P20 047

background image

47. When the temperature changes by ∆T the internal energy of the first gas changes by n

1

C

1

T , the

internal energy of the second gas changes by n

2

C

2

T , and the internal energy of the third gas changes

by n

3

C

3

T . The change in the internal energy of the composite gas is ∆E

int

= (n

1

C

1

+n

2

C

2

+n

3

C

3

) ∆T .

This must be (n

1

+ n

2

+ n

3

)C T , w here C is the molar specific heat of the mixture. Thus

C =

n

1

C

1

+ n

2

C

2

+ n

3

C

3

n

1

+ n

2

+ n

3

.


Document Outline


Wyszukiwarka

Podobne podstrony:
P20 021
P20 HH Mod
P20 028
P20 080
047 2id 5370
P20 004
P20 060
P20 049
p07 047
P20 057
P20 089
p13 047
047
P20 045
11 2005 043 047
P25 047
p12 047

więcej podobnych podstron