D
High cross modulation performance
D
Low noise figure
D
High AGC-range
D
Low feedback capacitance
D
Low input capacitance
1
4
3
2
94 9307
96 12647
BF966S Marking: BF966S
Plastic case (TO 50)
1=Drain, 2=Source, 3=Gate 1, 4=Gate 2
G
2
G
1
D
S
12623
Absolute Maximum Ratings
T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Type
Symbol
Value
Unit
Drain - source voltage
V
DS
20
V
Drain current
I
D
30
mA
Gate 1/Gate 2 - source peak current
±
I
G1/G2SM
10
mA
Total power dissipation
T
amb
≤
60
°
C
P
tot
200
mW
Channel temperature
T
Ch
150
°
C
Storage temperature range
T
stg
–55 to +150
°
C
Maximum Thermal Resistance
T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Symbol
Value
Unit
Channel ambient
on glass fibre printed board (40 x 25 x 1.5) mm
3
plated with 35
m
m Cu
R
thChA
450
K/W
BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
2 (8)
Document Number 85004
Electrical DC Characteristics
T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Type
Symbol
Min
Typ
Max
Unit
Drain - source
breakdown voltage
I
D
= 10
m
A, –V
G1S
= –V
G2S
= 4 V
V
(BR)DS
20
V
Gate 1 - source
breakdown voltage
±
I
G1S
= 10 mA, V
G2S
= V
DS
= 0
±
V
(BR)G1SS
8
14
V
Gate 2 - source
breakdown voltage
±
I
G2S
= 10 mA, V
G1S
= V
DS
= 0
±
V
(BR)G2SS
8
14
V
Gate 1 - source
leakage current
±
V
G1S
= 5 V, V
G2S
= V
DS
= 0
±
I
G1SS
50
nA
Gate 2 - source
leakage current
±
V
G2S
= 5 V, V
G1S
= V
DS
= 0
±
I
G2SS
50
nA
Drain current
V
DS
= 15 V, V
G1S
= 0, V
G2S
= 4 V
BF966S
I
DSS
4
18
mA
DS
G1S
G2S
BF966SA
I
DSS
4
10.5
mA
BF966SB
I
DSS
9.5
18
mA
Gate 1 - source
cut-off voltage
V
DS
= 15 V, V
G2S
= 4 V, I
D
= 20
m
A
–V
G1S(OFF)
2.5
V
Gate 2 - source
cut-off voltage
V
DS
= 15 V, V
G1S
= 0, I
D
= 20
m
A
–V
G2S(OFF)
2.0
V
Electrical AC Characteristics
V
DS
= 15 V, I
D
= 10 mA, V
G2S
= 4 V, f = 1 MHz , T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Symbol
Min
Typ
Max
Unit
Forward transadmittance
y
21s
15
18.5
mS
Gate 1 input capacitance
C
issg1
2.2
2.6
pF
Gate 2 input capacitance
V
G1S
= 0, V
G2S
= 4 V
C
issg2
1.1
pF
Feedback capacitance
C
rss
25
35
fF
Output capacitance
C
oss
0.8
1.2
pF
Power gain
G
S
= 2 mS, G
L
= 0.5 mS, f = 200 MHz
G
ps
25
dB
g
G
S
= 3,3 mS, G
L
= 1 mS, f = 800 MHz
G
ps
18
dB
AGC range
V
G2S
= 4 to –2 V, f = 800 MHz
D
G
ps
40
dB
Noise figure
G
S
= 2 mS, G
L
= 0.5 mS, f = 200 MHz
F
1.0
dB
g
G
S
= 3,3 mS, G
L
= 1 mS, f = 800 MHz
F
1.8
dB
BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
3 (8)
Document Number 85004
Typical Characteristics (T
amb
= 25
_
C unless otherwise specified)
0
50
100
150
200
250
300
0
20
40
60
80
100 120 140 160
T
amb
– Ambient Temperature (
°
C )
96 12159
P
–
T
otal Power Dissipation ( mW
)
tot
Figure 1. Total Power Dissipation vs.
Ambient Temperature
0
4
8
12
16
20
24
28
32
36
0
2
4
6
8
10
12
14
16
V
DS
– Drain Source Voltage ( V )
12762
I – Drain Current ( mA
)
D
V
G1S
= 2V
1.5V
1V
0V
–0.5V
–1V
0.5V
V
G2S
= 4V
Figure 2. Drain Current vs. Drain Source Voltage
0
10
20
30
40
50
60
70
80
90
100
–1
0
1
2
3
4
5
V
G1S
– Gate 1 Source Voltage ( V )
12763
I – Drain Current ( mA
)
D
V
G2S
= 6V
5V
4V
0V
2V
1V
3V
V
DS
= 15V
–1V
Figure 3. Drain Current vs. Gate 1 Source Voltage
0
10
20
30
40
50
60
70
80
–1
0
1
2
3
4
5
V
G2S
– Gate 2 Source Voltage ( V )
12764
I – Drain Current ( mA
)
D
0V
2V
1V
3V
V
DS
= 15V
–1V
V
G1S
= 4V
Figure 4. Drain Current vs. Gate 2 Source Voltage
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
3
6
9
12 15 18 21 24 27 30
I
D
– Drain Current ( mA )
12765
C – Gate 1 Input Capacitance ( pF )
issg1
V
DS
=15V
V
G2S
=4V
f=1MHz
Figure 5. Gate 1 Input Capacitance vs. Drain Current
0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
0
2
4
6
8
10 12 14 16 18 20
V
DS
– Drain Source Voltage ( V )
12766
C – Output Capacitance ( pF )
oss
V
G2S
=4V
I
D
=10mA
f=1MHz
Figure 6. Output Capacitance vs. Drain Source Voltage
BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
4 (8)
Document Number 85004
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
–3
–2
–1
0
1
2
3
4
5
6
V
G2S
– Gate 2 Source Voltage ( V )
12767
C – Gate 2 Input Capacitance ( pF )
issg2
V
DS
=15V
V
G1S
=0
f=1MHz
Figure 7. Gate 2 Input Capacitance vs.
Gate 2 Source Voltage
–70
–60
–50
–40
–30
–20
–10
0
10
–5
–4
–3
–2
–1
0
1
2
3
V
G1S
– Gate 1 Source Voltage ( V )
12768
S –
T
ransducer
Gain
(
dB
)
2
21
4V
0V
2V
1V
3V
f= 200MHz
–0.5V
V
G2S
=–2...–3V
–1V
Figure 8. Transducer Gain vs. Gate 1 Source Voltage
0
2
4
6
8
10
12
14
16
18
20
22
24
0
5
10
15
20
25
30
I
D
– Drain Current ( mA )
12769
Y
– Forward
T
ransadmittance ( mS )
21S
V
DS
=15V
f=1MHz
V
G2S
=4V
2V
3V
1V
0.5V
0V
Figure 9. Forward Transadmittance vs. Drain Current
0
2
4
6
8
10
12
14
16
18
20
0
2
4
6
8
10 12 14 16 18 20
Re (y
11
) ( mS )
12770
Im ( y ) ( mS )
11
V
DS
=15V
V
G2S
=4V
f=100...1300MHz
f=1300MHz
700MHz
400MHz
1000MHz
100MHz
I
D
=5mA
I
D
=10mA
I
D
=20mA
Figure 10. Short Circuit Input Admittance
–0.1
0.0
0.1
0.2
0.3
0
0.1
0.2
0.3
0.4
0.5
Re (y
12
) ( mS )
12772
Im ( y ) ( mS )
12
V
DS
=15V
V
G2S
=4V
f=100...1300MHz
f=1300MHz
700MHz
I
D
=5mA
10mA
20mA
1000MHz
Figure 11. Short Circuit Reverse Transfer Admittance
–40
–35
–30
–25
–20
–15
–10
–5
0
5
–8
–4
0
4
8
12
16
20
24
Re (y
21
) ( mS )
12771
Im ( y ) ( mS )
21
V
DS
=15V
V
G2S
=4V
f=100...1300MHz
f=100MHz
1300MHz
1000MHz
400MHz
700MHz
I
D
=5mA
10mA
20mA
Figure 12. Short Circuit Forward Transfer Admittance
BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
5 (8)
Document Number 85004
0
1
2
3
4
5
6
7
8
0
0.5
1.0
1.5
2.0
2.5
Re (y
22
) ( mS )
12773
Im ( y ) ( mS )
22
V
DS
=15V
V
G2S
=4V
f=100...1300MHz
f=1300MHz
1000MHz
400MHz
100MHz
I
D
=5mA
20mA
700MHz
I
D
=10mA
Figure 13. Short Circuit Output Admittance
BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
6 (8)
Document Number 85004
V
DS
= 15 V, I
D
= 5 to 20 mA, V
G2S
= 4 V , Z
0
= 50
W
S
11
12 924
–j0.2
–j0.5
–j
–j2
–j5
0
j0.2
j0.5
j
j2
j5
1
ÁÁÁ
ÁÁÁ
0.2
ÁÁÁ
ÁÁÁ
0.5
ÁÁ
ÁÁ
1
ÁÁ
ÁÁ
2
ÁÁ
ÁÁ
5
1300MHz
400
700
1000
100
Figure 14. Input reflection coefficient
S
21
12 926
0
°
90
°
180
°
–90
°
0.8
1.6
–150
°
–120
°
–60
°
–30
°
120
°
150
°
60
°
30
°
1300MHz
400
700
1000
100
–30
°
I
D
= 20mA
10mA
5mA
Figure 15. Forward transmission coefficient
S
12
12 925
0
°
90
°
180
°
–90
°
0.008
0.016
–150
°
–120
°
–60
°
–30
°
120
°
150
°
60
°
30
°
1300MHz
400
100
1000
I
D
= 20mA
10mA
5mA
Figure 16. Reverse transmission coefficient
S
22
12 927
–j0.2
–j0.5
–j
–j2
–j5
0
j0.2
j0.5
j
j2
j5
1
ÁÁ
0.2
ÁÁ
0.5
ÁÁ
1
ÁÁ
2
ÁÁ
5
1300MHz
700
100
Figure 17. Output reflection coefficient
BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
7 (8)
Document Number 85004
Dimensions in mm
96 12242
BF966S
Vishay Telefunken
www.vishay.de
•
FaxBack +1-408-970-5600
Rev. 3, 20-Jan-99
8 (8)
Document Number 85004
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423