1
ROZDZIAŁ 16
2
16.
Instalacje elektryczne funkcjonujące w czasie pożaru oraz ich ochrona.................. 3
16.1.
Pożary w pomieszczeniach i krzywe symulujące pożary ..........................................................................................................3
16.2.
Bezpieczeństwo pożarowe........................................................................................................................................................7
16.3.
Dobór przewodów zasilających urządzenia ppoż. funkcjonujące w czasie pożaru .................................................................22
3
16.
Instalacje elektryczne funkcjonujące w czasie pożaru oraz ich ochrona
16.1. Pożary w pomieszczeniach i krzywe symulujące pożary
Zgodnie z definicją pożar stanowi szybkie spalanie materiałów palnych o niekontrolowanym rozprzestrzenianiu się
w czasie i przestrzeni.
Natomiast spalanie jest egzotermiczną reakcją substancji z utleniaczem połączoną z emisją wyziewów, której
zwykle towarzyszą płomienie i/lub żarzenie się i/lub emisja dymów.
Podczas pożaru w budynku można wydzielić następujące obszary:
- pomieszczenia objęte pożarem
- obszary chronione (np. drogi ewakuacyjne)
- obszary bezpieczne, do których odbywa się ewakuacja w przypadku, gdy nie ma możliwości
wyprowadzenia ludzi na zewnątrz budynku.
Pożary w pomieszczeniach
Pod określeniem pomieszczenia należy rozumieć część budynku wydzieloną przegrodami budowlanymi o
odporności pożarowej na tyle wysokiej by mogły przetrwać pożar do czasu bezpiecznego wyewakuowania ludzi.
Skuteczność biernej ochrony przeciwpożarowej powinna być na tyle skuteczna by uniemożliwić się jego
przedostanie poza pomieszczenia objęte pożarem a zaliczone do jednej strefy pożarowej do czasu przybycia
straży pożarnej i zastosowania przez nią środków czynnej ochrony przeciwpożarowej.
Przebieg pożaru w budynku można podzielić na dwa zasadnicze okresy:
1. Powstanie pożaru. W tym okresie pod wpływem oddziaływania termicznego powstaje małe źródło ognia.
Ogień ten stopniowo rozprzestrzenia się na pojedyncze przedmioty.
2. Pożar rozwinięty. Okres ten rozpoczyna się w chwili w chwili rozgorzenia (detonacyjnego spalania się
dymu wskutek intensywnego dopływu powietrza) i obejmuje dwie fazy:
- wzrost temperatury
- studzenie.
Graficzną ilustrację przebiegu pożaru w pomieszczeniu przedstawia rysunek 16.1.
Rys. 16.1: Przebieg przykładowego pożaru w pomieszczeniu zobrazowany przez krzywą „temperatura-czas[157]
T
p
- przebieg przykładowego pożaru; T
n
– krzywa normowa.
Największe oddziaływanie pożaru na budynek następuje w fazie wzrostu temperatury.
4
Wzrost temperatury w funkcji czasu trwania pożaru w pomieszczeniu zależy od wielu czynników, z których
najważniejsze to:
- gęstość obciążenia ogniowego
*)
- wentylacja pożarowa
- pojemność cieplna przegród
- geometria pomieszczeń
- obecność Systemu Alarmu Pożarowego (SAP) oraz
Stałych Urządzeń Gaśniczych (SUG)
- czas przystąpienia do akcji gaśniczej i sposób jej prowadzenia.
Krzywe symulujące przebieg pożarów
Zgodnie z normą EN 1363-2:1999[278], zostały zdefiniowane następujące krzywe „temperatura-czas”
symulujących przebieg pożarów w pomieszczeniach:
- krzywa normowa
- krzywa węglowodorowa
- krzywa zewnętrzna
- krzywe parametryczne
- krzywe tunelowe.
Najbardziej znana jest krzywa normowa „temperatura – czas” obrazująca pożary celulozowe, która jest
powszechnie stosowana w badaniach ogniowych budynków.
Krzywą tą opisuje następujące równanie [157]:
20
)
1
8
lg(
345
+
+
=
t
T
(16.1)
gdzie:
T – temperatura, w
]
[
0
C
t – czas, w [min]
Przykład krzywej normowej odzwierciedlającej rozwój temperatury w pożarach celulozowych, to jest w pożarach,
w których paliwem jest głównie drewno i materiały drewnopodobne została przedstawiona na rysunku 16.2.
Rys. 16.2: Krzywa normowa „temperatura – czas” obrazująca pożary celulozowe [157]
*)Gęstość obciążenia ogniowego (Q) jest to określona w megadżulach (MJ) średnia wartość cieplna wszystkich materiałów palnych zgromadzonych na 1 metrze
kwadratowym budynku lub wydzielonych w nim poszczególnych stref pożarowych. Zasady, według których oblicza się wartość obciążenia ogniowego, określa norma
PN-
B-02852:2001: „Ochrona przeciwpożarowa w budownictwie. Obliczanie obciążenia ogniowego oraz wyznaczanie względnego czasu trwania pożaru”. Jednostką obciążenia
ogniowego jest 1 MJ/m
2
.[279]
5
Podczas pożaru w budynku temperatura po około 30 minutach od chwili jego zainicjowania osiąga średnio
wartość około 800
0
C i wykazuje nieznaczne tendencje wzrostowe wraz z upływem czasu trwania pożaru:
o
po 30min temperatura osiąga ok. 822
O
C;
o
po 60min temperatura osiąga ok. 928
O
C;
o
po 90min temperatura osiąga ok. 955
O
C.
Krzywa węglowodorowa
Pożary, w których głównym czynnikiem jest ropa naftowa lub jej pochodne – węglowodory, są określane mianem
pożarów węglowodorowych.
Pożary symulowane przez tą krzywą określa następujący wzór [157]:
20
)]
t
5
,
2
exp(
675
,
0
)t
167
,
0
exp(
325
,
0
1
[
1080
T
+
−
−
−
−
=
(16.2)
gdzie:
T – temperatura, w
]
[
0
C
t – czas, w [min]
Równanie (18.2) graficznie przedstawia rysunek 16.3.
Rys. 16.3: Krzywa węglowodorowa „temperatura – czas” obrazująca pożary węglowodorowe [157]
W pożarach węglowodorowych ma miejsce szybszy wzrost temperatury i są uzyskiwane większe wartości
temperatury niż przy pożarach celulozowych.
Krzywa zewnętrzna
W przypadku nienośnych przegród zewnętrznych (np. ścian osłonowych) wzrost temperatury po stronie
nienagrzewanej jest niższy na skutek chłodzenia powietrzem zewnętrznym.
Takie przypadki przez okres pierwszych 10 minut trwania pożaru symulowane są przez krzywą zewnętrzną, której
przebieg jest określony następującym wzorem [157]:
6
20
)]
8
,
3
exp(
31
,
0
)
32
,
0
exp(
687
,
0
1
[
660
+
−
−
−
−
=
t
t
T
(16.3)
gdzie:
T – temperatura, w
]
[
0
C
t – czas, w [min]
Równanie (18.3) graficznie przedstawia rysunek 16.4.
Rys. 16.4: Krzywa zewnętrzna „temperatura – czas” [157]
Krzywa pełzająca
W przypadku szczególnym pożar początkowo może rozwijać się powoli i wskutek zmiany warunków (np.
gwałtowny dopływ powietrza) może przekształcić się w pożar rozwinięty.
Takie pożary symulowane są krzywą pełzającą, której przebieg w czasie opisuje się następującymi wzorami [157]:
{
20
]
1
)
20
(
8
[
lg
345
:
.
min
21
20
154
:
.
min
21
0
25
,
0
+
+
−
∗
=
>
+
∗
=
≤
<
t
T
t
t
T
t
(16.4)
Równania (18.4) graficznie przedstawia rysunek 16.5.
Rys. 16.5: Krzywa pełzająca „temperatura – czas” [157]
7
Oprócz przedstawionych krzywych symulujących przebieg pożaru w pomieszczeniach istnieją krzywe
parametryczne, które pozwalają na tworzenie indywidualnych krzywych dla pożarów w konkretnych
pomieszczeniach o znanych parametrach.
Problem ten wykracza poza ramy niniejszego opracowania i zostanie pominięty.
Krzywe tunelowa
Szczególną grupę pożarów stanowią pożary w tunelach komunikacyjnych, które jako budowle odróżnia:
- długość, która jest niewspółmiernie wielka w porównaniu z pozostałymi wymiarami tunelu
- wentylacja pożarowa zależna od długości tunelu
- znikome odprowadzanie ciepła na zewnątrz.
Wskutek znikomego odprowadzania ciepła na zewnątrz temperatury pożarowe osiągają najwyższe wartości ze
wszystkich pożarów w obiektach budowlanych.
Pożary te są symulowane przez krzywe tunelowe:
- niemiecką RABT
- holenderską Rijkswaterstaat.
Przebiegi obydwu krzywych przedstawia rysunek16.6.
Rys.18. 6: Krzywe tunelowe „temperatura – czas” [157]
1. niemiecka RABT; 2- holenderska Rijkswaterstaat.
16.2. Bezpieczeństwo pożarowe
Bezpieczeństwo pożarowe jest jednym z podstawowych wymagań stawianym obiektom budowlanym przez przepisy techniczno –
prawne (w tym Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 roku w sprawie warunków technicznych jakim powinny
odpowiadać budynki i ich usytuowanie [Dz. U. Nr 75/2002 poz.690 z późniejszymi zmianami] [89]
1)
, szczególnie zaliczanych do kategorii
zagrożenia ludzi.
1
W dniu złożenia książki do druku funkcjonował Projekt Rozporządzenia Ministra Infrastruktury zmieniający rozporządzenie w sprawie warunków
technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.
Projekt ten został skierowany do Rady Europy i po zatwierdzeniu zastąpi dotychczas obowiązujące rozporządzenie. Jest on dostępny na stronach
internetowych Ministerstwa Infrastruktury:
www.mi.gov.pl
8
Według dyrektywy Unii Europejskiej 89/106/EEC z grudnia 1988 r. jakość materiałów i wyrobów budowlanych powinna być taka aby
dobrze zaprojektowany i wykonany budynek mógł spełniać następujące wymagania:
- nośność i stateczność
- bezpieczeństwo pożarowe
- higienę i zdrowie
- bezpieczeństwo użytkowania
- ochronę przed hałasem
- oszczędność energii i zachowanie ciepła.
Analizując zagrożenie związane z eksploatacją instalacji elektrycznych, okazuje się że znaczna część pożarów powstaje na skutek
niewłaściwego doboru, użytkowania i wykonania instalacji a zwłaszcza przewodów i kabli elektrycznych.
Bezpieczeństwo użytkowania instalacji w budynkach sprowadza się głównie do zapewnienia ochrony przed:
- porażeniem prądem elektrycznym,
- prądami przetężeniowymi,
- przepięciami łączeniowymi oraz pochodzących od wyładowań atmosferycznych,
- negatywnymi skutkami oddziaływania cieplnego,
- negatywnym oddziaływaniem na środowisko i otoczenie.
Z punktu widzenia bezpieczeństwa pożarowego najważniejszym zagadnieniem jest zapewnienie ochrony przed oddziaływaniem
cieplnym instalacji na otoczenie i odwrotnie.
Aby zmniejszyć ryzyko powstania pożaru i ograniczyć negatywne skutki należy na etapie projektowania dokonać właściwego doboru
rozwiązań i zapewnić późniejsze poprawne wykonanie instalacji.
Dobór kabli lub przewodów polega na wyznaczeniu minimalnego ich przekroju ze względu na:
- długotrwałą obciążalność prądową i przeciążalność,
- warunki zwarciowe,
- spadek napięcia,
- skuteczność ochrony przeciwporażeniowej.
Bardzo istotnym zagadnieniem jest dobór właściwej izolacji ze względu na napięcie nominalne. Przewód lub kabel o niepoprawnie
dobranej izolacji będzie ulegał szybkiemu nagrzewaniu wskutek prądów upływowych, które w konsekwencji mogą doprowadzić do
zapalenia się izolacji. Dobierając kable lub przewody należy również przeanalizować warunki środowiskowe w jakich będą one
pracowały.
Wytyczne w zakresie doboru przewodów do warunków otoczenia przedstawia tabela 16.1.
9
1)
Tab. 16.1: Przykłady doboru przewodów do warunków otoczenia [260]
L.p. Rodzaj
oddziaływania Przykład pomieszczenia
Wymagania dla izolacji kabli
1. Niska
wilgotność
pomieszczenia suche, pokoje, mieszkania,
szkoły, budynki zamieszkania zbiorowego
kable ogólnego przeznaczenia
2. Wysoka
wilgotność
pomieszczenia o dużej wilgotności, wiaty,
piwnice, magazyny,
kable z izolacją odporną na wnikanie wilgoci
3.
Obszary i przestrzenie
mokre i o bardzo dużej
wilgotności
instalacje podziemne, napowietrzne,
pralnie, myjnie samochodowe,
kable z izolacją odporną na działanie wilgoci i
wpływy atmosferyczne
4. Wysoka
temperatura
pomieszczenia o temperaturze powyżej
temperatury otoczenia np. odlewnie, huty,
hartownie
Kable z izolacją odporną na działanie
podwyższonej temperatury.
5. Zimno pomieszczenia o temperaturze poniżej -
10
o
C np. chłodnie,
Kable z izolacją z materiału mrozoodpornego
6.
Obszary szczególnie
zagrożone możliwością
powstania pożaru
magazyny materiałów łatwopalnych, kina,
teatry, centra handlowe
Kable z izolacją z materiałów trudnozapalnych,
nie rozprzestrzeniających płomienia o małej
wartości wydzielanej energii, nie wydzielające
podczas spalania substancji szkodliwych i
toksycznych.
7.
Obszary zagrożone
wybuchem
magazyny cieczy i gazów, pomieszczenia w
których może wytworzyć się mieszanina
pyłów lub par z powietrzem
Kable o odpowiedniej konstrukcji
umożliwiające wykonanie instalacji i
uszczelnień w przejściach do których są
doprowadzone.
8.
Materiały agresywne
chemicznie
Magazyny i pomieszczenia produkcyjne
Izolacja kabla powinna być wykonana z
materiałów odpornych na działanie substancji
tam występujących
9.
Oleje, smary, paliwa
Pomieszczenia magazynowe, rafinerie,
stacje benzynowe, bazy paliw płynnych
Izolacje wykonane z tworzyw odpornych na
działanie olejów i rozpuszczalników.
Właściwy dobór kabli powoduje iż są one bardziej trwałe, nie stanowią zagrożenia a izolacja nie ulega tak szybkiemu uszkodzeniu a tym
samym zmniejsza się ryzyko powstania pożaru wskutek uszkodzenia izolacji.
Zagrożenia stwarzane przez palące się kable
W praktyce nie można wykluczyć możliwości powstania pożaru wskutek działania termicznego kabli i przewodów. Cechą
charakterystyczną kabli i przewodów elektrycznych jest łatwość zapłonu czyli mała odporność na działanie zewnętrznych źródeł ognia,
w praktyce określana najniższą wartością temperatury otoczenia, przy której następuje samozapalenie się materiału izolacji oraz
wartością temperatury zapłonu tj. wartością najniższej temperatury, w której pary substancji tworzą z powietrzem mieszaninę
wybuchającą i oraz temperatury zapalenia.
Palące się kable i przewody charakteryzują następujące cechy:
• dymotwórczość, zwana inaczej stopniem zadymienia spalin lub gęstością optyczną dymów, polega na określeniu minimalnej
wartości przepuszczalności (transmisji) światła przez dym powstały podczas spalania kabla w zdefiniowanych warunkach lub pomiarze
współczynnika osłabienia kontrastu.
• korozyjność – czyli jaki współczynnik pH posiadają gazy powstałe w wyniku spalania materiałów izolacji
• toksyczność gazów – czyli ile przy spalaniu wydziela się toksycznego produktu (gazu, np. CO, CO
2
, HCN, NO
2
, HCl , SO
2
)
rozkładu i spalania (wyrażonego w gramach) z jednostki masy materiału spalanego (w gramach);
• stopień wydzielania ciepła podczas pożaru – czyli kinetyka ciepła, inaczej gęstość strumienia energii cieplnej wydzielanej przez
palący się materiał, który ma wpływ na potęgowanie pożaru, a zależy od masy i ciepła spalania materiału;
• rozprzestrzenianie płomieni po powierzchni materiału;
• stopień spalenia.
Najbardziej niebezpiecznymi gazami powstałymi w procesie palenia się kabli są: dwutlenek węgla (CO
2
), tlenek węgla (CO), cyjanowodór
(HCN), tlenki siarki (SO
2
, SO
3
), fluorowodór (HF), bromowodór (HBr) oraz chlorowodór (
HCl ) wydzielający się głównie przy paleniu się
polichlorku winylu.
Zgodnie z Rozporządzeniem Ministra Infrastruktury z dnia 12 kwietnia 2002 roku w sprawie warunków technicznych jakim powinny
odpowiadać budynki i ich usytuowanie[89] określono, że w budynkach o kubaturze 1000 m
3
lub większej oraz w budynkach lub
pomieszczeniach zagrożonych wybuchem należy instalować przeciwpożarowy wyłącznik prądu. Wyłącznik ten nie może jednak
10
wyłączać zasilania obwodów urządzeń pożarowych, do których należy zaliczyć:
- windy przeznaczone dla ekip ratowniczych
- pompy pożarowe
- oświetlenie awaryjne
- dźwiękowy system ostrzegania (DSO)
- wentylacja pożarowa
- system sygnalizacji pożarowej.
Przewody zastosowane do budowy tych obwodów powinny zapewnić ciągłość dostawy energii elektrycznej oraz możliwość
przekazywania sygnałów przez wymagany czas działania urządzenia określony w przepisach:
30, 60 lub 90 min.
Palące się kable wydzielają zarówno dym jak i agresywne gazy. Kable mogą również podsycać pożar, jeśli zawierają dużo materiałów
palnych, mogą powodować jego rozprzestrzenianie się wzdłuż trasy ich ułożenia, wydzielający się dym i toksyczne produkty rozkładu
powodują dodatkowe zagrożenie dla ludzi.
Dyrektywa
89/106EEC dotycząca wyrobów budowlanych i bezpieczeństwa pożarowego w budynkach uwzględniająca kable jako jeden z
rodzajów wyrobów budowlanych, nakazuje projektowanie i wykonywanie instalacji elektrycznych w taki sposób, aby nie były one
przyczyną powstawania pożarów oraz ograniczały ich rozprzestrzenianie.
Zmniejszenie zagrożenia pożarowego może być osiągnięte przez odpowiedni dobór materiału izolacyjnego kabla lub przewodu, który w
wyniku wysokiej temperatury w czasie pożaru, będzie wydzielał niewielkie ilości substancji lotnych. Ponieważ substancje te zwykle
podtrzymują palenie i ułatwiają rozprzestrzenianie się ognia. Z tego względu producenci niejednokrotnie wprowadzają do materiałów
izolacyjnych środki niepalne lub samogasnące.
Konieczna jest zatem znajomość właściwości ogniowych tych środków tzn. palności, szybkości wydzielania ciepła, emisji związków
toksycznych i dymu, oraz szybkości rozprzestrzeniania się płomienia po jej powierzchni. Dodatkowo bada się też stopień kwasowości
(korozyjność) gazów, powstających w czasie spalania izolacji. Materiał izolacyjny z dodatkami niepalnymi jest odporny na temperatury
przekraczające 200°C. Przykładem takiej izolacji jest powłoka kabla produkcji japońskiej zastosowanego w instalacjach w warszawskim
metrze. Zbudowana jest ona z polietylenu usieciowanego Sunikon RM-E-1600, modyfikowanego przeciwogniowo dużą ilością
wodorotlenku glinu. Materiał ten nie ulega rozkładowi nawet w temperaturze ok. 400°C, a przy 900°C ubytek jego masy wynosi jedynie
ok. 50% masy początkowej. Izolację powinny też charakteryzować: niewielka szybkość wydzielania ciepła (poniżej 200 kW/m
2
), mała
toksyczność produktów rozkładu termicznego, mała intensywność dymienia i szybkość rozprzestrzeniania się płomienia [273].
W celu wyeliminowania zagrożeń stwarzanych prze toksyny powstające podczas palenia się izolacji kabli lub przewodów należy
stosować przewody i kable o izolacji bezhalogenkowej.
Kable te nie tylko nie wydzielają toksycznych gazów, ale umożliwiają również nieprzerwaną dostawę energii elektrycznej. Zastosowane w
tradycyjnych izolacjach kabli halogenki czyli pierwiastki z grupy chlorowców: chlor (w polichlorku winylu PCW), fluor, brom (ochrona
przed płomieniem) i jod powoduje w czasie spalania wydzielanie się tych substancji do otoczenia. Natomiast w izolacji kabli wolnych od
halogenków zastosowano powłokę zewnętrzną wolną wykonaną z polimerów na bazie czystych tworzyw węglowodorowych np.
polietylenu lub polipropylenu. Podczas spalania tego rodzaju materiałów nie powstają żadne korozyjne ani toksyczne gazy, wydzielany
jest tylko dwutlenek węgla oraz para wodna. Dodatkowo w celu uzyskania trudnozapalności i samogaśnięcia izolacji dodaje się do nich
np. wodorotlenek glinu, z którego po ogrzaniu zostaje wytrącona woda co powoduje utrudniony dostęp tlenu do strefy spalania.
Kable do pracy w wysokiej temperaturze
Do podtrzymania podstawowych funkcji instalacji elektrycznej w przypadku pożaru są stosowane specjalne kable odporne na działanie
wysokiej temperatury. W zależności od minimalnego czasu sprawnego działania kabli - odpowiednio 30, 60, 90 min. - mogą one mieć
różne klasy podtrzymania funkcji E30, E60 i E90 (DIN VDE 4102 cz. 12) [268] lub klasy odporności ogniowej PH15, PH30, PH60, PH90
(PN-EN-50200)[269].
Do obiektów o podwyższonych wymaganiach przeciwpożarowych, takich jak: budynki handlowe, hotele, kina, teatry, szpitale, muzea,
centra przetwarzania danych, centrale telefoniczne, banki, dworce lotnicze, zaliczyć można jeszcze m.in. elektrownie, kopalnie, stocznie i
tunele.
16.2.1 Rozwiązania techniczno-budowlane
Powłoki ochronne oraz typy kabli
Większość materiałów izolacyjnych stosowanych do produkcji kabli jest palna. Jednym ze sposobów ograniczenia ich palności jest
zastosowanie środków ogniochronnych, których zadaniem jest m.in. ograniczenie szybkości rozprzestrzeniania się płomieni po
pojedynczym kablu lub wiązkach kablowych. Środki stosowane do ograniczenia skutków pożaru są dostępne na rynku w postaci lakieru i
wodnych roztworów soli nieorganicznych. Z uwagi na to, że w wyniku działania ognia na powłoce kabla tworzy się porowata zwęglona
warstwa lakiery te nazywa się „lakierami pęczniejącymi”.
Działanie lakieru pęczniejącego podanego działaniu temperatury przedstawia
rysunek 18.7.
11
produkty lotne
1. Rys.16.7:Schemat działania fizycznego [259]
Chemiczny i fizyczny zakres oddziaływania powłok ogniochronnych odbywa się, m.in. poprzez [ 259]:
1) wytworzenie powierzchniowej warstwy izolacyjnej w czasie spalania (dodatek boranów i fosforanów wapnia, glinu oraz związku
chlorowców) w rezultacie czego zmniejsza się szybkość wydzielanego ciepła (
rys. 18.7)
2) dezaktywację aktywnych atomów i rodników tworzących się płomieniu (
rys.18.8)
3) zmniejszenie obszaru powierzchniowego rozprzestrzeniania się płomieni,
4) wydzielanie niepalnych produktów rozkładu termicznego, które mieszając się z tlenem zawartym w powietrzu obniżają stężenie tlenu
i tym samym spowalniają proces spalania.
2. Rys. 16.8 :Schemat działania chemicznego [259].
Granica między efektem chemicznym i fizycznym jest często niedostrzegalna. Z reguły chemiczne efekty, charakteryzowane przez stałe
szybkości reakcji, są ściśle powiązane ze zjawiskami fizycznymi, decydującymi o transporcie masy i ciepła w czasie spalania.
Ze względu na skład chemiczny środki ogniochronne można podzielić na [259]:
- specjalne związki nieorganiczne,
- chlorowcowe związki organiczne,
- fosforowe związki organiczne,
- chlorowcowe związki organiczne fosforu.
Do najskuteczniejszych związków nieorganicznych należy SB
2
O
3
, który jest składnikiem wielu mieszanek polimerowych. Działa on
synergicznie ze związkami chlorowców, w których obecności powstają tlenohalogenki antymonu, łatwo reagujące z rodnikami
wytwarzanymi podczas spalania [259].
IZOLACJA
+ FOSFORAN AMONU
IZOLACJA
Z
ŚRODKIEM
OGNIOCHRONNYM
H
OH
HX
HX X H-H
CO
2
CO
12
Do związków chemicznych zmniejszających palność tworzyw sztucznych można zaliczyć uwodniony trójtlenek glinu (Al
2
O
3
3H
2
O),
którego działanie polega na odszczepianiu wody i pochłanianiu wydzielającego się ciepła. Stosuje się go jako dodatek do następujących
materiałów: PS, ABS, poliolefin, PVC, żywice epoksydowe i nienasycone żywice poliestrowe [259]. W celu zwiększenia odporności na
oddziaływanie cieplne stosuje się mieszaniny związków nieorganicznych z bromowymi związkami aromatycznymi. Do polietylenu PE-HD
wprowadza się np. 6-10 % związków bromowych i 3-6 % Sb
2
O
3
[259].
Działanie antypirenów fosforowych polega na wydzielaniu się pary wodnej, odwodnieniu i zwęglaniu powierzchni materiału.
W efekcie powstaje warstwa zwęglona odcinająca skutecznie dopływ tlenu do zwęglonego materiału izolacji przewodu [259].
Zagrożenia stwarzane przez palące się kable i przewody wymusiły konieczność opracowania nowych izolacji o właściwościach
elektrycznych nie gorszych od powszechnie stosowanych lecz odpornych na działanie ognia oraz nie wydzielających toksycznych gazów
podczas palenia. Uzyskane doświadczenie w produkcji kabli i przewodów bezhalogenowych, nierozprzestrzeniających ognia i odpornych
na ogień, pozwoliło na ich podział na następujące grupy:
I. Kable nierozprzestrzeniające ognia i trudno zapalne to takie, które nie zapalają się w wyniku zwarcia wewnętrznego, jeżeli nie są
położone w środowisku palnym (np. kurz, miał węglowy), a w przypadku zapalenia się od zewnętrznego źródła ognia nie rozprzestrze-
niają płomienia poza obszar jego działania i gasną po zlikwidowaniu zewnętrznego źródła ognia.
II. Kable bezhalogenowe to takie, w których wszystkie zastosowane materiały izolacyjne, wypełniające i powłokowe nie zawierają
halogenków, tzn. chloru, bromu i fluoru, a więc produkty ich rozkładu nie są korozyjne.
III. Kable i przewody bezhalogenowe, nierozprzestrzeniające płomienia to takie, w których wszystkie zastosowane materiały
izolacyjne, wypełniające i powłokowe nie zawierają halogenków, a więc produkty ich rozkładu nie są korozyjne; nie zapalają się w wyniku
zwarcia wewnętrznego, a w przypadku zapalenia się od zewnętrznego źródła ognia nie rozprzestrzeniają płomienia poza obszar
działania ognia i gasną po zlikwidowaniu zewnętrznego źródła ognia.
IV Kable i przewody ognioodporne to takie, które nie zapalają się w wyniku zwarcia wewnętrznego, a w przypadku zapalenia się od
zewnętrznego źródła ognia nie rozprzestrzeniają płomienia poza obszar jego działania i gasną po zlikwidowaniu zewnętrznego źródła
ognia, jednocześnie zachowując izolację.
V. Kable i przewody bezhalogenowe, ognioodporne - to takie, w których wszystkie zastosowane materiały izolacyjne, wypełniające i
powłokowe nie zawierają halogenków, a więc produkty ich rozkładu nie są korozyjne; nie zapalają się wyniku zwarcia wewnętrznego, a w
przypadku zapalenia się od zewnętrznego źródła ognia nie rozprzestrzeniają płomienia poza obszar działania ognia i gasną po
zlikwidowaniu zewnętrznego źródła ognia.
Kanały kablowe
W przypadku pożaru kabli ewakuacja może być znacznie utrudniona przez gwałtowny rozwój dymu i stężenie toksycznych gazów
pożarowych. W celu ograniczenia zagrożenia stwarzanego przez palące się kable lub przewody elektryczne stosuje się samodzielne
sufity podwieszane w celu stworzenia oddzielnej "strefy pożarowej" w przestrzeni międzysufitowej lub kanały kablowe wykonane z płyt o
odpowiedniej klasie odporności ogniowej dzięki czemu uzyskuje się osobną "strefę pożarową" tak jak przedstawiono na
rysunku 16.9.
3. Rysunek 16.9: Przykład wydzielenia pożarowego tras kablowych za pomocą sufitu podwieszonego [260]
13
Kanały kablowe stanowią zabezpieczenie przed działaniem ognia od środka –
typ I (chronią one drogi ewakuacyjne przed skutkami
pożaru instalacji elektrycznych) lub od zewnątrz –
typ E (chronione są kable, które dostarczają energię elektryczną do urządzeń, które
musza funkcjonować podczas pożaru). W przypadku kanałów zabezpieczonych przed działaniem ognia od wewnątrz ogień pozostaje
zamknięty w kanale kablowym, pożar nie rozprzestrzenia się w przestrzeni międzysufitowej. Drogi ewakuacyjne pozostają w stanie
używalności.
Funkcje ogniochronne kanałów kablowych przy działaniu ognia od wewnątrz oraz od zewnątrz przedstawia
rysunek 16.10. Kanał
kablowy w takim przypadku stanowi „osobną strefę pożarową”. Szybkość rozprzestrzeniania się ognia w kanale może dochodzić do 20
m/s w związku z powstającym efektem kominowym. Wskutek tego groźnego zjawiska, kanały kablowe oraz miejsca ich opuszczenia
przez kable i przewody muszą być bardzo starannie izolowane od przedostawania się dymu i ognia.
W budynkach wysokich i wysokościowych a także w rozległych obiektach handlowych i przemysłowych coraz powszechniej stosuje
się przewody szynowe.
Przewody te posiadają obudowę metalową i nie stwarzają zagrożenia powodowanego przez paląca się izolację to jednak poddane
działaniu temperatury około 400
0
C tracą swoje właściwości konstrukcyjne. W przypadku, gdy przewody te podczas pożaru musza
zapewnić dostawę energii elektrycznej do urządzeń pożarowych, należy je również prowadzić w kanałach ogniochronnych. Przykład
ochrony ogniowej przewodu szynowego przedstawia
rysunek 16.13.
4. Rys.16.10: Funkcje ogniochronne kanałów kablowych przy działaniu ognia od wewnątrz oraz od zewnątrz [157]
Na
rysunku 16.11 została przedstawiona uproszczona konstrukcja kanału kablowego odpornego na działanie ognia z zewnątrz.
5. Rys. 16.11: Konstrukcja kanału kablowego odporna na działanie ognia „z zewnątrz” [260]
1- kanał kablowy, 2-pasma izolacyjne, 3-obejma stanowiąca izolację na łączeniu, 4-profil nośny, 5-wieszaki, pręty gwintowane z met. kołkiem rozporowym mocowane w
stropie, 6-kratka wentylacyjna
14
Widoczna na
rysunku 16.11 kratka wentylacyjna jest wykonana z materiału pęczniejącego który, pod działaniem wysokiej temperatury
ulega uszczelnieniu i zapobiega przedostawaniu się płomienia i gorących spalin do wnętrza kanału. W przypadku kanałów
ogniochronnych odpornych na działanie ognia od wewnątrz kratka po uszczelnieniu uniemożliwia wydobywanie się płomienia i gorących
spalin do innych pomieszczeń.
Przykłady różnych konstrukcji kanałów kablowych przedstawia
rysunek 16.12 oraz rysunek 16.13.
a)
b)
6. Rys.16.12: Przykłady zamocowania kanałów kablowych [157] (przy działaniu ognia od wewnątrz; b)przy działaniu ognia od zewnątrz
1 – płyta ogniochronna, 2 – profil nośny, 3 - wieszaki, pręty gwintowane z metalowym kołkiem rozporowym mocowane w stropie, 4 – strop, 5 –pasmo płyty
ogniochronnej, 6 – kable i przewody elektryczne
7. Rys. 16.13: Przykład kanału ogniochronnego do zabezpieczenia przewodu szynowego
1 – przewody, 2 – płyta ogniochronna , 5 – profil nośny, 6 - wieszaki, pręty gwintowane z met. kołkiem rozporowym mocowane w stropie masywnym
Kanały kablowe chronią kable i przewody przed pożarem z zewnątrz, zapewniając zachowanie funkcjonalności urządzeń, których prac
jest konieczna podczas pożaru. Aby uniknąć przegrzania kabli i wzrostu oporności przewodzenia podczas normalnej pracy, do wymiany
powietrza w kanałach stosuje się kratki wentylacyjne lub klapę wentylacyjną, które wbudowuje się w ściany kanału. Przykład konstrukcji
kratki wentylacyjnej przedstawia
rysunek 16.14.
15
8. Rys. 16.14: Konstrukcja kratki wentylacyjnej Promasel stosowanej w kanałach kablowych [157]
Stosowane są również klapy wentylacyjne, które pozostają otwarte podczas normalnej eksploatacji, natomiast podczas pożaru zostają
zamknięte przez automatyczne urządzenie zamykające. Przykład klapy wentylacyjnej Promat –Ventbox, przedstawia
rysunek 16.15.
9. Rys. 16.15: Klapa wentylacyjna Venbox [157]
1 – ścianka kanału wentylacyjnego;2 – rama z kołnierzem
3 – pokrywa; 4 – urządzenie zamykające
Parametry przykładowych kanałów kablowych przy działaniu ognia od zewnątrz (
typ E) zostały przedstawione w tabeli 16.2, natomiast
parametry przykładowych kanałów kablowych
typu I zostały przedstawione w tabeli 16.3. Na rysunku 16.16 zostały przedstawione
szczegóły konstrukcyjne przykładowych kanałów kablowych
typu I wykonanych z płyt silikatowo-cementowych.
16
10. Rys.16.16: Szczegóły konstrukcyjne przykładowych kanałów kablowych typu I wykonanych z płyt silikatowo-cementowych [157]
A )rzut aksonometryczny; B) przekrój poprzeczny; C) przekrój podłużny D)przejście przez ścianę e) zamknięcie otworu rewizyjnego F) wyjście pojedynczego kabla
(przewodu)
1 – płyta silikatowo-cementowa Promatect –L500; 2 – pasma z płyty Promatect-H-L lub L500 o przekroju poprzecznym 100 x20 mm; 3 – pasmo z płyty Promactect-H o
przekroju 100 x 20 mm; 4 – pasmo z płyty Promatect-H o przekroju poprzecznym 100x20 mm (tylko przy luźnej pokrywie); 5 – pasmo z płyty, Promactect-H o przekroju
poprzecznym b
≥ 70 mm i d≥ 20 mm; 6 – pasmo z płyty Promactect-H o przekroju d= 20 mm ( b – wg. F i G); 7 – kable i przewody elektryczne; 8 – półka kablowa; 9 –
uszczelnienie wełna mineralną skalną;10 – złącze płyt ogniochronnych kanału kablowego; 11 – szczelina dylatacyjna w miejscu przejścia kanału kablowego przez ścianę;
12 – masa szpachlowa; 13 – kit ogniochronny 14
÷17 –zszywki stalowe; 18 – kołki rozporowe; 19 – poprzeczka wsporcza z ceownika stalowego; 20 – wieszak wykonany z
gwintowanego pręta stalowego; 21 – kratka wentylacyjna; 22 – kątownik z blachy stalowej; 23 – zamknięcie otworu rewizyjnego
Na
rysunku 17.17 zostały przedstawione szczegóły konstrukcyjne kanałów kablowych typu E wykonanych z płyt silikatowo-
cementowych.
17
11. Rys.16.17: Szczegóły konstrukcyjne kanałów kablowych typu E wykonanych z płyt silikatowo-cementowych [157].
A )rzut aksonometryczny; B) przekrój poprzeczny; C) przekrój podłużny D)przejście przez ścianę
1
÷3- płyta silikatowo-cementowa Promatect –L500; 4 – pasmo z płyty Promactect; 4 – pasmo z płyty Promatect-H o przekroju poprzecznym 100x20 mm (tylko przy luźnej
pokrywie); 5
÷8 pasmo z płyty Promactect;, 9 –kable i przewody elektryczne;10 – półka kablowa; 11 – uszczelnienie z wełny mineralnej skalnej; 12- złacza płyt
ogniochronnych; 13 – masa szpachlowa 14 – kit ogniochronny;15
÷16 zszywki stalowe17 –wkręty budowlane;18 - kołki rozporowe; 19 – metalowy kołek rozprężny; 20 –
poprzeczka wsporcza; 21
÷22 – wieszak; 23 – wspornik; 24 – słupek do zawieszenia wspornika; 25 – kątownik stalowy; 26- strop masywny; 27 – tabliczka kontroli
technicznej; 28 – kratka wentylacyjna.
18
2) Tabela 16.2: przykłady kanałów kablowych typ E [157]
Lp. Opis
kanału Grubość ścianki
[mm]
Klasa odporności ogniowej
1 Kanał kablowy o przekroju prostokątnym z płyt gipsowych o
wymiarach 300 x 500 mm
2 x 20
2 x 15
1 x 20
EI 90
EI60
EI30
2 Kanał kablowy o przekroju prostokątnym z płyt gipsowych o
wymiarach 300 x 500 mm
15 + 20
2 x 15
1 x 20
EI 90
EI60
EI30
3 Kanał kablowy o przekroju prostokątnym z płyt gipsowych
Fireboard o maksymalnym obciążeniu kablem 20 kg/m
oraz następujących wymiarach wewnętrznych
440 x 200 mm
540 x 200 mm
600 x 225 mm
600 x 225 mm
2 x 25
25 + 20
20 + 15
2 x 15
EI120
EI90
EI60
EI30
4 Kanał kablowy o przekroju prostokątnym z płyt gipsowych
Fireboard o maksymalnym obciążeniu kablem 20 kg/m
oraz następujących wymiarach wewnętrznych
400 x 150 mm
400 x 175 mm
600 x 225 mm
600 x 225 mm
2 x 25
25 + 20
20 + 15
2 x 15
EI120
EI90
EI60
EI30
5 Kanał kablowy o przekroju prostokątnym z płyty silikatowo
– cementowej Promatect L lub L-500 o maksymalnych
wymiarach wewnętrznych 520 x 250
70
35
20
EI120
EI60
EI30
6 Kanał kablowy o przekroju prostokątnym z płyty silikatowo
– cementowej Promatect L lub L-500 o maksymalnych
wymiarach wewnętrznych 110 x 100
75
40
25
EI120
EI60
EI30
3) Tabela 16.3: przykłady kanałów kablowych typ I [273]
Lp. Opis
kanału Grubość ścianki
[mm]
Klasa odporności ogniowej
1 Kanał kablowy o przekroju prostokątnym z płyt gipsowych o
wymiarach 1000 x 500 mm
2 x 25
15 + 20
1 x 25
1 x 15
EI120
EI 90
EI60
EI30
2 Kanał kablowy o przekroju prostokątnym z płyt gipsowych
Fireboard o maksymalnym obciążeniu kablem 20 kg/m
oraz następujących wymiarach wewnętrznych
900 x 400 mm
920 x 420 mm
940 x 440 mm
940 x 440 mm
2 x 25
2 x 20
2 x 15
2 x 15
EI120
EI 90
EI60
EI30
Kanał kablowy o przekroju prostokątnym z płyty silikatowo
– cementowej Promatect o maksymalnych wymiarach
wewnętrznych 1000 x 500
50
30
20
EI120
EI60
EI30
19
Przepusty kablowe
Poza ochroną pożarową i nadzorem stanu temperatury w kanałach oraz tunelach kablowych istotne jest również odpowiednie
zabezpieczenie przed możliwością rozprzestrzeniania się pożaru do sąsiednich stref pożarowych i pomieszczeń. W tym celu stosuje się
odpowiednie uszczelnienia zapewniające nie przedostawanie się ognia. Instalacje techniczne, w szczególności rury i kable elektryczne,
przechodzą wielokrotnie przez ściany i stropy oddzieleń przeciwpożarowych. Przejścia te zwane również przepustami lub grodziami
muszą spełniać kryteria szczelności i izolacyjności ogniowej.
Do ich odpowiedniego zabezpieczenia stosuje się przejścia kablowe,
które zamykają przejścia kabli elektrycznych przez przegrody,
zachowując ich klasę odporności ogniowej. W praktyce spotyka się następujące rodzaje przepustów kablowych:
- przepusty kablowe z wełny mineralnej,
- przepusty kablowe z pianki ogniochronnej,
- przepusty kablowe z zaprawy ogniochronnej,
- przepusty kablowe z elastycznych kształtek.
Przykłady przejść kablowych oraz uszczelnienia zostały przedstawione na
rysunku 16.18 oraz rysunku 16.19.
12. Rys. 16.18: Przejście kablowe PROMASTOP typ A [260]
1- bezrozpuszczalnikowa powłoka o działaniu endotermicznym, nie przepuszcza wody i oleju, 2 - płyty z niepalnej wełny mineralnej, 3- półka kablowa, 4 - podwieszenie
półki kablowej, 5 - kabel, wiązka kabli, 6 - ściana masywna
13. Rys.16.19: Uszczelnianie pojedynczych kabli [260]
1 - masywny element budowlany 2 - masa ogniochronna, 3-kabel elektryczny
Mocowanie kabli i przewodów
W związku z brakiem w naszym kraju norm oraz przepisów dotyczących mocowania przewodów instalacji, która musi funkcjonować w
czasie pożaru, producenci przewodów w kartach katalogowych powinni określić sposób montażu oraz ewentualnie rodzaj mocowań,
który jest dopuszczalny dla danego kabla czy przewodu.
W przypadku badań systemów mocowań korzysta się z
normy niemieckiej DIN 41021-12 „Zachowanie się materiałów i elementów
budowlanych pod wpływem ognia. Podtrzymywanie funkcji urządzeń w czasie pożaru. Wymagania i badania”[268]. Norma ta określa
sposób badania i wymagania dla systemów podtrzymywania funkcji w przypadku pożaru, a więc dla kabli, zamocowań, wraz z
20
przynależnymi kanałami, powłokami i okładzinami oraz elementami łączeniowymi. Podczas badania określa się czas funkcjonowania
systemu podczas pożaru testowego, kiedy w instalacji nie występuje zwarcie i nie występuje żadna przerwa w przepływie prądu w
badanych instalacjach. Zgodnie z cytowaną normą uważa się że funkcja kabla
2
została podtrzymana, jeżeli w liniach kablowych w czasie
próby ogniowej nie nastąpiło zwarcie oraz przerwa przepływu prądu w sprawdzanych elektrycznych liniach kablowych. Zawarte w niej
standardowe konfiguracje systemów mocowań kabli określają następujące rozwiązania:
− trasy kablowe z systemem mocowań konstrukcji nośnej co 1200 mm prowadzone w drabinkach o szerokości 400 mm,
maksymalny ciężar zastępczy 20 kg/m
− trasy kablowe z systemem mocowań konstrukcji nośnej co 1200 mm prowadzone w korytkach kablowych o szerokości 300
mm i maksymalny ciężar zastępczy 10 kg/m.
− pojedyncze kable mocowane na suficie za pomocą szyn i obejm kablowych z rynienkami zamocowanymi co 600 mm (rysunek
16.20 i rysunek 16.21).
− pojedyncze kable mocowane na suficie za pomocą pojedynczych obejm zamocowanych co 300 mm (rysunek 16.22).
14. Rys.16.20: Mocowanie pojedynczych kabli obejmą kablową lekką [268]
15. Rys.16.21: Mocowanie pojedynczych kabli obejmą kablową z rynienką długą [268]
2
jako linię kablową – w rozumieniu DIN 4102-12 - uważa się kable energetyczne, izolowane przewody energetyczne, kable i przewody instalacyjne urządzeń
telekomunikacyjnych i przetwarzania informacji i rozdzielnice łącznie z przynależnymi kanałami, powłokami i okładzinami oraz elementami łączącymi, sprzętem nośnym i
obejmami.
21
a)
b)
16. Rys.16.22: Obejma pojedyncza kabla[268]
a) sposób montażu
b) sposób mocowania
Podczas badania mierzony jest czas podtrzymania funkcji, na jego podstawie określa się klasę podtrzymania funkcji, zgodnie z
tabelą
16.4.
4) Tabela 16.4: Klasa E podtrzymania funkcji – na podstawie DIN 4102-12[268]
L.p.
Klasa podtrzymania funkcji
Minimalny czas podtrzymania funkcji w
min.
1.
E 30
≥ 30
2.
E 60
≥60
3.
E 90
≥90
Test polega na umieszczeniu w specjalnej komorze kompletu kabli i mocowań przy załączonym napięciu do badanych obwodów oraz
nagrzaniu pomieszczenia do odpowiedniej temperatury zgodnie z krzywą narastania temperatury określoną następującym
wzorem 16.1,
której przebieg został przedstawiony na
rysunku 16.2
Kable i osprzęt poddany badaniom powinien prawidłowo funkcjonować w przedziałach czasu
30, 60 i 90 min. Co odpowiada kryterium
zachowania funkcji zespołu kablowego (kabel + osprzęt)
E30; E60 i E90 [268] lub PH15; PH30; PH60; PH90 – wg PN-EN 50200 [269].
Przykład trasy kablowej złożonej z drabin kablowych przedstawia
rysunek 16.23.
17. Rys.16.23: Trasa kablowa złożona z drabin – przykład mocowania kabla [144]
1. Dopuszczalny promień gięcia
2. Obejma
3. Kabel
1)
pozioma długość kabla ≥300mm
2)
odległość pomiędzy obejmami ≤ 300mm
22
Ponieważ wg normy [269] badaniu poddawane jest tylko poziome ułożenie tras kablowych tak więc otrzymane wyniki badań przy
ułożeniu obowiązują również na liniach prowadzonych ukośnie i pionowo, w takim przypadku należy jednak w miejscach przejściowych
zabezpieczyć je przed załamywaniem się i osuwaniem za pomocą specjalnych obejm. Ważne jest aby po wykonaniu systemu mocowań
instalator montujący trasy kablowe odpowiednio je oznakował specjalną tabliczką zamontowaną na kablu (przewodzie), która powinna
zawierać następujące informacje:
symbol wykonawcy
∗ oznaczenie zgodne ze świadectwem sprawdzenia∗ klasę podtrzymywania funkcji∗ rok wykonania.
16.3. Dobór przewodów zasilających urządzenia ppoż. funkcjonujące w czasie pożaru
Przy doborze przewodów zasilających urządzenia elektryczne funkcjonujące w czasie pożaru oprócz właściwej
klasy odporności ogniowej należy zadbać o właściwy dobór przekroju.
Powszechnie akceptowalne zasady doboru przewodów przeznaczonych do zasilania urządzeń elektrycznych,
opisane w rozdziale 10, mogą prowadzić do błędnych wyników.
Pod działaniem temperatury zmianie ulega rezystancja przewodów. Wzrost rezystancji przewodów spowodowany wzrostem temperatury
może stać się przyczyną błędnego działania urządzeń elektrycznych oraz nieskutecznej ochrony przeciwporażeniowej.
Spośród dostępnych środków ochrony przeciwporażeniowej przy uszkodzeniu, w obwodach zasilających
urządzenia elektryczne, których funkcjonowanie jest konieczne w czasie pożaru, powszechnie stosowane jest
samoczynne wyłączenie w czasie nie dłuższym niż określony w zeszycie 41 normy PN-IEC 60364 (patrz rozdział
12).
Przy projektowaniu ochrony przeciwporażeniowej przez samoczynne wyłączenie należy uwzględnić wzrost
rezystancji przewodów zasilających przy działaniu wysokiej temperatury powstającej podczas pożaru (patrz
krzywe pożarowe temperatura-czas: rys. 16.1 – 16.6).
Stosowanie wyłączników różnicowoprądowych do zabezpieczenia urządzeń ppoż. funkcjonujących w czasie pożaru nie jest dobrym
rozwiązaniem z uwagi na wymaganą wysoką niezawodność zasilania tych urządzeń.
W wyniku działania wysokiej temperatury odnotowuje się wzrost prądów upływowych doziemnych oraz wzrost prądów upływowych
pomiędzy poszczególnymi żyłami przewodów.
Zjawisko to nasila się wskutek pojawiającej się jonizacji izolacji i może prowadzić do niekontrolowanego działania wyłączników
różnicowoprądowych co w konsekwencji spowoduje pozbawienie funkcji zasilanego urządzenia ppoż.
Wraz z upływem czasu od zainicjowania pożaru, bardzo szybko wzrasta temperatura pomieszczeń objętych
pożarem (patrz krzywe pożarowe temperatura-czas: rys. 16.1 – 16.6). Pod wpływem wysokiej temperatury rośnie
rezystancja przewodu, która jest uzależniona od temperatury w jakiej znajduje się przewód.
W temperaturze nie wyższej od + 200
0
C, zmiany rezystancji przewodów można opisać liniową zależnością [275]
)
1
(
20
20
T
R
R
Δ
+
=
α
(16.5)
gdzie:
20
R - rezystancja przewodu w temperaturze
C
0
20
, w [
Ω ]
α
-pierwszy współczynnik temperaturowy rezystancji w temperaturze 20
0
C, w [1/K]
20
−
=
Δ
k
T
T
- różnica temperatur, w [K]
T
k
– temperatura końcowa, w [K]
23
W temperaturach wyższych niż + 200
0
C, zależność opisująca rezystancje przewodu w określonej temperaturze
staje się nieliniowa i wyraża następującym wzorem [276;277]:
)
1
(
2
20
20
20
T
T
R
R
Δ
+
Δ
+
=
β
α
(16.6)
gdzie:
2
20
2
20
20
2
1
dt
R
d
R
=
β
- drugi współczynnik temperaturowy rezystancji w temperaturze 20
0
C [277], w [1/K
2
]
Dobierane przewody do zasilania urządzeń ppoż. muszą spełniać wymagania minimalnej wytrzymałości
mechanicznej, długotrwałej obciążalności prądowej i przeciążalności, odporności na nagrzewanie przez prądy
zwarciowe, spadku napięcia oraz samoczynnego wyłączenia podczas zwarć zgodnie z powszechnie
akceptowalnymi zasadami opisanymi w normach przedmiotowych (patrz rozdziały 10;11 12).
Przy doborze przewodów zasilających urządzenia ppoż. należy uwzględnić wzrost ich rezystancji spowodowany
wzrostem temperatury pożarowej, który znacząco wpływa na wymagany przekrój przewodu wyznaczany z
warunku spadku napięcia oraz warunku samoczynnego wyłączenia zasilania podczas zwarć doziemnych.
Największe problemy pojawiają się w obwodach zasilających pompy pożarowe napędzane silnikami
elektrycznymi lub inne urządzenia ppoż. charakteryzujące się dużymi prądami rozruchowymi (zasady doboru
przewodów oraz zabezpieczeń silników elektrycznych zostały opisane w rozdziale 10).
Ponieważ w budynku często wydziela się strefy pożarowe w celu ograniczenia możliwości rozwoju pożaru, rzadko
zdarza się, że cały przewód zasilający urządzenia ppoż. znajduje się pod działaniem temperatury pożarowej. W
strefie nieobjętej pożarem kabel (przewód) znajduje się pod działaniem temperatury otoczenia lub w skrajnym
przypadku temperatury dopuszczalnej długotrwale spowodowanej przepływem prądu o wartości dopuszczalnej
długotrwale.
Zadaniem projektanta jest wytypowanie pomieszczeń, które mogą zostać objęte pożarem (tzw. strefy gorącej) i
obliczyć względną wartość długości kabla (przewodu), który z największym prawdopodobieństwem znajdzie się
strefie gorącej.
Dla wymaganego czasu funkcjonowania kabla (przewodu) można dla określonego obwodu obliczyć spodziewany
wzrost jego rezystancji.
Tak określana rezystancja kabla (przewodu) jest sumą arytmetyczną rezystancji odcinka zakwalifikowanego do
strefy, która może znaleźć się w strefie gorącej oraz rezystancji odcinka przewodu zakwalifikowanego do strefy
nieobjętej pożarem (tzw. strefa zimna).
Rezystancja ta będzie zawsze większa od rezystancji odniesionej do normalnych warunków pracy
rozpatrywanego odcinka kabla (przewodu).
W tabeli 16.4 zostały przedstawione przykładowe współczynniki wzrostu rezystancji żył kabla ułożonego
częściowo w strefie gorącej i częściowo w strefie zimnej w warunkach pożaru.
Tabela 16.4: Współczynniki wzrostu rezystancji żył przewodów w warunkach pożaru [274]
24
Współczynnik wzrostu rezystancji żył kabla
Dla warunków klasy E 30
Dla warunków klasy E 90
Względny udział strefy
gorącej w długości
trasy kabla (przewodu)
[%]
od 30
0
C
od 90
0
C
od 30
0
C
od 90
0
C
0 1,0 1,0 1,0 1,0
10 1,3 1,2 1,4 1,3
20 1,6 1,5 1,8 1,5
30 2,0 1,7 2,1 1,8
40 2,3 1,9 2,5 2,1
50 2,6 2,1 2,9 2,4
60 2,9 2,4 3,3 2,6
70 3,2 2,6 3,6 2,7
80 3,5 2,8 4,0 3,2
90 3,9 3,1 4,4 3,5
100 4,2 3,3 4,8 3,7
Przykład P.16.1:
Dobrać przewód do zasilania pompy pożarowej o następujących parametrach silnika:
3
,
0
cos
;
4
;
85
,
0
cos
;
10
;
9
,
0
=
=
=
=
=
r
r
n
n
k
kW
P
ϕ
ϕ
η
Trasa linii zasilającej o ogólnej długości
m
l
100
=
przebiega przez dwie strefy pożarowe o długościach
odpowiednio:
- strefa 1:
m
l
30
=
- strefa 2:
m
l
70
=
W przykładzie założono, wzniecenie pożaru w jednej strefie pożarowej. Do obliczeń ze względu na bardziej
niekorzystne warunki została przyjęta strefa 2.
Impedancja obwodu zwarciowego na początku obwodu zasilającego silnik pompy wynosi
Ω
= 25
,
0
1Q
k
Z
(wartość
uzyskana w wyniku pomiaru).
Prąd znamionowy silnika oraz dobór jego zabezpieczenia (pominięto dobór zabezpieczenia
przeciążeniowego):
A
U
P
I
n
n
n
B
87
,
18
9
,
0
85
,
0
400
3
10000
cos
3
≈
∗
∗
∗
=
∗
∗
∗
=
η
ϕ
Do zabezpieczenia silnika zostanie przyjęty wyłącznik nadprądowy S303C20:
A
I
A
I
k
I
B
r
r
100
20
5
48
,
75
87
,
18
4
4
=
∗
=
<
=
∗
=
∗
=
gdzie:
n
P
- moc znamionowa silnika, w [W]
η
- sprawność silnika, w [-]
B
r
r
I
I
k
=
- współczynnik rozruchu silnika, w [-]
r
I
- prąd rozruchowy silnika, w [A]
25
4
I
- prą dolnej granicy zadziałania wyzwalacza przeciążeniowego elektromagnetycznego wyłącznika instalacyjnego nadprądowego
zgodnie z jego charakterystyką prądowo-czasową, [A]
n
ϕ
cos
- znamionowy współczynnik mocy silnika, w [-]
r
ϕ
cos
- współczynnik mocy silnika podczas rozruchu, w [-]
Wyłącznik ten umożliwi rozruch silnika bez zbędnych zadziałań.
Wymagany przekrój przewodu ze względu na długotrwała obciążalność prądową i przeciążalność:
A
I
k
I
I
A
I
A
I
n
Z
Z
n
B
20
45
,
1
20
45
,
1
45
,
1
20
87
,
18
2
=
∗
=
∗
≥
≤
=
≤
=
Na podstawie normy PN-IEC 60364-5-523, warunki spełni przewód NKGsżo 4 x 2,5 o dopuszczalnej długotrwałej
obciążalności prądowej
A
A
I
Z
20
24
>
=
.
Wyznaczenie współczynnika określającego względny udział strefy gorącej w długości trasy kabla
(przewodu):
%
70
%
100
100
70
%
100
2
=
∗
=
∗
=
l
l
k
p
gdzie:
p
k -
względny udział strefy gorącej w długości trasy kabla (przewodu), w [-] –
tabela 16.4
z
I
- wymagana dopuszczalna długotrwała obciążalność prądowa, w [A]
2
k
- najmniejszy prąd niezawodnie wywołujący zadziałanie zabezpieczenia (dla wyłączników instalacyjnych nadpradowych należy
przyjmować wartość 1,45, bez względu na charakterystykę), w [-]
n
I
- prąd znamionowy zabezpieczenia chroniącego przewód, w [A]
1
l
- długość trasy kablowej w strefie 2, w [m]
l
- całkowita długość trasy kablowej, w[m]
Ponieważ przewód dostarcza energię elektryczną tylko podczas pożaru, na podstawie tabeli 2 dla warunków klasy
E90 od 30
0
C, należy przyjąć współczynnik k
p
= 3,6.
Wymagany przekrój przewodów zasilających silnik pompy ze względu na warunek spadku napięcia:
- podczas rozruchu silnika pompy:
26
2
'
%
47
,
6
)
18
,
3
1
,
0
1
,
0
3
,
0
48
,
75
3
100
400
10
(
55
100
6
,
3
)
cos
3
100
(
mm
tg
l
x
I
U
U
l
k
s
r
r
r
n
r
p
=
∗
∗
−
∗
∗
∗
∗
∗
∗
=
=
∗
∗
−
∗
∗
∗
∗
Δ
∗
∗
≥
ϕ
ϕ
γ
Uwaga
%
r
U
Δ
- dopuszczalny spadek napięcia zgodnie z Tabelą 10.1.8.
- w warunkach pracy ustalonej:
2
%
14
,
15
400
3
55
85
,
0
100
87
,
18
6
,
3
3
100
cos
3
100
mm
U
U
l
I
k
S
n
p
=
∗
∗
∗
∗
∗
∗
∗
=
∗
Δ
∗
∗
∗
∗
∗
∗
≥
γ
ϕ
Uwaga
%
U
Δ
=3% - dopuszczalny spadek napięcia zgodnie z wymaganiami normy
N-SEP –E 002 [84] (patrz rysunek 10.1.5).
Zatem warunek spełni przewód NKGsżo 4 x16 o odporności ogniowej PH90.
Sprawdzenie dobranego przewodu z warunku samoczynnego wyłączenia:
A
I
A
Z
U
I
Z
Z
Z
S
l
k
S
l
R
R
R
Z
a
c
k
k
ls
Q
k
c
k
p
l
l
ls
ls
200
41
,
206
891
,
0
230
8
,
0
8
,
0
891
,
0
641
,
0
25
,
0
641
,
0
16
55
70
2
6
,
3
16
55
30
2
2
2
1
0
1
1
1
2
1
2
1
=
>
=
∗
=
∗
=
Ω
=
+
=
+
=
Ω
≈
∗
∗
∗
+
∗
∗
=
∗
∗
∗
+
∗
∗
=
+
=
≈
γ
γ
gdzie:
0
U
- napięcie pomiędzy przewodem fazowym a uziemionym przewodem
ochronnym PE, w [V]
γ
- konduktywność przewodu, w
)]
/(
[
2
mm
m
∗
Ω
1
l
R
- rezystancja przewodu zasilającego silnik pompy na długości ułożonej w 1 strefie pożarowej, [
Ω]
2
l
R
- rezystancja przewodu zasilającego silnik pompy na długości ułożonej w 2 strefie pożarowej, [
Ω]
Dobrany przewód NKGsżo 4 x 16
o odporności ogniowej PH90 spełnia wymagania w zakresie spadku napięcia
podczas rozruchu silnika oraz w warunkach pracy ustalonej. Spełnia również wymagania w zakresie
samoczynnego wyłączenia zasilania podczas zwarć. samoczynnego wyłączenia, przez co przekrój przewodu
zasilającego silnik pompy pożarowej musi ulec zwiększeniu.
Należy zatem uznać, że wszelkie wymagania w warunkach pożaru przy założeniu, ze pożarem zostanie objęta
strefa 2 spełni kabel NKGSżo 4 x 16 o odporności ogniowej PH90.
Uwaga:
W normalnych warunkach pracy (nie pożarowych) warunki spełniłby przewód YDYżo 4 x 6 co wynika z
27
następującego rozumowania:
- w czasie rozruchu silnika:
2
%
20
,
4
400
3
55
85
,
0
100
87
,
18
3
100
cos
3
100
mm
U
U
l
I
S
n
=
∗
∗
∗
∗
∗
∗
=
∗
Δ
∗
∗
∗
∗
∗
≥
γ
ϕ
- w stanie ustalonej pracy silnika:
2
'
%
54
,
5
)
18
,
3
1
,
0
1
,
0
3
,
0
48
,
75
3
100
400
10
(
55
100
)
cos
3
100
(
mm
tg
l
x
I
U
U
l
k
s
r
r
r
n
r
p
=
∗
∗
−
∗
∗
∗
∗
∗
=
=
∗
∗
−
∗
∗
∗
∗
Δ
∗
∗
≥
ϕ
ϕ
γ
- sprawdzenie warunku samoczynnego wyłączenia zasilania podczas zwarć:
A
I
A
Z
U
I
Z
Z
Z
S
l
S
l
R
R
R
Z
a
c
k
k
ls
Q
k
c
k
l
l
ls
ls
200
13
,
303
891
,
0
230
8
,
0
8
,
0
891
,
0
607
,
0
25
,
0
607
,
0
6
55
70
2
6
55
30
2
2
2
1
0
1
1
1
2
1
2
1
=
>
=
∗
=
∗
=
Ω
=
+
=
+
=
Ω
≈
∗
∗
+
∗
∗
=
∗
∗
+
∗
∗
=
+
=
≈
γ
γ
Przedstawiony przykład rachunkowy wyjaśnia istotę zjawiska i obrazuje wpływ temperatury powstającej podczas
pożaru na jakość dostarczanej energii elektrycznej do zasilania urządzeń ppoż. oraz bezpieczeństwo strażaków
biorących udział w akcji gaśniczej.
Nieuwzględnienie wzrostu rezystancji powodowanego wysoką temperaturą może spowodować brak skutecznej
ochrony przeciwporażeniowej urządzeń ppoż. w czasie akcji gaśniczej, trudności w ich uruchomieniu a
ostateczności nawet ich uszkodzenie wskutek zniszczenia izolacji silnika pompy ppoż. spowodowanej jego
utknięciem pod wpływem zbyt dużego spadku napięcia podczas rozruchu co w konsekwencji spowoduje utratę
funkcji urządzenia, które musi poprawnie funkcjonować w czasie pożaru.