background image

411

The requirement for large quantities of therapeutic proteins has
fuelled interest in the production of recombinant proteins in
plants and animals. The first commercial products to be made
in this way have experienced much success, and it is predicted
that in the future a plethora of protein products will be made
using these ‘natural’ bioreactors. 

Addresses
*

Planet Biotechnology, Inc., 2438 Wyandotte Street, Mountain View,

CA 94043, USA; e-mail: jwlarrick@aol.com

Palo Alto Institute of Molecular Medicine, 2462 Wyandotte Street,

Mountain View, CA 94043, USA

Current Opinion in Biotechnology 2001, 12:411–418

0958-1669/01/$ — see front matter
© 2001 Elsevier Science Ltd. All rights reserved.

Abbreviations
AAT

α

1-antitrypsin

HC-Pro helper-component proteinase
PTGS

post-transcriptional gene silencing

TSP

total soluble protein

Introduction

The  inexpensive  production  for  large  quantities  (many
kilograms) of protein has led to a new industry to produce
recombinant  proteins  in  transgenic  plants  and  animals.
The  potential  of  ‘molecular  pharming’,  using  transgenic
plants  or  animals  as  ‘bioreactors’  to  produce  therapeutic
proteins, has been apparent for over a decade and several
proteins produced in these systems are now in clinical tri-
als.  Depending  on  the  production  system  used,  there  are
several issues of concern. Animal systems suffer from long
development  timelines  and  possible  contamination  of
purified  proteins  with  animal  viruses  and  prions.  Plant-
produced  proteins  have  altered  post-translational  modifi-
cations  that  introduce  novel  carbohydrates.  Here,  we
review the most recent advances in these technologies and
discuss  the  methods  that  are  being  developed  to 
overcome these concerns.

Plant expression

Technological advances using plant bioreactors

Plants provide an attractive expression vehicle for numer-
ous  proteins  (see  Table  1)  [1–14].  Plant  ‘bioreactors’  are
expected to yield over 10 kg of therapeutic protein per acre
in tobacco, maize, soybean and alfalfa [15,16

]. Compared

with  the  use  of  conventional  steel  tank  bioreactors  and
mammalian cells or microorganisms, the cost of producing
a  protein  under  good  manufacturing  practice  (GMP) 
conditions is reduced to perhaps one-tenth. 

Recent  research  demonstrates  that  plants  will  provide  a
facile and economic bioreactor for the large-scale produc-
tion of industrial and pharmaceutical recombinant proteins
[15,17–23]. Genetically engineered, transgenic plants have

many  advantages  as  sources  of  proteins  compared  with
human  or  animal  fluids/tissues,  recombinant  microbes,
transfected  animal  cell  lines  or  transgenic  animals.  First,
the cost of producing raw material on an agricultural scale
is low and there is the possibility, in some cases, of using
the edible plant material directly. Second, the use of plants
offers reduced capitalization costs relative to fermentation
methods.  Third,  production  can  be  rapidly  up-scaled.
Fourth,  unlike  bacteria,  plants  can  produce  multimeric
proteins, such as antibodies, in the correct assembly. Fifth,
plant proteins are considered to be safer, as plants do not
serve  as  hosts  for  human  pathogens  such  as  human
immunodeficiency  virus  (HIV),  prions,  hepatitis  viruses
and so on. This final point is noteworthy, given the spread
of  foot-and-mouth  disease  and  bovine  spongiform
encephalopathy from the United Kingdom into Europe. 

Depending upon the promoters used, transgenic proteins
can be deposited throughout the plant, in specific parts of
the plant (e.g. in seeds) or in specific plant cell organelles
(e.g. chloroplasts) within a given plant cell. Numerous lab-
oratories  have  shown  transgenic  protein  accumulation  in
seed  of  corn  [24,25],  soybean  [3],  tobacco  [26]  or  barley
[27

]. Proteins produced in seed exhibit remarkable stabil-

ity;  for  example,  enzymes  and  antibodies  expressed  in
seed  and  stored  for  more  than  three  years  at  refrigerator
temperature  retain  full  enzymatic  or  binding  activity.
Recently, success was reported using tropical plants, such
as cassava (Manihot esculenta Crantz) [28

] and banana [29].

This  opens  up  the  possibility  of  delivering  oral  vaccines
and recombinant pharmaceuticals directly to consumers in
less developed equatorial countries.

In the past year, notable advances have been made using
chloroplast  expression  of  recombinant  proteins.  A  foreign
gene  is  introduced  into  a  spacer  region  between  the 
functional  genes  of  the  chloroplast  using  homologous
recombination. This eliminates position effects of nuclear
transformation, and gene silencing has not been a problem.
Staub  et  al.,  [30

••

]  demonstrated  that  chloroplasts  can

process  and  fully  assemble  a  disulfide-bonded  form  of
human somatotropin (expressed as 7% of the total soluble
protein [TSP]) and an oligomeric form of cholera toxin B
(4–5%  TSP).  Henriques  and  Daniell  [31]  expressed 
foreign genes (up to 10,000 copies/cell) in tobacco chloro-
plasts,  resulting  in  the  accumulation  of  foreign  proteins
that comprise up to 47% of the TSP [32].

A  novel  Tobravirus-based  system  [33]  for  root  expression
was reported last year, and new vector technologies contin-
ue to be developed. For example, internal ribosome entry
sites  (IRES)  have  been  used  to  direct  the  expression  of
bicistronic mRNA [34] and Dow AgroSciences described an
adenosine deaminase selection system for maize [35].

Producing proteins in transgenic plants and animals
James W Larrick*

and David W Thomas

background image

Issues regarding protein production in plants
Glycosylation

Differences  in  the  glycosylation  patterns  of  proteins 
produced in plants and humans give perhaps most cause for
concern  regarding  therapeutic  protein  production.
Cabanes-Macheteau et al. [36

••

] reported the first detailed

analysis of the glycosylation of a plant-produced monoclon-
al antibody (plantibody). Both N-glycosylation sites located
on  the  heavy-chain  of  the  plantibody  are  N-glycosylated;
however,  the  number  of  glycoforms  is  higher  in  the  plant
than  in  mammalian-expressed  antibodies.  In  addition  to
high-mannose-type N-glycans, 60% of the oligosaccharides
N-linked  to  the  plantibody  have 

β

(1,2)-xylose  and

α

(1,3)-fucose residues linked to the core Man3GlcNAc2.

These oligosaccharides linkages, not found on mammalian
N-linked  glycans,  are  potentially  immunogenic  and  raise
the  possibility  that  plantibodies  containing  N-linked 
glycans  might  have  limited  scope  as  parenterals  or  even
when applied topically or orally, particularly in patients with
severe food allergies. Food allergens bearing 

β

(1,2)-xylose

and 

α

(1,3)-fucose  have  been  linked  to  specific  IgE  in

serum and to biological activity (i.e. histamine release) in
allergic  patients  [37,38].  In  contrast,  however,  the  mere
presence of serum IgE against cross-reactive carbohydrate
determinants,  which  include  the 

β

(1,2)-xylose  and

α

(1,3)-fucose linkages to the core Man3GlcNAc2 of plant

glycans, has been shown to be a poor predictor of clinical
allergy [39–41]. These results preclude generalities about
the potential toxicity of plantibody glycans in humans.

When  a  mouse  plantibody  (mouse  amino  acid  sequence
and plant glycans) was used to immunize mice there was
no,  or  only  a  minimally  detectable,  serum  immune
response.  Thus,  in  the  mouse  at  least,  a  ‘self’  primary 
protein  structure  decorated  with  plant  N-linked  glycans
can  be  non-immunogenic.  This  plantibody  has  been
applied  topically  in  the  mouth  of  humans  with  no 
detection of human antimouse antibodies [2].

Recent  efforts  have  focused  on  the  humanization  of  plant
glycans to reduce their immunogenic potential. Comparison
of  plant  and  mammalian  N-glycan  biosynthesis  indicates
that 

β

1,4-galactosyltransferase  is  the  most  important

enzyme  that  is  missing  for  conversion  of  typical  plant 
N-glycans into mammalian-like N-glycans. Bakker et al. [42]
reported  the  stable  expression  of  human 

β

1,4-galactosyl-

transferase  in  tobacco  plants.  Crossing  a  tobacco  plant
expressing  human 

β

1,4-galactosyltransferase  with  a  plant

expressing the heavy- and light-chains of a mouse antibody
resulted  in  the  expression  of  a  plantibody  that  exhibits 
partially  galactosylated  N-glycans  (30%).  This  level  of 
carbohydrate incorporation is approximately as abundant as
when  the  same  antibody  is  produced  by  hybridoma  cells.
These  results  represent  a  major  step  forward  in  the  engi-
neering  of  the  N-glycosylation  of  recombinant  proteins.
Aglycosylated  antibodies  lacking  carbohydrates  altogether
can  also  be  created  by  altering  the  peptide  recognition
sequence for N-linked glycosylation (Asn-X-Ser/Thr). High-
mannose-type  glycosylation,  which  does  not  contain  the
core-linked xylose and fucose residues, may be favored by
the  addition  of  a  C-terminal  Lys-Asp-Glu-Leu  sequence
[43] and the subsequent targeting of proteins to the proxi-
mal endoplasmic reticulum. Alternatively, the plant-specific
fucosyl  transferase  [44]  or  xylosyl  transferase,  which  are
active in the transgolgi, may be targeted for silencing.

Post-transcriptional gene silencing

Silencing  of  introduced  transgenes  has  frequently  been
observed in plants, constituting a major commercial prob-
lem [45

]. Post-transcriptional gene silencing (PTGS) is a

sequence-specific  RNA  degradation  mechanism  that  is
widespread in eukaryotic organisms. It is often associated
with methylation of the transcribed region of the silenced
gene and with the accumulation of small RNA molecules
(21 to 25 nucleotides) homologous to the silenced gene. In
plants,  PTGS  can  be  triggered  locally  and  then  spread
throughout the organism via a mobile signal that can cross
a graft junction. PTGS has been shown to occur in many

412

Protein technologies and commercial enzymes

Table 1

Representative therapeutic proteins produced in transgenic
plants.

Recombinant proteins

Plants

Reference/group

Antibodies
SIgA anti-Smutans

Tobacco

[1,2]

Planet Biotechnology

Hayward, CA

IgG anti-herpes simplex

Soybean

[3]

virus

Monsanto,

St Louis, MO

Various antibodies

Maize/rice

EPIcyte,

San Diego, CA

Anti-carcinoembryonic 

Rice and wheat

[88]

antigen

Lymphoma idiotypes

Tobacco

[89]

Vaccines
Hepatitis B surface antigen

Tobacco

[4–6] 

Rabies vaccine

Tobacco

[90]

Norwalk capsid protein

Tobacco, potato

[7]

Porcine transmissible 

Tobacco

[63]

gastroenteritis virus

E. coli toxin (LT-B)

Potato

[8–10]

Cholera toxin (CT-B)

Potato

[11,12]

Mouse GAD67

Potato

[13]

VP2 capsid protein of mink

Black-eyed bean,

[14]

enteritis virus inserted into

Vigna unguiculata

cowpea mosaic virus 

Other proteins
Collagen

Tobacco

[56

]

Hirudin

Canola, Sembiosys 

Calgary,

(Brassica napus)

Alberta, Canada

Lactoferrin

Potato

[55]

Lipase

Tobacco, maize

Meristem Therapeutics

Clermont Ferrand,

France

Growth hormone

Tobacco

[30

••

]

Erythropoietin

Tobacco

[17]

background image

transgenic  dicotyledonous  plants  and  more  recently  in
monocotyledonous plants [46].

Until now, the most efficient strategy to avoid PTGS was to
carefully  design  transgene  constructs  (e.g.  eliminating
repeat  sequences)  and  by  thorough  analysis  of  transfor-
mants at the molecular level [47]. When matrix attachment
regions (MARs) are positioned on either side of a transgene
their  presence  usually  results  in  higher  and  more  stable
expression in transgenic plants or cell lines, most likely by
minimizing  gene  silencing  [48].  The  helper-component
proteinase  (HC-Pro)  of  plant  potyviruses  suppresses
PTGS. Introduction of HC-Pro into plants results in loss of
PTGS, loss of small RNAs, and partial loss of methylation.
Grafting  experiments  indicate  that  HC-Pro  prevents  the
plant  from  responding  to  the  mobile  silencing  signal,  but
does not eliminate its ability to produce or send the signal
[49

]. HC-Pro targets a PTGS maintenance component (as

opposed to an initiation or signaling component) at a point
that affects accumulation of small RNAs and methylation of
genomic  DNA  [50

••

].  Recent  mutagenesis  studies  are

beginning to define the plant genes involved in this inter-
esting and important process [51].

Therapeutic advances using plant-produced proteins

The most widely studied therapeutic proteins produced in
plants  have  been  monoclonal  antibodies  for  passive
immunotherapy  and  antigens  for  use  in  oral  vaccines.
Although a large number of useful proteins have been suc-
cessfully  expressed  in  transgenic  plants  (Table  1)  [52

],  a

limited  number  of  therapeutic  products  have  entered  the
clinic. Products that have entered clinical trials include two
antibodies, an oral vaccine and pancreatic lipase. The most
advanced  product  is  an  anti-Streptococcus  mutans secretory
IgA (SIgA) plantibody currently in phase II clinical trials for
the prevention of dental caries. At the present time, plants
offer  the  only  large-scale,  commercially  viable  system  for
production of this unique form of antibody [1]. SIgA is the
most abundant antibody class produced by the body (

>

60%

of total immunoglobulin) and is secreted onto mucosal sur-
faces to provide local protection from toxins and pathogens.
SIgA  is  comprised  of  four  different  protein  chains:  heavy
and  light  immunoglobulin  chains  that  form  the  antigen-
binding hypervariable region; the J chain that dimerizes two
IgA molecules (SIgA has four antigen-binding sites); and the
secretory  component  that  is  derived  from  the  polyim-
munoglobulin  receptor  of  mucosal  epithelial  cells  [53].
Previously, it was not possible to obtain therapeutic quanti-
ties  of  this  class  of  immunoglobulin.  The  initial  clinical
studies  demonstrate  that  topically  applied  anti-S.  mutans
SIgA plantibody is safe (i.e. no human antimouse antibody
response [HAMA] and no local or systemic toxicity) and pre-
vents colonization by S. mutans, the major cause of human
dental  caries  [2].  Planet  Biotechnology  Inc.  completed
United  States  Food  and  Drug  Administration  (FDA)-
approved phase I/II confirmatory clinical trials at the School
of Dentistry at the University of California in San Francisco
in late 2000. Details will be published elsewhere; however,

initial  analysis  of  the  data  indicates  that  the  plantibody 
significantly  reduces  the  levels  of  S.  mutans.  Further 
confirmatory  trials  have  been  designed  to  optimize  the 
treatment regimen.

The recent availability of large amounts of sIgA plantibod-
ies opens up a number of novel therapeutic opportunities
for  disorders  of  the  mucosal  immune  system.  These
include therapies for intestinal pathogens such as hepatitis
viruses,  Helicobacter  pylori,  enterotoxigenic Escherichia  coli
and  cholera,  respiratory  pathogens  (e.g.  rhinovirus  and
influenza), and genitourinary sexually transmitted diseases
(e.g. herpes simplex virus [3]). SIgA might also be devel-
oped  as  a  method  of  contraception.  A  number  of  other
plantibodies, usually of the IgG class, are currently under
development.  The  most  advanced  of  these,  an  anti-
EPCAM  plantibody  (co-developed  by  NeoRx  and
Monsanto)  was  recently  discontinued  after  phase  II  trials
demonstrated significant gastrointestinal side-effects.

Recombinant bioactive avidin and 

β

-glucuronidase [22,54]

are the first recombinant plant-derived proteins to be pro-
duced  commercially  (made  by  Prodigene  Inc.,  College
Station,  TX)  and  sold  by  Sigma  Chemical  company
(St Louis, MO). Two other proteins that will be required in
large quantity for nutriceutical use (lactoferrin [55]) or cos-
meceutical use (collagen [56

]) were recently produced in

transgenic plants. Hirudin, a therapeutic anticoagulant, has
been  produced  by  Sembiosys  (Calgary,  Canada)  using
oleosin-fusion  technology  [57],  which  allows  extraction
using canola oil bodies.

Edible  vaccines  [58]  produced  in  transgenic  plants  have
the  potential  to  revolutionize  vaccination,  particularly  in
less-developed countries. Numerous vaccine proteins have
been  produced  in  plants  and  demonstrated  to  be  both
immunogenic  and  protective  against  pathogen  challenge
(see Table 1). Recently, the first human trials were report-
ed  of  plant-produced  bacterial  [8]  and  viral  [59]  oral
vaccines. These demonstrated modest levels of protective
antibodies in serum and stool.

Recently, respiratory syncytial virus vaccine [60], canine par-
vovirus [61], measles [62], transmissible gastroenteritis virus
(TGEV) [63], and improved hepatitis B virus vaccines have
been prepared in plants [6,64]. Wigdorovitz et al., [65] devel-
oped transgenic alfalfa expressing the structural protein VP1
of  foot-and-mouth  disease  virus.  Mice,  parenterally  immu-
nized using leaf extracts or fed freshly harvested leaves from
the transgenic plants, developed a virus-specific protective
immune response. These studies demonstrate the feasibili-
ty of this ‘appropriate technology’ for developing countries
where vaccines are urgently needed.

Transgenic animals

Technological advances using transgenic animals

One  of  the  more  promising  approaches  to  the  large-scale
production of recombinant proteins has been the secretion

Producing proteins in transgenic plants and animals Larrick and Thomas    413

background image

of proteins into the milk of transgenic mammals. This has
been successfully demonstrated for over two dozen differ-
ent  proteins  in  either  cows,  goats,  sheep,  pigs,  rabbits  or
mice and appears particularly promising for the production
of  large  amounts  of  monoclonal  antibodies  [66].  Indeed,
the commercial promise for using animals as bioreactors for
protein production is being realized through several com-
panies, including Genzyme Transgenics, Pharming Group,
PPL Therapeutics and Infigen Inc. Although recombinant
proteins  can  be  expressed  in  other  tissues,  milk  has
remained  the  major  mode  of  production  due  to  the  large
volume produced by lactating female animals and the ease
of  collection  and  purification  of  the  protein  product.  In
goats,  for  example,  a  lactating  female  can  produce  up  to
800 L of milk a year, which can contain around 5 g recom-
binant protein/L to yield around 4 kg of protein per year.
Thus, even a modest herd of transgenic goats can produce
several hundred kilograms of protein product each year at
a low production cost. In addition to milk, urine has been
suggested  as  another  feasible  route  for  the  production  of
recombinant  proteins  [67,P1].  Another  more  recent
approach is to produce recombinant proteins in transgenic
chicken eggs; high-yield protein can be expressed in eggs,
harvesting  is  straightforward  and  production  is  easy  to
scale-up.  Studies  into  this  method  of  protein  production
have been undertaken by the Avian Initiative, a collabora-
tion between Viragen and the Roslin Institute.

To date, most recombinant proteins produced in transgenic
animals  have  involved  the  microinjection  of  a  genetic 
construct the expression of which is driven by a mammary-
gland-specific promoter (e.g. for the production of caseins,
whey  acidic  protein,  lactalbumins  and  lactoglobulin).
Although successful, this approach is inefficient and time-
consuming. The challenge is to improve the efficiency and
speed of producing high-yield  protein-expressing founder
animals. One way to quickly determine the activity and sta-
bility  of  a  recombinant  protein  in  milk  is  to  transfect
mammary tissue in vivo using an expression plasmid encod-
ing  the  protein,  as  shown  with  human  growth  hormone
[68

••

]  which  was  infused  through  the  nipple  canal.  A 

similar  strategy  could  also  be  used  to  potentially  transfect
bladder epithelial cells for expression of proteins in urine.
However,  neither  of  these  approaches  would  result  in  the
production of large amounts of protein.

One very promising approach to increasing the efficiency of
creating a herd of animal bioreactors with improved recom-
binant  protein  expression  is  through  nuclear  transfer
technology. Transgenic mice have been produced for some
years  using  genetically  modified  pluripotential  embryonic
stem  cells  that  were  introduced  into  the  early  embryo  to
create a chimeric mouse. Although transfer of nuclei from
embryonic cells into enucleated oocytes was used success-
fully to create cloned animals in larger mammalian species,
these  embryonic  cells  were  difficult  to  genetically  modify
and there was an absence of a cloned embryonic stem cell
line in which transfectants could be more readily identified

and  propagated.  Recently,  however,  there  have  been
reports of established embryonic stem cells from cattle [69]
and goats [70]. A surprising breakthrough was made sever-
al years ago by Wilmut et al. [71] who showed that a sheep,
Dolly, could be created from the transfer of a nucleus from
an adult somatic cell as opposed to an embryonic cell. Since
that time a number of different adult cell types have been
used  as  nuclear  donors  for  the  cloning  of  sheep,  cattle,
goats,  pigs  and  mice.  These  include  tissue  fibroblast  cells
from  ears  and  tails,  as  well  as  fibroblast  cell  lines,  tissue
cumulus  cells,  mammary  gland  epithelial  cells,  oviduct,
uterine, skin, muscle, and liver cells) [69,72–75]. The opti-
mal  technology  in  each  case  is  still  being  developed  and
includes variables on the timing and method for activation
of  the  recipient  enucleated  oocyte,  the  cell  cycle  of  the
donor  nucleus,  and  the  fusion  method.  Polejaeva  et  al.
[76

••

] developed a new double nuclear transfer procedure

in  pigs  using  granulosa  cells  as  the  nuclear  donor;  this
approach  minimizes  in  vitro activation  and  increases  the
efficiency  of  producing  viable  births.  The  next  step  is  to
produce  animals  that  have  been  genetically  modified  by
using nuclei from engineered cell lines. Ideally, this would
include targeted gene insertion for optimal expression, con-
trolled  copy  number,  and  inducible  expression  of  the
introduced gene. McCreath et al. [77

••

] used gene targeting

in  ovine  fibroblast  cells  to  introduce  the  gene  encoding
human 

α

1-antitrypsin  (AAT)  and  these  cells  were  then

used  as  nuclear  donors.  Several  sheep  were  born  that
expressed AAT and the milk of one of them expressed AAT
at  650

µ

g/ml  following  induced  lactation.  Unfortunately,

the  majority  of  the  lambs  died  and  showed  evidence  of  a
spectrum  of  genetic  abnormalities,  as  has  been  observed
with  cloned  calves  [78].  This  raises  the  possibility  that
manipulation  of  the  nucleus  may  introduce  alterations  to
reprogramming that impair full development, as found with
nuclei that were repeatedly recycled [79

••

].

In  addition  to  unknown  effects  of  nuclear  transfer  on
embryonic  development,  there  is  also  the  question  about
long-term effects on cloned animals after birth. It was sur-
prising to discover that Dolly had shortened telomeres of a
length similar to that of the donor nuclei [80]. As shortened
telomeres are a process of aging and are thought to be asso-
ciated with decreased replicative ability and lifespan, this
observation  raised  questions  about  the  feasibility  of  pro-
ducing cloned animals by nuclear transfer without causing
major  problems,  including  a  shortened  life.  By  contrast,
additional  studies  have  found  that  telomerase  activity,
which  maintains  telomere  length,  is  reprogrammed  in
nuclear transferred embryos and is similar to that obtained
from conventional embryos [81]. Furthermore, the telom-
ere length in cloned fetuses and calves was the same as in
normal  animals  even  when  the  donor  nuclei  from  adult
fibroblasts  had  shortened  telomeres  [82

••

].  In  a  similar

fashion, Lanza et al. [83] found that nuclei from senescent
cells could be rejuvenated upon transfer and were able to
generate  cloned  calves  with  extended  telomeres.  These
latter  studies  would  suggest  that  normal  cloned  animals

414

Protein technologies and commercial enzymes

background image

can be produced by nuclear transfer from aged adult donor
cells and that that the age-limiting telomere shortening can
be reversed. The differences between these observations
and  those  reported  by  Shiels  et  al.  [80]  remain  to  be
resolved but could relate to the species and/or donor cells
or the technology used to optimize each system.

Therapeutic advances using proteins produced in
animal bioreactors

The  expression  of  proteins  in  milk  offers  several  uses:  to
produce large amounts of therapeutics for human or veteri-
nary  use;  to  improve  the  health  of  dairy  livestock;  and  to
produce  large  amounts  of  proteins  used  in  commercial
processes  or  in  drug  formulation,  such  as  human  serum
albumin.  Although  an  increasing  number  of  proteins  are
being  produced  in  milk,  most  are  in  preclinical  develop-
ment  and  few  are  yet  in  clinical  testing.  Pharming  Group
and  Genzyme  are  developing  recombinant  human 

α

-glucosidase to treat infants with Pompe’s disease, which

results from a genetic deficiency in this enzyme. Enzyme
produced  in  rabbits  milk  was  well-tolerated  and  showed
clinical  benefit  in  treated  patients  [84].  Pharming  Group
and Baxter Healthcare Corporation have also recently initi-
ated clinical testing with a rabbit-milk-derived recombinant
human  C1  inhibitor  to  treat  patients  with  hereditary
angioedema who exhibit C1 inhibitor deficiency. Pharming
Group has also just completed a phase I clinical study with
recombinant human lactoferrin — the protein was found to
be safe and well tolerated. Lactoferrin will be tested initial-
ly for heparin neutralization in coronary artery angioplasty
or  bypass  surgery.  Recently,  human  lactoferrin  was  also
found to have potent antibacterial activity in animal models
using antibiotic-resistant Staphylococci, which could broad-
en its clinical use [85]. Genzyme Transgenics and Genzyme
General have produced antithrombin III in goats milk; the
protein  is  currently  in  phase  III  clinical  trials  to  prevent
blood  clotting  during  cardiac  surgery  in  heparin-resistant
patients  [86].  Goat  herds  are  also  being  developed  by
Genzyme Transgenics for the large-scale production of the
tumor necrosis inhibitory monoclonal antibody, Remicade.
Remicade  is  marketed  by  Centocor  for  the  treatment  of
inflammatory  conditions,  including  Crohn’s  disease  and
rheumatoid arthritis.

Another use for the expression of recombinant proteins in
milk  is  to  prevent  mastitis  caused  by  Staphylococcus  in
dairy  cattle.  For  example,  Kerr  and  colleagues  [87

••

]

showed that expression of recombinant lysostaphin in the
milk of mice prevented Staphylococcus aureus infection.

Issues regarding the production of proteins in animals

The  technologies  discussed  above  go  some  way  towards
addressing  the  two  big  issues  facing  animal  production  of
recombinant proteins: efficiency and the speed with which
a commercial product can be produced. The current meth-
ods for producing transgenic animals lead to live births at a
low rate and the success rate is generally below 10%. Even
with  nuclear  transfer,  the  success  rate  is  low  and  many

embryos suffer abnormalities and are not viable. When live
births do occur, the next challenge is to identify animals that
produce high levels of protein and can serve as founders for
a herd. This selection procedure has a relatively low success
rate,  particularly  with  animals  produced  using  microinjec-
tion  technology.  Theoretically,  the  use  of  nuclear  transfer
could improve this situation as all animals are derived from
the  same  nucleus  and  the  animals  are  not  chimeric.  This
approach should also permit greater stability and retention
of  the  introduced  gene  in  subsequent  generations.  Using
gene  targeting  it  should  be  possible  to  design  optimal 
insertion points in the genome for expression of the intro-
duced  gene,  which  could  remove  some  of  the  expression 
variability that results from more random insertion. 

The  second  issue  facing  protein  production  in  recombi-
nant  animals  is  the  speed  to  commercial  product.  With
microinjection  technology,  to  produce  large  amounts  of
product  the  founders  must  first  be  identified  and  then
used to breed and establish the herd. With cows, for exam-
ple,  the  age  to  sexual  maturity  is  around  15  months  and
each cow has a single offspring. In females natural lactation
also occurs at around three years of age. It is clear that to
produce a sufficient herd for commercial production takes
a number of years. Again, this could be greatly expedited
using nuclear transfer; once a female founder is identified,
cells from that animal can donate nuclei to produce a herd
in one generation.

Another  issue  that  needs  to  be  considered  with  animal 
production  of  recombinant  proteins  is  that  of  infectious
diseases. The potential for products to contain prions has
been  a  concern  for  some  time,  and  most  companies  have
designed a process and testing to assure that their products
are  prion-free.  A  current  problem  is  the  occurrence  of 
sudden epidemics that can devastate livestock herds, such
as  foot-and-mouth  disease.  There  is  a  necessity  to  place
herds  in  different  regions  of  the  world  to  avoid  such 
catastrophes, but even this cannot avoid potential loss of a
manufacturing  herd.  For  example,  the  foot-and-mouth 
disease outbreak in England quickly spread to other parts
of  Europe.  Foot  and  mouth  is  also  prevalent  in  South
America and the Middle East. One can control as much as
possible  to  ensure  a  safe  and  healthy  herd  of  transgenic
animals,  but  there  are  unknown  risks  that  can  be 
catastrophic.  This  concern  may  stimulate  even  greater
efforts  to  develop  animals  resistant  to  disease,  as  pointed
out  above  for  lysostaphin,  and  to  produce  new  effective
vaccines to ward off known pathogens.

Finally,  the  therapeutic  proteins  produced  in  transgenic
animals  undergo  post-translational  processing  characteris-
tic of that animal, although the protein itself is of human
sequence.  Because  carbohydrates  in  recombinant  glyco-
proteins,  in  particular,  are  somewhat  different  from  those
of human origin, there is still a question about whether or
not  this  will  have  adverse  effects,  such  as  eliciting  an
immune  response  or  conferring  altered  biodistribution  or

Producing proteins in transgenic plants and animals Larrick and Thomas    415

background image

retention.  Although  only  few  animal-produced  protein
drugs  have  yet  been  administered  to  humans,  there  does
not appear to be any issue with respect to the circulating
half-life or production of antibodies.

Conclusions 

In summary, the future production of recombinant proteins
in  plants  or  in  the  milk  of  animals  looks  promising.  The
number  of  applications  will  increase  as  more  therapeutic
proteins are required in quantities that cannot be attained
economically  in  cell  culture.  With  the  advent  of  nuclear
transfer technology, optimized production of recombinant
proteins  in  milk  should  become  even  more  efficient  and
inexpensive. In plants, efforts to modify glycosylation and
control  post-transcriptional  gene  silencing  will  enhance
the  value  of  this  important  technology.  An  increasing 
number  of  transgenic  plant-  and  animal-derived  proteins
are  entering  clinical  testing.  The  initial  success  of  these
development programs suggests an important role for cost-
effective and large-scale production technologies.

References and recommended reading

Papers of particular interest, published within the annual period of review,
have been highlighted as:

of special interest

••

of outstanding interest

1.

Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P,
van Dolleweerd C, Mostov K, Lehner T: Generation and assembly of
secretory antibodies in plants. 
Science 1995, 268:716-719.

2.

Ma J, Hikmat B, Wycoff K, Vine N, Chargelegue D, Yu L, Hein M,
Lehner T: Characterization of a recombinant plant monoclonal
secretory antibody and preventive immunotherapy in humans. 
Nat
Med 
1998, 4:601-606.

3.

Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM,
Russell DR, Queen C, Cone RA, Whaley KJ: A humanized monoclonal
antibody produced in transgenic plants for immunoprotection of the
vagina against genital herpes. 
Nat Biotechnol 1998, 16:1361-1364.

4.

Mason HS, Lam DM, Arntzen CJ: Expression of hepatitis B surface
antigen in transgenic plants. 
Proc Natl Acad Sci USA 1992,
89:11745-11749.

5.

Thanavala Y, Wang Y-F, Lyons P, Mason HS, Arntzen C:
Immunogenicity of transgenic plant-derived hepatitis B surface
antigen. 
Proc Natl Acad Sci USA 1995, 92:3358-3361.

6.

Richter LJ, Thanavala Y, Arntzen CJ, Mason HS: Production of
hepatitis B surface antigen in transgenic plants for oral
immunization. 
Nat Biotechnol 2000 18:1167-1171.

7.

Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ: Expression of
Norwalk virus capsid protein in transgenic tobacco and its oral
immunogenicity in mice. 
Proc Natl Acad Sci USA 1996, 93:5335-5340.

8.

Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM,
Arntzen CJ: Immunogenicity in humans of a recombinant bacterial
antigen delivered in a transgenic potato. 
Nat Med 1998, 4:607-609.

9.

Haq TA, Mason HS, Clements JD, Arntzen CJ: Oral immunization
with a recombinant bacterial antigen produced in transgenic
plants. 
Science 1995, 268:714-716.

10. Mason HS, Haq TA, Clements JD, Arntzen CJ: Edible vaccine protects

mice against Escherichia coli heat-labile enterotoxin (LT): potatoes
expressing a synthetic LT-B gene. 
Vaccine 1998, 16:1336-1343.

11. Arakawa T, Chong DK, Merritt JL, Langridge WH: Expression of

cholera toxin B subunit oligomers in transgenic plants. Transgenic
Res 
1997, 6:403-413.

12. Arakawa T, Chong DK, Langridge WH: Efficacy of a food plant-

based oral cholera toxin B subunit vaccine. Nat Biotechnol 1998,
16:292-297.

13. Ma SW, Zhao DL, Yin ZQ, Mukherjee R, Singh B, Qin HY, Stiller CR,

Jevnikar AM: Transgenic plants expressing autoantigens fed to
mice to induce oral immune tolerance. 
Nat Med 1997, 3:793-796.

14. Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A,

Hamilton WD, Langeveld JP, Boshuizen RS, Kamstrup S,
Lomonossoff GP et al.: Plant-derived vaccine protects target
animals against a viral disease. 
Nat Biotechnol 1997 15:248-252.

15. Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN,

Straub RJ, Burgess RR: An overview of a feasibility study for the
production of industrial enzymes in transgenic alfalfa. 
Annu NY
Acad Sci 
1994, 721:235-244.

16. Khoudi H, Laberge S, Ferullo JM, Bazin R, Darveau A, Castonguay Y, 

Allard G, Lemieux R, Vezina LP: Production of a diagnostic
monoclonal antibody in perennial alfalfa plants. 
Biotechnol Bioeng
1999, 20:135-143.

First demonstration of alfalfa production of a transgenic antibody.

17.

Kusnadi A, Nikolov R, Zivko L, Howard J A: Production of
recombinant proteins in transgenic plants: practical
considerations. 
Biotechnol Bioeng 1997, 56:473-484.

18. Kusnadi A, Evangelista R, Hood E, Howard J, Nikolov Z: Processing

of transgenic corn seed and its effect on the recovery of
recombinant 

ββ

-glucuronidase. Biotechnol Bioeng 1998, 60:44-52.

19. Kusnadi A, Hood E, Witcher D, Howard J, Nikolov Z: Production and

purification of two recombinant proteins from transgenic corn.
Biotechnol Prog 1998, 14:149-155.

20. Krebbers E: Prospects and progress in the production of foreign

proteins and peptides in transgenic plants. In Plant Protein
Engineering
. Edited by Shewry PR, Gutteridge S. Cambridge
University Press; 1992:315-325.

21. Whitelam GC, Cockburn W, Owen MRL: Antibody production in

transgenic plants. Biochem Soc Trans 1994, 22:940-943.

22. Hood EE, Kusnadi A, Nikolov Z, Howard JA: Molecular farming of

industrial proteins from transgenic maize. Adv Exp Med Biol 1999,
464:127-147.

23. Larrick JW, Yu L, Chen J, Jaiswal S, Wycoff K: Production of

antibodies in transgenic plants. Res Immunol 1998, 149:603-608.

24. Russell DA: Feasibility of antibody production in plants for human

therapeutic use. Curr Top Microbiol Immunol 1999, 236:119-137.

25. Hood EE, Jilka JM: Plant-based production of xenogenic proteins.

Curr Opin Biotechnol 1999, 10:382-386.

26. Fiedler U, Conrad U: High-level production and long-term storage

of engineered antibodies in transgenic tobacco seeds. BioTechnol
1995, 13:1090-1093.

27.

Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara LG, 

von Wettstein D: The production of recombinant proteins in
transgenic barley grains. 
Proc Natl Acad Sci USA 2000,
97:1914-1919.

An early paper demonstrating transgenic production using barley.

28. Zhang P, Potrykus I, Puonti-Kaerlas J. Efficient production of 

transgenic cassava using negative and positive selection.
Transgenic Res 2000, 9:405-415.

Cassava may be a useful ‘bioreactor’ in the tropics.

29. Schenk PM, Sagi L, Remans T, Dietzgen RG, Bernard MJ,

Graham MW, Manners JM: A promoter from sugarcane bacilliform
badnavirus drives transgene expression in banana and other
monocot and dicot plants. 
Plant Mol Biol 1999, 39:1221-1230.

30. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, 

••

Paradkar V, Schlittler M, Carroll JA, Spatola L et al.High-yield
production of a human therapeutic protein in tobacco
chloroplasts. 
Nat Biotechnol 2000, 18:330-338.

Demonstration by the Monsanto/Agracetus/Calgene group(s) of the utility of
using chloroplasts for high-level expression of transgenic proteins.

31. Henriques L, Daniell H: Expression of cholera toxin B subunit

oligomers in transgenic tobacco chloroplasts. Proc Nat Acad Sci
USA 
2001, in press. 

32. De Cosa B, Moar W, Lee S-B, Miller M, Daniell H: Overexpression of

the Bt cry2Aa2 operon in chloroplasts leads to formation of
insecticidal crystals. 
Nat Biotechnol 2001, 19:71-74.

33. MacFarlane SA, Popovich AH: Efficient expression of foreign

proteins in roots from tobravirus vectors. Virology 2000, 267:29-35.

416

Protein technologies and commercial enzymes

background image

34. Toth RL, Chapman S, Carr F, Santa Cruz S: A novel strategy for the

expression of foreign genes from plant virus vectors. FEBS Lett
2001, 489:215-219.

35. Petolino JF, Young S, Hopkins N, Sukhapinda K, Woosley A, Hayes C,

Pelcher L. Expression of murine adenosine deaminase (ADA) in
transgenic maize. 
Transgenic Res 2000, 9:1-9.

36. Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, 

••

Lange C, Vine ND, Ma JK, Lerouge P, Faye L: N-Glycosylation of a
mouse IgG expressed in transgenic tobacco plants. 
Glycobiology
1999, 9:365-372.

The first in-depth study of glycosylation of a plantibody.

37.

Fotisch K, Altmann F, Haustein D, Vieths S: Involvement of
carbohydrate epitopes in the IgE response of celery-allergic
patients. 
Int Arch Allergy Immunol 1999, 120:30-42.

38. Garcia-Casado G, Sanchez-Monge R, Chrispeels MJ, Armentia A,

Salcedo G, Gomez L: Role of complex asparagine-linked glycans
in the allergenicity of plant glycoproteins. 
Glycobiology 1996,
4:471-477.

39. van Ree R, Aalberse RC: Specific IgE without clinical allergy.

J Allergy Clin Immunol 1999103:1000-1001.

40. Mari A, Iacovacci P, Afferni C, Barletta B, Tinghino R, Di Felice G,

Pini C: Specific IgE to cross-reactive carbohydrate determinants
strongly affects the in vitro 
diagnosis of allergic diseases. J Allergy
Clin Immunol 
1999, 103:1005-1011.

41. van der Veen MJ, van Ree R, Aalberse RC, Akkerdaas J,

Koppelman SJ, Jansen HM, van der Zee JS: Poor biologic activity of
cross-reactive IgE directed to carbohydrate determinants of
glycoproteins. 
J Allergy Clin Immunol 1997, 100:327-334.

42. Bakker H, Bardor M, Molthoff JW, Gomord VV, Elbers II, Stevens LH,

Jordi W, Lommen A, Faye L, Lerouge P, Bosch D: Galactose-
extended glycans of antibodies produced by transgenic plants.
Proc Natl Acad Sci USA 2001, 98:2899-2904.

43. Wandelt CI, Khan MRI, Craig S, Schroeder HE, Spencer D,

Higgins TJV: Vicilin with carboxy-terminal KDEL is retained in the
endosplasmic reticulum and accumulates to high levels in leaves
of transgenic plants. 
Plant J 1992, 2:181-192.

44. Leiter H, Mucha J, Staudacher E, Grimm R, Glossl J, Altmann F:

Purification, cDNA cloning, and expression of GDP-

L

-Fuc:Asn-

linked GlcNAc

αα

1,3-fucosyltransferase from mung beans. J Biol

Chem 1999, 274:21830-21839.

45. Vaucheret H, Fagard M: Transcriptional gene silencing in plants:

targets, inducers and regulators. Trends Genet 2001, 17:29-35.

Most recent review of gene silencing in plants.

46. Kanno T, Naito S, Shimamoto K: Post-transcriptional gene silencing

in cultured rice cells. Plant Cell Physiol 2000, 41:321-326.

47.

de Wilde C, Van Houdt H, de Buck S, Angenon G, de Jaeger G,
Depicker A: Plants as bioreactors for protein production: avoiding the
problem of transgene silencing. 
Plant Mol Biol 2000, 43:347-359.

48. Allen GC, Spiker S, Thompson WF: Use of matrix attachment

regions (MARs) to minimize transgene silencing. Plant Mol Biol
2000, 43:361-376.

49. Mallory AC, Ely L, Smith TH, Marathe R, Anandalakshmi R, Fagard M,

Vaucheret H, Pruss G, Bowman L, Vance VB: HC-Pro suppression of
transgene silencing eliminates the small RNAs but not transgene
methylation or the mobile signal. 
Plant Cell 2001, 13:571-583.

Grafting experiments indicate that HC-Pro prevents the plant from respond-
ing to the mobile silencing signal but does not eliminate its ability to produce
or send the signal.

50. Llave C, Kasschau KD, Carrington JC: Virus-encoded suppressor of 

••

posttranscriptional gene silencing targets a maintenance step in
the silencing pathway. 
Proc Natl Acad Sci USA 2000,
97:13401-13406.

An interesting and important paper investigating the mechanism of post-tran-
scriptional gene silencing.

51. Mittelsten Scheid O, Afsar K, Paszkowski J: Release of epigenetic

gene silencing by trans-acting mutations in ArabidopsisProc Natl
Acad Sci USA 
1998, 95:632-636.

52. Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: 

production of antibodies, biopharmaceuticals and edible vaccines
in plants. 
Trends Plant Sci 2001, 6:219-226.

An excellent review of molecular pharming.

53. Mostov KE, Altschuler Y, Chapin SJ, Enrich C, Low SH, Luton F,

Richman-Eisenstat J, Singer KL, Tang K, Weimbs T: Regulation of
protein traffic in polarized epithelial cells: the polymeric
immunoglobulin receptor model. 
Cold Spring Harb Symp Quant
Biol 
1995, 60:775-781.

54. Hood E, Witcher D, Maddock S, Meyer T, Baszczynski C, Bailey M,

Flynn P, Register J, Marshall L, Bond D et al.: Commercial production
of avidin from transgenic maize: characterization of transformant,
production, processing, extraction and purification. 
Mol Breed
1997, 3:291-306.

55. Chong DK, Langridge WH: Expression of full-length bioactive

antimicrobial human lactoferrin in potato plants. Transgenic Res
2000, 9:71-78.

56. Ruggiero F, Exposito JY, Bournat P, Gruber V, Perret S, Comte J, 

Olagnier B, Garrone R, Theisen M: Triple helix assembly and
processing of human collagen produced in transgenic tobacco
plants. 
FEBS Lett 2000, 469:132-136.

Production of a high molecular weight protein with potential for both cos-
meceutical and pharmaceutical use.

57.

Rooijen V, Moloney M: Structural requirements of oleosin domains
for subcellular targeting to the oilbody. 
Plant Physio/ 1995,
109:1353-1361.

58. Fooks AR: Development of oral vaccines for human use. Curr Opin

Mol Ther 2000, 2:80-86.

59. Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ:

Human immune responses to a novel Norwalk virus vaccine
delivered in transgenic potatoes. 
J Infect Dis 2000, 182:302-305.

60. Belanger H, Fleysh N, Cox S, Bartman G, Deka D, Trudel M,

Koprowski H, Yusibov V: Human respiratory syncytial virus vaccine
antigen produced in plants. 
FASEB J 2000, 14:2323-2328.

61. Gil F, Brun A, Wigdorovitz A, Catala R, Martinez-Torrecuadrada JL, Casal I,

Salinas J, Borca MV, Escribano JM: High-yield expression of a viral
peptide vaccine in transgenic plants. 
FEBS Lett 2001, 488:13-27.

62. Huang Z, Dry II, Webster D, Strugnell R, Wesselingh S: Plant-derived

measles virus hemagglutinin protein induces neutralizing
antibodies in mice. 
Vaccine 2001, 19:2163-2171.

63. Tuboly T, Yu W, Bailey A, Degrandis S, Du S, Erickson L, Nagy E:

Immunogenicity of porcine transmissible gastroenteritis virus
spike protein expressed in plants. 
Vaccine 2000, 18:2023-2028.

64. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M,

Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB: A
plant-derived edible vaccine against hepatitis B virus. 
FASEB J
1999, 13:1796-1799.

65. Wigdorovitz A, Carrillo C, Dus Santos MJ, Trono K, Peralta A,

Gomez MC, Rios RD, Franzone PM, Sadir AM, Escribano JM,
Borca MV: Induction of a protective antibody response to foot and
mouth disease virus in mice following oral or parenteral
immunization with alfalfa transgenic plants expressing the viral
structural protein VP1. 
Virology 1999, 255:347-353.

66. Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y,

Meade HM: Transgenic milk as a method for the production of
recombinant antibodies. 
J Immunol Methods 1999, 231:147-157.

67.

Meade H, Ziomek C: Urine as a substitute for milk? Nat Biotechnol
1998, 16:21-22.

68. Hens JR, Amstutz MD, Schanbacher FL, Mather IH: Introduction of 

••

the human growth hormone gene into the guinea pig mammary
gland by in vivo 
transfection promotes sustained expression of
human growth hormone in the milk throughout lactation. 
Biochim
Biophys Acta 
2000, 1523:161-171.

Rapid expression of recombinant proteins in milk is important to ascertain its
stability and qualitative aspects before embarking on a costly campaign to
produce transgenic animals. This article illustrates one technique by which
this can be accomplished through the transfection of mammary tissue with a
nonviral expression vector to produce adequate levels of recombinant pro-
tein in milk suitable for analysis.

69. Shiga K, Fujita T, Hirose K, Sasae Y, Nagai T: Production of calves

by transfer of nuclei from cultured somatic cells obtained from
Japanese black bulls. 
Theriogenology 1999, 52:527-535.

70. Kuhholzer B, Baguisi A, Overstrom EW: Long-term culture and

characterization of goat primordial germ cells. Theriogenology
2000, 53:1071-1079.

Producing proteins in transgenic plants and animals Larrick and Thomas    417

background image

71. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH: Viable

offspring derived from fetal and adult mammalian cells. Nature
1997, 385:810-813.

72. Kishi M, Itagaki Y, Takakura R, Imamura M, Sudo T, Yoshinari M,

Tanimoto M, Yasue H, Kashima N: Nuclear transfer in cattle using
colostrum-derived mammary gland epithelial cells and ear-
derived fibroblast cells. 
Theriogenology 2000, 54:675-684.

73. Kato Y, Tani T, Tsunoda Y: Cloning of calves from various somatic

cell types of male and female adult, newborn and fetal cows.
J Reprod Fertil 2000, 120:231-237.

74.

Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J,
Forsythe T, Golueke P, Jurgella G, Koppang R et al.Production of
cloned pigs from in vitro 
systems. Nat Biotechnol 2000,
18:1055-1059.

75. Ogura A, Inoue K, Takano K, Wakayama T, Yanagimachi R: Birth of

mice after nuclear transfer by electrofusion using tail tip cellsMol
Reprod Dev 
2000, 57:55-59.

76. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, 

••

Boone J, Walker S, Ayares DL et al.Cloned pigs produced by
nuclear transfer from adult somatic cells. 
Nature 2000, 407:86-90.

For some reason pigs have been more difficult to clone than cows, sheep or
goats. In this article, a novel technique using a double nuclear transfer result-
ed in viable piglets. This is a procedure that relies on in vivo activation and
minimizes in vitro manipulation. It will be interesting to determine if this pro-
cedure reduces the abnormalities in other species arising from nuclear trans-
fer into oocytes activated in vitro.

77.

McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, 

••

Kind AJ: Production of gene-targeted sheep by nuclear transfer
from culture somatic cell. 
Nature 2000, 405:1066-1069.

One of the promises of nuclear transfer is the rapid scale-up of animals
reproducibly expressing the recombinant protein of interest. This article is
the first demonstrating the generation of cloned sheep that express the
recombinant protein, human 

α

1-antitrypsin, using targeted gene insertion.

78. Hill JR, Roussel AJ, Cibelli JB, Edwards JF, Hooper NL, Miller MW,

Thompson JA, Looney CR, Westhusin ME, Robl JM, Stice SL: Clinical
and pathologic features of cloned transgenic calves and fetuses
(13 case studies). 
Theriogenology 1999, 51:1451-1465.

79. Peura TT, Lane MW, Lewis IM, Trounson AO: Development of bovine 

••

embryo-derived clones after increasing rounds of nuclear
recycling. 
Mol Reprod Dev 2001, 58:384-389.

One major problem with cloning has been the high incidence of abnormali-
ties occurring in the cloned embryo or after birth. In this article the amount
of  in vitro nuclear manipulation was shown to have a significant effect on
embryonic development. This points out the need to understand the mecha-
nisms of genetic reprogramming and how this is influenced by different
manipulations and methodologies.

80. Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I,

Colman A, Schnieke AE: Analysis of telomere lengths in cloned
sheep. 
Nature 1999, 399:316-317.

81. Xu J, Yang X: Telomerase activity in early bovine embryos derived

from parthenogenetic activation and nuclear transfer. Biol Reprod
2001, 64:770-774.

82. Betts D, Bordignon V, Hill J, Winger Q, Westhusin M, Smith L, 

••

King W: Reprogramming of telomerase activity and rebuilding of
telomere length in cloned cattle. 
Proc Natl Acad Sci USA 2001,
98:1077-1082.

The potentially shortened telomeres in offspring derived senescent adult cell
nuclear donors, as shown with Dolly, raised a significant problem in the long-
term viability of cloned animals. This article shows that telomerase activity is
reprogrammed upon transfer of nuclei with shortened telomeres into oocytes
and that cloned embryos and newborn calves had normal telomere lengths.
It will be important to discover the mechanism for reprogramming of telom-
erase such that lengthening of shortened telomeres is reproducible.

83. Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK,

Baerlocher GM, Mak J, Schertzer M, Chavez EA, Sawyer N et al.:
Extension of cell life-span and telomere length in animals cloned
from senescent somatic cells. 
Science 2000, 288:665-669.

84. Van den Hout H, Reuser AJ, Vulto AG, Loonen MC,

Cromme-Dijkhuis A, Van der Ploeg AT: Recombinant human

αα

-glucosidase from rabbit milk in Pompe patients. Lancet 2000,

356:397-398.

85. Nibbering PH, Ravensbergen E, Welling MM, van Berkel LA,

van Berkel PH, Pauwels EK, Nuijens JH: Human lactoferrin and
peptides derived from its N terminus are highly effective against
infections with antibiotic-resistant bacteria. 
Infect Immun 2001,
69:1469-1476.

86. Yeung PK: Technology evaluation: transgenic antithrombin III

(rhAT-III), Genzyme TransgenicsCurr Opin Mol Ther 
2000, 2:336-339.

87.

Kerr DE, Plaut K, Bramley AJ, Williamson CM, Lax AJ, Moore K, 

••

Wells KD, Wall RJ: Lysostaphin expression in mammary glands
confers protection against staphylococcal infection in transgenic
mice. 
Nat Biotechnol 2001, 19:66-70.

One of the uses for transgenic animals is to improve the health of dairy animals.
This article demonstrates the feasibility of conferring resistance to mastitis
through expression of a recombinant antibacterial protein. It will be important
to repeat these studies in dairy animals and to determine if other bioactive
recombinant proteins can be produced concurrently with lysostaphin.

88. Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J,

Williams S, Keen D, Perrin Y, Christou P, Fischer R: Cereal crops as
viable production and storage systems for pharmaceutical scFv
antibodies. 
Plant Mol Biol 2000 42:583-590.

89. McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK,

Tuse D, Levy S, Levy R: Rapid production of specific vaccines for
lymphoma by expression of the tumor-derived single-chain Fv
epitopes in tobacco plants. 
Proc Natl Acad Sci USA 1999
96:703-708.

90. Modelska A, Dietzschold B, Sleysh N, Fu Z, Steplewski K, Hooper D,

Koprowski H, Yusibov V: Immunization against rabies with plant-
derived antigen. 
Proc Natl Acad Sci USA 1998, 96:2481-2485.

Patents

P1. Lindsay S, Mulroy R, Semeniuk D: Expression of secreted human

αα

-fetoprotein in transgenic animals. Patent Number WO040693A2.

Issued July 13, 2000.

418

Protein technologies and commercial enzymes