chap45, p45 011

background image

11.

(a) Conservation of energy gives Q = K

2

+ K

3

= E

1

− E

2

− E

3

where E refers here to the rest energies

(mc

2

) instead of the total energies of the particles. Writing this as K

2

+ E

2

− E

1

=

(K

3

+ E

3

)

and squaring both sides yields

K

2

2

+ 2K

2

E

2

2K

2

E

1

+ (E

1

− E

2

)

2

= K

2

3

+ 2K

3

E

3

+ E

2

3

.

Next, conservation of linear momentum (in a reference frame where particle 1 was at rest) gives
|p

2

| = |p

3

| (which implies (p

2

c)

2

= (p

3

c)

2

). Therefore, Eq. 38-51 leads to

K

2

2

+ 2K

2

E

2

= K

2

3

+ 2K

3

E

3

which we subtract from the above expression to obtain

2K

2

E

1

+ (E

1

− E

2

)

2

= E

2

3

.

This is now straightforward to solve for K

2

and yields the result stated in the problem.

(b) Setting E

3

= 0 in

K

2

=

1

2E

1



(E

1

− E

2

)

2

− E

2

3



and using the rest energy values given in Table 45-1 readily gives the same result for K

µ

as computed

in Sample Problem 45-1.


Document Outline


Wyszukiwarka

Podobne podstrony:
chap45, p45 036
chap45, p45 039
chap45, p45 010
chap45, p45 023
chap45, p45 003
chap45, p45 026
chap45, p45 005
chap45, p45 018
chap45, p45 020
chap45, p45 032
chap45, p45 024
chap45, p45 004
chap45, p45 022
chap45, p45 029
chap45, p45 021
chap45, p45 013
chap45, p45 015
chap45, p45 016
chap45, p45 006

więcej podobnych podstron