CHAPTER 3. RANDOM OBJECTS
R
Hint:
X
k
X
i
X
k
i
i
k
n
n
n
X
X
n
n
n
n
n
n
n
n
n
n
n
n
n
Y t
3.18. PROBLEMS
X,Z
N
ρV
n
X
W
λw
X t
t
X t
t
t
t
X
CHAPTER 3. RANDOM OBJECTS
X
X
X
X
Y
juc
X
X
λα
downward
Y
i
i
i
N
X
n
3.18. PROBLEMS
n
X
1
,X
3
,X
5
X,Y
X
Y
U
i
i
i
XY
X
Y
X
Y
Y
X
Y
X
Hint:
CHAPTER 3. RANDOM OBJECTS
X
Z
W
W
0
,W
2
3.18. PROBLEMS
i
i
X,Y
k
j
k
X
Y
X Y
Y X
X
k
X
x
i
Y
n
n
n
V,W
Y
[3.26]
chaotic
Chaos
[3.26]
X
0
n
n
CHAPTER 3. RANDOM OBJECTS
n
n
n
X
1
X
n
Hint:
X
1
n
n
n
n
n
n
X
n
tumens
N
k
k
W N
k
k
W
n
X
n
3.18. PROBLEMS
n
W
n
n
n
n
n
n
n
n
n
n
additive noise
Y
n
n
Y
n
X
n
X
n
Y
n
n
n
n
n
n
n
e
n
n
e
e
Y
X Y
1
2σ2
x y
2
CHAPTER 3. RANDOM OBJECTS
3.18. PROBLEMS
CHAPTER 3. RANDOM OBJECTS
Chapter 4
Expectation and Averages
4.1
Averages
expectations
laws of large numbers
ergodic theorems
particular
CHAPTER 4. EXPECTATION AND AVERAGES
n
heads
n
n
i
i
n
n
n
n
n
n
n
n
k
k
n
n
n
4.1. AVERAGES
n
a A
n
a
n
n
a
i
n
a
th
relative
frequency
n
n
n
n
a
n
a
n
i
a
i
a
a
X
X
heads
n
a
n
X
n
n
a A
X
expectation
CHAPTER 4. EXPECTATION AND AVERAGES
X
laws of
large numbers
ergodic theorems
n
n
a A
X
n
4.2
Expectation
X
expected value probabilistic average
mean
x A
X
ensemble average
X
4.2. EXPECTATION
X
expectation
X
X
CHAPTER 4. EXPECTATION AND AVERAGES
X
X
X
X
4.2.1
Examples: Expectation
[4.1]
X
X
i
X
[4.2]
k
X
k
k
[4.3]
X
4.2. EXPECTATION
[4.4]
λr
X
X
X
X
X
x x
T
S
S
T
X
X
X
n
a
CHAPTER 4. EXPECTATION AND AVERAGES
n
a
moments
k
k
variance
F
F
juX
Y
x g x
y
X
Y
A
Y
Y
4.2. EXPECTATION
A
Y
Y
A
Y
x g x
y
X
A
Y
x g x
y
X
A
X
X
fundamen-
tal theorem of expectation
Theorem 4.1 The Fundamental Theorem of Expectation.
Let a random variable
be described by a cdf
X
, which is in turn
described by either a pmf
X
or a pdf
X
. Given any measurable function
, the resulting random variable
has expectation
g X
X
x
X
or
x
X
CHAPTER 4. EXPECTATION AND AVERAGES
Y
/
X
/
Y
/
X
/
Y
/
/
/
/
/
[4.5]
F
F
F
X
F
X
X
4.2. EXPECTATION
[4.6]
jux
X
juX
jux
X
X
juX
X
X
x
X
jux
x
X
jux
X
X
u
X
CHAPTER 4. EXPECTATION AND AVERAGES
k
k
k
k
k
k
X
u
k
k
X
w
k
moment-generating functions.
X
X
X
ju
X
X
X
X
X
4.2. EXPECTATION
k
k
k
k
k
k
k
u
X
k
k
k
X
k
k
k
all
all
X
CHAPTER 4. EXPECTATION AND AVERAGES
4.3
Functions of Several Random Variables
Theorem 4.2 Fundamental Theorem of Expectation for Functions of Sev-
eral Random Variables
Given random variables
k
described by a cdf
X
0
,X
1
,... ,X
k
−1
and given a measurable function
k
,
k
k
X
0
,... ,X
k
−1
k
x
0
,... ,x
k
−1
k
X
0
,... ,X
k
−1
k
or
k
X
0
,... ,X
k
−1
k
k
4.4
Properties of Expectation
4.4. PROPERTIES OF EXPECTATION
Property 1.
Proof.
X
X
X
Property 2.
Proof.
X
Property 3.
Proof.
x,y
X,Y
x
y
X,Y
y
x
X,Y
x
X
y
Y
CHAPTER 4. EXPECTATION AND AVERAGES
Property 4.
n
n
n
n
n
n
n
n
n
n
n
monotone convergence theorem
4.5. EXAMPLES: FUNCTIONS OF SEVERAL RANDOM VARIABLES
4.5
Examples: Functions of Several Random
Variables
4.5.1
Correlation
correlation
x,y
X,Y
x
y
X
Y
x
X
y
Y
Lemma 4.1 For any two independent random variables
and
,
for all functions
and
with finite expectation.
CHAPTER 4. EXPECTATION AND AVERAGES
uncorrelated
linear
independence
functions
X,Y
X
a
a
a
b
X,Y
X
Y
4.5. EXAMPLES: FUNCTIONS OF SEVERAL RANDOM VARIABLES
Theorem 4.3 Two random variables
and
are independent if and only
if
and
are uncorrelated for all functions
and
with finite
expectations, that is, if (4.18) holds. More generally, random variables
i
are mutually independent if and only if for all functions
i
the random variables
i
i
are uncorrelated.
any
Corollary 4.1 Given a sequence of mutually independent random variables
n
, define
n
n
i
i
Then
Y
n
n
i
X
i
Proof.
&
juY
n
'
ju
n
i
X
i
n
i
juX
i
n
i
&
juX
i
'
n
i
X
i
4.5.2
Covariance
covariance,
covariance
correla-
tion
CHAPTER 4. EXPECTATION AND AVERAGES
constants
Corollary 4.2 Two random variables
and
are uncorrelated if and
only if their covariance is zero; that is, if
.
second moment
variance
X
X
X
standard deviation
X
/
Cauchy-Schwarz inequality
4.5.3
Covariance Matrices
n
mean vector
n
t
4.5. EXAMPLES: FUNCTIONS OF SEVERAL RANDOM VARIABLES
k
k
n
X
X
k
k
l
l
covariance matrix
X
t
n
t
t
k j
n
/
x m
t
K
−1
x m
n/
t
n
t
/
x m
t
K
−1
x m
n/
4.5.4
Multivariable Characteristic Functions
juX
CHAPTER 4. EXPECTATION AND AVERAGES
X
ju
t
m
/ u
t
u
$
n
k
k
k
n
k
n
m
k
m
%
Theorem 4.4 Let
be a
-dimensional Gaussian random vector with
mean
X
and covariance matrix
X
. Let
be the new random vector
formed by a linear operation of
:
where
is a
matrix and
is an
-dimensional vector. Then
is a
Gaussian random vector of dimension
with mean
Y
X
and covariance matrix
Y
X
t
Proof.
Y
*
ju
t
Y
+
*
ju
t
HX
b
+
ju
t
b
*
j H
t
u
t
X
+
ju
t
b
X
t
ju
t
b ju
t
Hm
1
2
H
t
u
t
X
H
t
u
ju
t
Hm b
1
2
u
t
H
X
H
t
u
t
4.5. EXAMPLES: FUNCTIONS OF SEVERAL RANDOM VARIABLES
k
i
l i
l i ,l i
4.5.5
Example: Differential Entropy of a Gaussian Vec-
tor
n
X
X
differential entropy
X
X
X
0
,X
1
,... ,X
n
−1
n
X
0
,X
1
,... ,X
n
−1
n
n
?
X
X
n
t
n/
/
/
x m
t
K
−1
x m
CHAPTER 4. EXPECTATION AND AVERAGES
t
t
n
&
t
'
n
&
t
'
n
&
t
'
n
n
n
n
4.6
Conditional Expectation
X,Y
Y
Y X
conditional expectation of
given
y A
Y
Y X
Y X
4.6. CONDITIONAL EXPECTATION
conditional expectation
y A
Y
Y X
name
x A
X
X
x A
X
X
y A
Y
Y X
y A
Y
x A
X
X,Y
y A
Y
Y
iterated expectation
nested expectation
CHAPTER 4. EXPECTATION AND AVERAGES
k
n
k
N
k
k
n
k
k
k
k
n
k
k
k
i
Lemma 4.2 General Iterated Expectation
Suppose the
are discrete random variables and that
and
are functions of these random variables. Then
4.7.
JOINTLY GAUSSIAN VECTORS
Proof:
x,y
X,Y
x
X
y
Y X
x
X
Y X
4.7
Jointly Gaussian Vectors
X
N
t
jointly Gaussian
X
Y
X
Y
CHAPTER 4. EXPECTATION AND AVERAGES
U
t
X
Y
X
t
Y
t
X
X
t
X
Y
t
Y
X
t
Y
Y
t
X
XY
Y X
Y
X
Y
XY
t
Y X
cross-covariance
U
X,Y
XY
X
XY
Y X
Y
$
X
X
XY
Y X
Y X
X
X
XY
Y X
Y X
Y X
X
Y X
%
Y X
Y
Y X
X
XY
$
X
X
XY
Y X
Y X
X
X
XY
Y X
Y X
Y X
X
Y X
%
X
XY
Y X
Y
4.7.
JOINTLY GAUSSIAN VECTORS
Y X
XY
Y
k m /
U
/
X
t
Y
t
U
X
Y
k/
X
/
&
X
t
X
X
'
m/
U
X
/
X
t
Y
t
U
X
Y
X
t
X
X
X
t
Y
t
U
X
Y
X
t
X
X
Y
Y X
X
X
t
Y X
Y
Y X
X
X
Y x
Y
Y X
X
X
Y X
m/
U
X
/
Y x
t
Y X
Y x
Y x
Y
Y X
X
X
Y X
Y X
t
CHAPTER 4. EXPECTATION AND AVERAGES
not
Y X
U
X
4.8
Expectation as Estimation
best
mean squared error
MSE
4.8. EXPECTATION AS ESTIMATION
the mean of a random variable is the minimum mean
squared error estimate (MMSE) of the value of a random variable in the
absence of any a priori information
x
X
Y X
CHAPTER 4. EXPECTATION AND AVERAGES
Y
Y
X
X
k
t
m
t
t
m
i
i
i
optimal
4.8. EXPECTATION AS ESTIMATION
n
n
n k
n
given
Theorem 4.5 Given two random vectors
and
, the minimum mean
squared error estimate of
given
is
Proof:
t
t
CHAPTER 4. EXPECTATION AND AVERAGES
t
t
t
X,Y
t
t
t
X
t
Y
t
t
t
t
X
t
Y
Y
Y
Y
t
X
X
X
t
XY
X
Y
t
Y X
Y
Y
t
Y X
m/
Y X
/
Y x
t
Y X
Y x
Y X
Y
Y X
X
XY
t
Y X
Y,X
X
Y x
Y
Y X
X
X
Y
Y X
X
X
t
&
t
'
&
t
'
Y X
4.8. EXPECTATION AS ESTIMATION
n
n
n
n
X
n
n
n
n
t
n
X
k
k
j
j
n
n
n
n
n
n
n
n
n
n
t
n
X
n
n
n
n
n
t
n
X
X
X
X
n
n
n
n
n
Y
Y X
X
XY
X
n
t
n
X
n
n
n
X
n
X
n
n
X
n
X
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
n
t
n
X
n
X
X
X
4.9
Implications for Linear Estimation
Y X
X
Y
Y X
X
XY
&
t
'
Y
Y X
X
XY
Y X
X
X
4.9.
IMPLICATIONS FOR LINEAR ESTIMATION
&
t
'
Y
X
Y
X
Y
X
Y
X
t
'
&
Y
XY
Y X
t
X
t
'
Y
X
t
Y
X
Y
X
&
Y
XY
Y X
t
X
t
'
Y
Y X
X
XY
&
Y X
X
XY
X
t
XY
Y X
t
'
X
/
X
/
X
Y X
/
X
/
X
Y X
/
X
t
t
i i,i
Y X
X
Theorem 4.6 Given random vectors
and
with
X,Y
t
t
t
X
t
Y
t
t
t
t
X
t
Y
,
Y
Y
Y
t
,
X
X
X
t
,
XY
X
Y
t
,
Y X
Y
Y
t
, assume that
X
is invertible (e.g., it is positive
definite). Then
A,b
MMSE
A,b
&
t
'
Y
Y X
X
XY
and the minimimum is achieved by
Y X
X
and
.
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
n
n
n
n
n
t
n
X
n
X
X
X
X
t
n
X
n
X
n
X
X
n
X
n
4.10
Correlation and Linear Estimation
4.10. CORRELATION AND LINEAR ESTIMATION
linear
affine
&
'
&
'
Y
X
X
X
X
X
CHAPTER 4. EXPECTATION AND AVERAGES
affine
linear
t
k
m
t
m
t
i
t
i
k
i
i
t
i
orthogonality principle
4.10. CORRELATION AND LINEAR ESTIMATION
i
t
i
i
t
t
X
t
autocorrelation matrix
X
t
X
k
i
t
t
X
t
t
t
t
t
t
t
t
t
t
t
t
t
CHAPTER 4. EXPECTATION AND AVERAGES
t
t
t
t
t
t
t
&
t
t
t
'
&
t
t
X
'
X
Theorem 4.7 The minimum mean squared error linear predictor of the
form
is given by any solution
of the equation:
X
t
If the matrix
X
is invertible, then
is uniquely given by
t
X
t
that is, the matrix
has rows
t
i
, with
i
X
i
Alternatively,
t
X
4.10. CORRELATION AND LINEAR ESTIMATION
Theorem 4.8 The minimum mean squared estimate of the form
is given by any solution
of the equation:
X
t
where the covariance matrix
X
is defined by
X
t
X
E X
and
If
X
is invertible, then
t
X
t
✷
CHAPTER 4. EXPECTATION AND AVERAGES
The Orthogonality Principle
t
k
n
n
t
t
t
k
t
t
X
n
orthogonal
4.11. CORRELATION AND COVARIANCE FUNCTIONS
t
t
t
t
t
t
t
t
t
t
t
t
Theorem 4.9 The Orthogonality Principle:
A linear estimate
is optimal (in the in the mean squared
error sense) sense) if and only if the resulting errors are orthogonal to the
observations, that is, if
, then
k
n
4.11
Correlation and Covariance Functions
CHAPTER 4. EXPECTATION AND AVERAGES
t
autocorrelation function
X
X
t
s
autocovariance function
covariance function
X
X
t
s
X
X
t
s
t
t
t
t
t
uncorrelated
X
t
t
s
X
X
t
only
if taken at different times
t
s
t
t
t
t
t t
t
t
t
4.11. CORRELATION AND COVARIANCE FUNCTIONS
Gaussian Processes Revisited
t
t
t
t
X
X
X
k
i
n
i
n
l
i l
X
i
l
X
t
t
s
s
s
s
t
t
X
CHAPTER 4. EXPECTATION AND AVERAGES
n
i
n
l
i l
X
i
l
n
i
n
l
i l
t
i
t
i
t
l
t
l
n
i
n
l
i l
t
i
t
i
t
l
t
l
n
i
i
t
i
t
i
X
k
t
i,l
k
i,l
i
i
l
l
4.12.
THE CENTRAL LIMIT THEOREM
4.12
The Central Limit Theorem
central limit theorem
n
X
n
X
n
X
n
/
n
k
i
n
R
n
/
i
R
n
X
m /σ
/
n
CHAPTER 4. EXPECTATION AND AVERAGES
X
m /σ
&
ju
n
−1/2
'
n
X
m /σ
/
n
R
n
n
n
n
R
n
u
2
/
not
n
n
n
n
n
in distribution
n
/
n
k
i
4.13. SAMPLE AVERAGES
Theorem 4.10 (A Central Limit Theorem). Let
n
be an iid ran-
dom process with a finite mean
and variance
. Then
/
n
k
i
converges in distribution to a Gaussian random variable with mean
and
variance
.
/
in-
finitely divisible
th
4.13
Sample Averages
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
n
n
i
i
n
n
$
n
i
i
%
n
i
i
i
n
n
unbiased
S
n
n
n
n
i
i
n
i
i
n
i
i
i
n
i
n
j
i
i
j
j
S
n
n
i
n
j
X
4.14. CONVERGENCE OF RANDOM VARIABLES
S
n
n
i
X
i
X
i
X
S
n
X
4.14
Convergence of Random Variables
n
n
n
n
individual
n
S
n
n
not
CHAPTER 4. EXPECTATION AND AVERAGES
n
limit
n
n
every
n
n
n
pointwise
n
with probability one
w.p. 1
n
n
almost surely
a.s.
almost
everywhere
a.e.
convergence in mean square,
mean ergodic theorem.
convergence in probability,
4.14. CONVERGENCE OF RANDOM VARIABLES
n
converge in
mean square
converge in quadratic mean
n
n
n
n
n
n
n
does not
n
faux ami
n
converge in probability
n
n
th
n
n
CHAPTER 4. EXPECTATION AND AVERAGES
The Tchebychev Inequality
X
X
X
X
X
X
x
X
X
x x m
X
X
X
x x m
X
>
X
X
x x m
X
>
X
X
x x mX >
X
X
V
The Markov Inequality.
U
4.14. CONVERGENCE OF RANDOM VARIABLES
Proof:
F
c
c
F
F
c
F
F
c
F
F
X
α,
α,
X
α,
X
CHAPTER 4. EXPECTATION AND AVERAGES
U
Lemma 4.3 If
n
converges to
in mean square, then it also converges
in probability.
Proof.
n
n
n
n
n
Y
n
n
n
n
n
n
4.15
Weak Law of Large Numbers
4.15. WEAK LAW OF LARGE NUMBERS
A Mean Ergodic Theorem
Theorem 4.11 Let
n
be a discrete time uncorrelated random process
such that
n
is finite and
X
n
X
for all
; that is, the
mean and variance are the same for all sample times. Then
n
n
i
i
that is,
n
i
i
in mean square.
Proof.
n
n
i
i
n
i
n
n
n
n
n
n
S
n
n
X
a
Theorem 4.12 The Weak Law of Large Numbers.
Let
n
be a discrete time process with finite mean
n
and
variance
X
n
X
for all
. If the process is uncorrelated, then the
sample average
n
i
i
converges to
in probability.
n
n
n
n
i
i
CHAPTER 4. EXPECTATION AND AVERAGES
n
k
n
k
weak
strong
n
/
n
k
k
n
k
k
4.16
Strong Law of Large Numbers
4.16.
STRONG LAW OF LARGE NUMBERS
n
n
n
Lemma 4.4 If
n
converges to
with probability one, then it also con-
verges in probability.
Proof:
n
m
n
n
n
n
n
n
n
n
n
n
Borel-Cantelli lemma
Lemma 4.5
n
converges to
with probability one if for any
n
n
Proof:
n
not
n
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
n N
n
N
n N
n
n N
n
n
n
N
n N
n
n
n
n
n
n
k
k
4.16.
STRONG LAW OF LARGE NUMBERS
n
n
n
n
n
X
n
not
λY
λy
λY
λy
λ Y
y
λ Y
y
Chernoff inequality
n
n
n
n
n
λ S
n
λ
S
n
λ
&
λS
n
λS
n
'
λ
S
n
S
n
γS
n
n
X
X
juX
i
X
n
λ
n
X
n
X
CHAPTER 4. EXPECTATION AND AVERAGES
X
n
n
2
σ2
X
n
X
X
n
X
X
X
w
2
σ
2
X
/
n
n
2
σ2
X
σ2
X
2 σ
2
X
2
n
2
2σ2
X
n
n
n
n
n
n
n
X
σ
2
X
X
X
2
/ σ
2
X
Theorem 4.13 Strong Law of Large Numbers
Given an iid process
n
with finite mean
and variance, then
n
n
k
k
with probability 1.
4.17. STATIONARITY
4.17
Stationarity
Stationarity Properties
t
t
X
X t s
stationarity property
t
t τ
shift
weak
t
sufficient
X
t
X
t
X
t+τ
first order stationary
stationary
shifting
CHAPTER 4. EXPECTATION AND AVERAGES
weakly stationary
stationary in the weak
sense
t
X
t
X
X
X
X
X
Toeplitz
Toeplitz matrix
X
X
X
X
X
X
X
X
X
X
X
X
X
X
weakly
second order stationary
X
t
,X
s
X
t+τ
,X
s+τ
4.17. STATIONARITY
n
n
n k
X
n
,X
n+1
,... ,X
n+k
−1
X
n+m
,X
n+m+1
,... ,X
n+m+k
−1
x
shifting
X
n
X
0
X
n
,X
k
X
0
,X
k
−n
X
n
,X
k
,X
l
X
0
,X
k
−n
,X
l
−n
relative
shifted
n
stationary
strictly
stationary
stationary in the strict sense
CHAPTER 4. EXPECTATION AND AVERAGES
n
stationary
X
n
,X
n+1
,... ,X
n+k
−1
X
n+m
,X
n+m+1
,... ,X
n+m+k
−1
t
stationary
X
t0
,X
t1
,... ,X
tk−1
X
t0−τ
,X
t1−τ
,... ,X
tk−1−τ
k
k
i
i
X
t
X
t
,X
s
X
t
−s
,X
0
X
X
t
t
X
t
X
X
4.17. STATIONARITY
Strict Stationarity
t
t
process distribution
X
X
X
t
t
t
t
X
X
t
t
X
t
t τ
CHAPTER 4. EXPECTATION AND AVERAGES
4.18
Asymptotically Uncorrelated Processes
n
asymptotically uncorrelated
k
X
k
X
X
n
n k
X
4.18. ASYMPTOTICALLY UNCORRELATED PROCESSES
Theorem 4.14 (A mean ergodic theorem): Let
n
be a weakly sta-
tionary asymptotically uncorrelated discrete time random process such that
n
is finite and
X
n
X
for all
. Then .
n
n
i
i
that is,
n
i
i
in mean square.
X
X
k
Proof:
n
n
i
i
n
n
n
S
n
S
n
n
i
n
j
X
S
n
n
k
n
X
n
n
k
n
X
k
X
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
k
n
X
asymptotically uncorrelated
X
τ
X
why
not?
T
T
Theorem 4.15 (A mean ergodic theorem): Let
be a weakly sta-
tionary asymptotically uncorrelated continuous time random process such
that
is finite and
X t
X
for all . Then .
T
T
that is,
T
in mean square.
4.19. PROBLEMS
T
T
4.19
Problems
Cauchy
X
EX. Hint:
Z
k
k
X
X
juX
Y
Y
X
X
CHAPTER 4. EXPECTATION AND AVERAGES
t
t
AB
different
t
CD
n
X
l
λ
k
k
k
l
l
k
k
N
k
k
N
k
juN
k
N
k
k
Y
k
4.19. PROBLEMS
N
k
N
1
,N
2
,... ,N
k
−1
k
k
N
k
N
k
−1
k
k
k
n
n
n
/
n
k
k
Y
n
n
u/ n
n
X
X
k
n
n
k
k
n
n
k
k
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
i
i
n
n
a
n
a
X
n
c
n
n
aX
a
4.19. PROBLEMS
t
s
t
t
X
X
X
X
X
X
X
X
/
/
/
/
t
t
cross correlation function
XY
XY
t s
X
XX
XY
XY
X
Y
T
T
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
n
n
n
n
a
n
n
n
n
n
n
n
n
n
n
X
n
n
n
linear
2
n
n
2
n
n
2
n
n
n m
n
m
n m
m
4.19. PROBLEMS
n
n
i
i
k
i
i
i
i
n
i
i
i
i
i
i
minimum variance unbiased
estimate of
i
i
N
i
i
X
X
X
n
X
n
CHAPTER 4. EXPECTATION AND AVERAGES
W
i
i
n
n
n
Note:
n
n
n
n
Y
XY
k j
n
2
n
n
filtered
n
n
n
i
i
i
n
U
n
U
U
n
n
U
0
,U
1
,... ,U
n
−1
n
n
i
U
i
n
n
U
k
k
j
j
4.19. PROBLEMS
n
n
n
n
n
n
W
W
n
n
n
n
n
n
n
n
n
n
CHAPTER 4. EXPECTATION AND AVERAGES
k
k
k
U
n
n
U
n
n
2
n
n
i
i
2
n
X
n
n
n
n
n
n
n
Y
Y
n
n
n
n
i
i
n
X
n
n
n
n
4.19. PROBLEMS
n
n
n
n
n
n
V
n
juV
n
n
n
n
n
n
n
n
i
i
n
n
i
i
n
n
i
i
n
x
entropy
x
x
X
X
X
bits
n
i
X
i
n
X
0
,... ,X
n
−1
n
nH X
asymptotic equipartition property
CHAPTER 4. EXPECTATION AND AVERAGES
n
n
th
n
nH X
n
X
n
n
n
i
i
conditional differential entropy
n
n
n
n
n
X
0
,X
1
,... ,X
n
−1
n
X
n
−1
X
1
,... ,X
n
−2
n
n
n
n
n
n
n
n
n
n
k
N
4.19. PROBLEMS
Hint:
N
N
n
n
n
X
n
n
k
k
n k
n
Y
Y
n
n
i
i
n
S
n
n
n
n
n
n
2
N
n
i
i
CHAPTER 4. EXPECTATION AND AVERAGES
2
n
n
n
n
n
k
k
n
n
U,W
n
n
n
n
n
n
correlation coefficient.
n
n
n
n
n
i
i
n
i
i
n
n
n
n
i
i
stable
4.19. PROBLEMS
distribution.
n
nonlinear
j
πf
0
t cX t
X
W
W
Hint:
n
X
n
n
n
i
i
n
Y
n
n
n
n
n
n
n
CHAPTER 4. EXPECTATION AND AVERAGES
n
Y
n
n
n
Y
n
n
2
n
n
n
l
l
n
X
n
n
n
n
n
n
X
n
n
Y
n
n
n
k
k
n
S
n
n
n
n
4.19. PROBLEMS
n
n
i
i
martingalemartingale
n
n
n
n
n
n
n
n
n
n
random walk
Y
n
n
Y
n
n
Y
n
Y
0
,Y
1
,... ,Y
n
−1
n
n
Y
n
Y
n
−1
n
n
n
n
n
n
X
n
n
n
n
moving average
n
n
CHAPTER 4. EXPECTATION AND AVERAGES
pseudo random
appear
rand
n
n
n
U
X
4.19. PROBLEMS
U
n
n
n
n
n
n
n
n
n
n
Hint:
Y
Y
Y
n
n
n
i
i
CHAPTER 4. EXPECTATION AND AVERAGES
U
n
n
n
n
i
i
Y
n
N
N
n
n
S
N
.S
K
4.19. PROBLEMS
K
N
K
N
K
K
n
n
K
N
i
i
i
S
i
W
i
CHAPTER 4. EXPECTATION AND AVERAGES
Chapter 5
Second-Order Moments
CHAPTER 5. SECOND-ORDER MOMENTS
5.1
Linear Filtering of Random Processes
t
t
s t s
5.1. LINEAR FILTERING OF RANDOM PROCESSES
n
k n k
n k k
s t s
n
k n k
n k
k
k
N
n
k
n k k
CHAPTER 5. SECOND-ORDER MOMENTS
5.2
Second-Order Linear Systems I/O Rela-
tions
Discrete Time Systems
n
n
n
X
n
n
k
k
k
n
n
k
k
n k
k
k
n k
n
n
k
k
m k
k
n k
k
k
k
k
n
5.2. SECOND-ORDER LINEAR SYSTEMS I/O RELATIONS
n
k
k
n
k
k
n
n
k
k
k
n
Y
k
k
j
j
$
n
n
k n
k n
m
m
j
m
j
m
%
n
m
n m
k n
k n
j
m
j
m
n
m
n m
X
CHAPTER 5. SECOND-ORDER MOMENTS
X
X
X
X
Y
n
m
n m
X
Y
n
m
n m
X
Y
k
n
j
m
n m
X
X
X
Y
Y
n
k
k
5.2. SECOND-ORDER LINEAR SYSTEMS I/O RELATIONS
Y
n
m
n m
X
Continuous Time Systems
X
Y
X
X
Y
X
CHAPTER 5. SECOND-ORDER MOMENTS
Transform I/O Relations
k
k
f
Y
k
n
m
n m
X
j πf k
n
m
n m
k
X
j πf k
n m
j πf n m
n
n
j πf n
m
m
j πf m
X
f
X
f
f
f
f
Y
f
X
Y
Y
Y
X
5.3. POWER SPECTRAL DENSITIES
X
X
X
Y
Y
Y
f
Y
Y
f
X
X
f
Y
Y
&
f
X
X
'
f
X
X
f
X
X
X
power spectral density
X
f
X
X
j πf k
X
j πf τ
X
Y
X
Y
X
5.3
Power Spectral Densities
CHAPTER 5. SECOND-ORDER MOMENTS
X
/
/
X
j πf τ
X
j πf τ
X
X
X
X
X
X
X
X
X
X
X
X
5.3. POWER SPECTRAL DENSITIES
t
t
t
t
f f
0
f <f
0
X
t
Y
Y
X
F
X
X
X
t
power spectral density
X
CHAPTER 5. SECOND-ORDER MOMENTS
5.4
Linearly Filtered Uncorrelated Processes
n
k
X
k
X
k
X
k
k
j πf k
X
white
white noise
X
k
Y
n
n n k
n k
n n k
Y
Y
k
n
n n
k j
l
5.4. LINEARLY FILTERED UNCORRELATED PROCESSES
k j
k
j
j
k
k j
k
j
k j
Y
k,j
n
k n j
n
Y
k,j
n
n n
k j
reflection
k
sample autocorrelation
[5.1]
n
k
k
n
n
k
k
n k
k
k
CHAPTER 5. SECOND-ORDER MOMENTS
n
k
k
Y
n k
n n k
k
n k
n
k
Y
k
Y
y
n
n
k
k
n k
k
k
n
k
n
k
k
n k
k
k
n
k
n
n
n
n
n
5.4. LINEARLY FILTERED UNCORRELATED PROCESSES
n
n
n
n
n
n
autoregressive
moving average
Y
k
r
j πf k
k
k
j πf k
j πf
Y
πf
[5.2]
n
n
n
n
k
k
n
CHAPTER 5. SECOND-ORDER MOMENTS
Y
k,j
n
n
k j
k,j
[5.3]
k
not
n
n
k
k
Y
5.4. LINEARLY FILTERED UNCORRELATED PROCESSES
n
Wiener process
[5.4
Y
k
k
j
j
k
k
y
Y
Y
Y
k
y
Y
symmetric
Y
k
k
j
j
j
j
k
k
Y
Y
CHAPTER 5. SECOND-ORDER MOMENTS
Y
j l
j
j l
j l
j
x,y,z
X
j+l
,Y
j+l
−1
,Y
j
x,y,z
X
j+l
Y
j+l
−1
,Y
j
y,z
Y
j+l
−1
,Y
j
Y
j+l
−1
,Y
j
Y
y,z
Y
j+l
−1
,Y
j
y,z
Y
j+l
−1
,Y
j
Y
Y
Y
l
Y
l
Y
k j
Y
Y
5.5
Linear Modulation
5.5. LINEAR MODULATION
modulation
X
affine
a priori
CHAPTER 5. SECOND-ORDER MOMENTS
π
π
Y
X
5.6. WHITE NOISE
Y
X
Y
X
5.6
White Noise
n
X
X τ
τ
X
X
CHAPTER 5. SECOND-ORDER MOMENTS
t
m
m
m
m
X
❅
❅
Y
❅
❅
❅
❅
t
white
5.6. WHITE NOISE
X
α τ
X
Y
X
X
X
X
CHAPTER 5. SECOND-ORDER MOMENTS
X
no matter how close together
in time the samples are!
X
t
Y
t
Y
Y
Y
causal
modeled
physically realizable
Paley-Wiener
criteria
innovations
5.7.
TIME-AVERAGES
Y
jτ X
jτ X
X
X
τ
2
Y
f
2
5.7
Time-Averages
n
n
X
n
n k
X
n
n k
X
CHAPTER 5. SECOND-ORDER MOMENTS
n
N
N
n
n
X
n
n k
N
N
k
n
n k
X
n
n k
N
N
n
n
n k
n
X
N
N
k
n
n k
X
X
N
N
k
n
power
n
X
X
n
X
X
X
X
5.7.
TIME-AVERAGES
N
N
n
n
N
N
n
n
n k
X
X
N
N
N
k
n
N
N
k
n
k
n
n
N
n
N
n
n
CHAPTER 5. SECOND-ORDER MOMENTS
N
n
N
n
N
n
j πf n
N
n
n
j πf n
Fourier transform
spectrum
N
N
n
n
/
/
N
N
N
n
n
/
/
N
N
N
N
5.8.
DIFFERENTIATING RANDOM PROCESSES
N
N
N
N
k
k
i πf k
N
N
k
N
l
k
i πf k
l
i πf l
N
N
k
N
l
k
l
i πf k l
N
N
k
N
l
X
i πf k l
N
N
k
N
X
i πf k
k
X
N
N
k
X
i πf k
X
5.8
Differentiating Random Processes
CHAPTER 5. SECOND-ORDER MOMENTS
t
t
5.8.
DIFFERENTIATING RANDOM PROCESSES
t
t
t
s
X
X
X
X
Y
X
CHAPTER 5. SECOND-ORDER MOMENTS
Y
X
Y
X
Y
nowhere differentiable!
5.9
Linear Estimation and Filtering
5.9.
LINEAR ESTIMATION AND FILTERING
i
n
k
2
n
n
2
n
k n k
k n k
k
n k k
n
n
2
n
n
k
k
k
CHAPTER 5. SECOND-ORDER MOMENTS
k
Theorem 5.1 Suppose that we are given a set of observations
k
of a zero-mean random process
k
and that we wish to find a linear
estimate 2
n
of a sample
n
of a zero-mean random process
n
of the
form
2
n
k n k
k n k
If the estimation error is defined as
n
n
2
n
then for a fixed
no linear filter can yield a smaller expected squared error
n
than a filter
(if it exists) that satisfies the relation
n k
all
or, equivalently,
n k
i n i
i
n i k
all
If
Y
k j
is the autocorrelation function of the
process and
X,Y
k j
is the cross correlation function of the two processes,
then (5.54) can be written as
X,Y
i n i
i
Y
all
If the processes are jointly weakly stationary in the sense that both are
individually weakly stationary with a cross-correlation function that depends
only on the difference between the arguments, then, with the replacement of
by
, the condition becomes
X,Y
i n i
i
Y
all
5.9.
LINEAR ESTIMATION AND FILTERING
Comments.
orthogonality
principle
Proof.
n
n
n
n
n
n
i n i
i n i
n
n
i n i
i n i
i n i
i n i
i n i
i n i
n
i n i
i n i
n
i n i
i n i
i n i
i
i
n i
i n i
i
i
n i
n
n
n
i n i
i
i
n n i
j n j
j
n j
n i
CHAPTER 5. SECOND-ORDER MOMENTS
n
n
n
n
n
k n k
k n k
n
n
X
k n k
k
X,Y
n
X
k n k
k
X,Y
[5.4]
n
X,Y
i
i
Y
5.9.
LINEAR ESTIMATION AND FILTERING
X,Y
X,Y
X,Y
Y
X,Y
Y
/
/
X,Y
Y
i πkf
2
n
i
i n i
not
n
2
n
i
i n
i
n
any
n
n
n
n
n
X,V
X,Y
X
Y
X
V
X
X
V
[5.5]
CHAPTER 5. SECOND-ORDER MOMENTS
Y
k
X,Y
i n i
i
k i
k
k
X,Y
2
n
k
X,Y
n k
[5.6]
Y
5.9.
LINEAR ESTIMATION AND FILTERING
n
W
Y
n
whitened
in-
novations process
n
n
n
n
n
k
X,W
X,W
X,Y
k
/
/
X,Y
πjkf
CHAPTER 5. SECOND-ORDER MOMENTS
n
G
n
k
n
[5.7]
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n k
n
n
5.9.
LINEAR ESTIMATION AND FILTERING
Kalman-Bucy filtering,
2
n
n
n
2
n
n
n
n
2
n
n
2
n
n n
n
2
n
n
i
i n i
n
X,Y
n
i
n
i
Y
CHAPTER 5. SECOND-ORDER MOMENTS
n
2
n
n
i
n
i
n
i
X,Y
n
i
n
i
Y
n
n
n
X,Y
n
l
n
n
n
l
n
n l
n l
n
n l
n
X,Y
n
X,Y
n
i
n
i
Y
n
Y
n
i
n
i
Y
X,Y
n
l
n
n
n
l
n
n l
n
Y
5.9.
LINEAR ESTIMATION AND FILTERING
Y
n
X,Y
X,Y
n
i
n
i
n
n
n
Y
n
i
n
i
n
n
n
n
2
n
n
i
n
i
n i
n
n
n
n
i
n
i
n
i
2
n
n
n
n
n
n
2
n
n
n
n
n
n
2
n
2
n
n
n
n
2
n
n
2
n
2
n
n
n
2
n
n
2
n
n
2
n
n
n
n
n
2
n
n n
n
2
n
CHAPTER 5. SECOND-ORDER MOMENTS
n
n
n
2
n
n
n
n
l
n
l
l
n
n
n
n
n
2
n
n
n
n
n
2
n
n
n
2
n
n
n
n n
n
n
n
2
n
n
n
n
n n
n
2
n
n
n
n
n
n
n n
n
n
n
n
n
n
n
n
n
n
n
n
5.9.
LINEAR ESTIMATION AND FILTERING
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n n
n n
n
n n
n n
n
n
n
n
n
n
n
2
n
n
n
n
n
n
2
n
n n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
2
2
n
n
n
n
2
n
n
2
n
CHAPTER 5. SECOND-ORDER MOMENTS
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
5.10
Problems
n
k
n
n
n
n
n
W
n
n
W
n
W
n
X
x
n
Y
y
n
n
n
n
n
n
n
U
5.10. PROBLEMS
X
X
X
n
k
K
n
n
K
k
n k
comb filter
n
n
n
n
n
Y
n
Y
n
n
k
k
n k
n
n
k
k
n
k
k
n
i
j
n
CHAPTER 5. SECOND-ORDER MOMENTS
X
n
n
n
n
n
n
n
n
n
X
n
n
j
j
n
n
n
k
n
n
n
Y
X
γ
Z
N
0
5.10. PROBLEMS
Y t X t
Y t
X t Y t
Hint:
n
X
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
2
n
n
CHAPTER 5. SECOND-ORDER MOMENTS
e
2
n
n
2
n
n
2
n
n
n
2
n
n
n
2
n
n
Cascade filters.
k
k
k
k
k
k
j πkf
n
n
n
n
k
n
k
k
n
k
k
k
Y
&
n
'
/
/
Y
Hint:
/
/
/
/
One-step prediction.
5.10. PROBLEMS
n
k
2
n
n
k
2
n
k
k
n k
n
i
k
one-step
predictor.
n
n
n
2
n
X
n
n
n
Spectral factorization.
n
X
/
/
X
X
X
Hint:
X
Binary filters.
CHAPTER 5. SECOND-ORDER MOMENTS
n
n
n
n
n
n
n
n
Y
j
j k
i
i
Y
Y
Hint:
k
k
i
i
k
k
k
k
k
k
k
k
k
n
n
n
n
n
n
convo-
lutional code
W
n
W
n
5.10. PROBLEMS
X
Y,V
t s
t
t
W
n
n
k
k
CHAPTER 5. SECOND-ORDER MOMENTS
X
τ
S
Y
5.10. PROBLEMS
Y
t
Y
X
N
n
n
n
n
n m
i
n
n
2
n
n
n
2
n
n
2
n
n
n
N
n m
n
n
n
n
n
CHAPTER 5. SECOND-ORDER MOMENTS
n
n
X
Y
n
2
n
n
k n k
k n k
n
2
n
X
n
n
X
x k
Z
z k
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Z
W
n
n
n
n
n
preemphasis
filter
n
n
n
n
n
n
n
n
n
5.10. PROBLEMS
Z
Z
Z
n
n k
Z
k
Z
j πf k
Z
X
X
Y
Y
n
n
n
X
n
W
n
n
k
n
n
n
n
n
n
n
n
X
X
τ
t
t T
CHAPTER 5. SECOND-ORDER MOMENTS
nonlinear
j
πf
0
t cX t
W
W
Hint:
X
k
Z
n
n
X
Z
n
n
n
n
n
n
5.10. PROBLEMS
Y
n
n
n
n
n
n
n
n
n
n
X
λx
N
N
n
n
n
n
U
n
n
n
n
k
k
simple
n
U
U
n
X
k
n
n
n
n
Y
k
CHAPTER 5. SECOND-ORDER MOMENTS
n
Y
whitening filter
n
n
N
N
i
i
n
X
X
n
k,n
n
i k
i
n
n
n
X
n
n
k
W
k,n
Y
n
Y
n
Y
Y
n
k,n
k,n
5.10. PROBLEMS
Y
n
Y
k
k,n
Hint:
Y
n
Hint:
jπ
k,n
t
Y
t
Y
t
Y
t+τ
Y
t
Y
t+τ
Y
t
τ
T
Y
t
Y
W
T
T
Y
T
A
A
T
CHAPTER 5. SECOND-ORDER MOMENTS
Y
T
T
T
Y
T
Y
Y
Chapter 6
A Menagerie of Processes
CHAPTER 6. A MENAGERIE OF PROCESSES
6.1
Discrete Time Linear Models
n
k
n
n
k n k
n k k
moving-average filter
k
k
n
n
n
moving-average filter
6.1. DISCRETE TIME LINEAR MODELS
n
✲ m
❄
✲
✲
n
k
k
n k
❄
✲ m
❄
✻
❄
✲ m
❄
✻
❄
j πf
n
k
k n k
k
CHAPTER 6. A MENAGERIE OF PROCESSES
n
n
k
, ,...
k n k
k
regression coefficients
autoregressive filter
k
k
n
n
n
n
✲
✲
n
n
k
, ,...
k n k
❄
✛
m
❄
✻
❄
✛
m
❄
✻
❄
k
k
j πkf
6.1. DISCRETE TIME LINEAR MODELS
j πf
k
k n k
i
i n i
k
k
n
✲ m
❄
✲
❄
✲ m
❄
✻
❄
✲ m
❄
✻
❄
✲
n
❄
✛
m
❄
✻
❄
✛
m
❄
✻
❄
i
i
j πif
k
k
j πkf
CHAPTER 6. A MENAGERIE OF PROCESSES
k
k
linear models
n
autoregressive random
process
moving-average random
process
ARMA random process
order
6.2
Sums of IID Random Variables
n
6.2. SUMS OF IID RANDOM VARIABLES
k
n
n
i
i
n
k
n
Y
Y
Y
1
t
Y
Y
1
n
n
n
CHAPTER 6. A MENAGERIE OF PROCESSES
n
j πf
j πf
6.3
Independent Stationary Increments
changes
jump
increment
6.3. INDEPENDENT STATIONARY INCREMENTS
t
k
i
ordered
k
increments
t
t
i
t
i
−1
t
independent increments
independent increment random process
i
t
i
t
i
−1
stationary increments
t δ
s δ
independent stationary increment
CHAPTER 6. A MENAGERIE OF PROCESSES
n
i
n
n
n
n
n
n
k
k
k
n
k
k
n
n
t
s
t
i s
i
6.4.
SECOND-ORDER MOMENTS OF ISI PROCESSES
k
t
n
n
i
t
i
t
i
−1
t
n
6.4
Second-Order Moments of ISI Processes
t
t τ
t τ
t
t
t τ
t τ
t
t
t τ
t
CHAPTER 6. A MENAGERIE OF PROCESSES
τ
τ
t τ
τ
t
linear functional equation
t
t τ
t τ
t
t
t τ
t τ
t
τ
τ
Y
t+τ
Y
τ
Y
t
Y
t
Y
t
t
Y
t
t
6.5. SPECIFICATION OF CONTINUOUS TIME ISI PROCESSES
Y
t
t
t
s
s
Y
t s
t
s
s
s
t
s
s
t
s
t s
t s
Y
Y
Y
6.5
Specification of Continuous Time ISI Pro-
cesses
Y
t
Y
s
Y
|t−s|
Y
0
Y
|t−s|
Y
t
Y
s
CHAPTER 6. A MENAGERIE OF PROCESSES
n
i
j
t
n
n
t
n
−1
n
t
n
−2
n
i
n
n
t
n
t
n
−1
n
t
n
n
i
t
n
n
t
n
−1
n
t
n
−2
n
X
n
n
n
Y
tn
Y
tn−1
n
n
Y
tn
Y
tn−1
,... ,Y
t1
n
n
X
n
n
n
Y
tn
Y
tn−1
n
n
Y
tn
Y
tn−1
,... ,Y
t1
n
n
X
n
n
n
Y
tn
Y
tn−1
n
n
Y
t1
,... ,Y
tn
n
n
i
Y
ti
Y
ti−1
i
i
Y
t1
,... ,Y
tn
n
i
Y
ti
Y
ti−1
i
i
6.5. SPECIFICATION OF CONTINUOUS TIME ISI PROCESSES
t
t
t
n
n
n
t
n
n
t
n
−1
n
t
n
−2
n
t
n
n
t
n
−1
n
Y
tn
Y
tn−1
,... ,Y
t1
n
n
Y
tn
Y
tn−1
n
n
Y
tn
Y
tn−1
,... ,Y
t1
n
n
Y
tn
Y
tn−1
n
n
[6.1
The Continuous Time Wiener process
Y
t
y2
2tσ2
CHAPTER 6. A MENAGERIE OF PROCESSES
[6.2]
Y
t
k
λt
6.6
Moving-Average and Autoregressive Pro-
cesses
n
Y
n
k
h
k
X
n
−k
h
k
X
n
−k
6
juh
k
X
n
−k
7
X
n
−k
k
X
k
Y
n
k
X
k
n
k
6.6. MOVING-AVERAGE AND AUTOREGRESSIVE PROCESSES
n
n
k>
k n k
n k
n
n
n
n
conditional
n
marginal
n
n
n
n
n
n
n
k
k n k
X
k
k n k
Y
n
Y
n
−1
,Y
n2
,...
n
n
X
k
k n k
CHAPTER 6. A MENAGERIE OF PROCESSES
6.7
The Discrete Time Gauss-Markov Pro-
cess
n
n
k
n k
k
Y
n
k
j ur
k
m
/
ur
k 2
σ
2
X
jum
k
r
k
/ u
2
σ
2
X
k
r
2k
Y
k
k
Y
X
k
k
X
n
n
n
n
n
Y
n
n
Y
n
n
n
n
Y
n
−1
n
n
n
Y
1
Y
1
n
i
X
i
i
y
2
1
/
σ
2
Y
Y
n
i
y
i
ry
i
−1
2
/ σ
2
y
2
1
/
σ
2
Y
Y
n
i=2
y
i
ry
i
−1
2
/ σ
2
n
−1
2
6.8. GAUSSIAN RANDOM PROCESSES
6.8
Gaussian Random Processes
Corollary 6.1 If a Gaussian random process
t
is passed through a
linear filter, then the output is also a Gaussian random process with mean
and covariance given by (5.3) and (5.7).
6.9
The Poisson Counting Process
CHAPTER 6. A MENAGERIE OF PROCESSES
t
very small
6.9.
THE POISSON COUNTING PROCESS
t
t
t
t
t
t
t
t
t
N
t
N
0
N
t
t
N
t
N
0
k
n
t
t
t
t
t
k
n
t
t
t
t
CHAPTER 6. A MENAGERIE OF PROCESSES
N
t
k
λt
N
t
N
s
k
λ t s
t
s
s
r
t
r
6.10
Compound Processes
t
t
N
t
t
N
t
k
k
6.10. COMPOUND PROCESSES
t
t
n
t
k
n
t
t
t
N
t
k
k
t
t
t
t
N
t
k
k
t
t
t
t
n
k
k
k
k
k
t
t
t
t
Y
t
juY
t
juY
t
t
X
N
t
t
t
t
X
t
t
CHAPTER 6. A MENAGERIE OF PROCESSES
X
N
k
k
n
N
k
X
n
k
n
k
n k
X
n
X
k
t
X
N
t
n
N
t
X
n
n
n
λt
X
n
λt
n
X
n
λt
M
X
ju
6.11
Exponential Modulation
j a
1
t a
2
X t
6.11.
EXPONENTIAL MODULATION
phase modulation
frequency modulation
N t
random telegraph wave
CHAPTER 6. A MENAGERIE OF PROCESSES
Y
Y
Y
not
j a
1
t a
2
X t
j a
1
t a
2
EX t
E
j a
1
t s
a
2
X t
X s
ja
1
t s
ja
2
X t
X s
Y
ja
1
t s
X t
X s
6.11.
EXPONENTIAL MODULATION
X
X t
X s
X
X
X
X
Y
ja
1
t s
X t
X s
ja
1
t s
/ a
2
2
R
X
t,t
R
X
s,s
R
X
t,s
Y
ja
1
τ
a
2
2
R
X
R
X
τ
U
ja
1
t s
j a
2
X t
X s
CHAPTER 6. A MENAGERIE OF PROCESSES
Y
Y
U
/ a
2
2
R
X
t,t
R
X
s,s
R
X
t,s
U
a
2
R
X
R
X
τ
Y
ja
1
τ
X τ
Y
ja
1
τ
X τ
Y
Y
is
X τ
k
k
λτ
juk
λτ
k
ju k
λτ e
ju
6.12.
THERMAL NOISE
Y
λ τ
6.12
Thermal Noise
x,k
CHAPTER 6. A MENAGERIE OF PROCESSES
nAL
k
k
nAL
k
x,k
nAL
k
x,k
x,k
x,k
x,j
x,k
I
nAL
k
x,k
x,k
x
x
ατ
k
t,τ
x
x
x
x
t,τ
x
t,τ
x
t,τ
x
ατ
6.13. ERGODICITY AND STRONG LAWS OF LARGE NUMBERS
x
I
α τ
E
α τ
E
6.13
Ergodicity and Strong Laws of Large Num-
bers
CHAPTER 6. A MENAGERIE OF PROCESSES
-invariant
t
t τ
t
ergodic
Ergodic
Theory and Information
Theorem 6.1 The Strong Law of Large Numbers (The Pointwise Ergodic
Theorem)
Given a discrete time stationary random process
n
with
finite expectation
n
X
, then there is a random variable
with
the property that
n
n
n
with probability 1
6.13. ERGODICITY AND STRONG LAWS OF LARGE NUMBERS
that is, the limit exists. If the process is also ergodic, then
X
and
hence
n
n
n
X
with probability 1
n
n
n
T
mixture
doubly stochastic
n
n
n
n
n
n
n
X
0
,... ,X
k
−1
x
U
0
,... ,U
k
−1
x
W
0
,... ,W
k
−1
x
CHAPTER 6. A MENAGERIE OF PROCESSES
X
0
X
0
,X
1
X
0
,X
1
X
0
X
1
n
n
the conditional expectation given knowledge of which stationary and
ergodic random process is actually being observed!
ergodic decomposition theorem
6.14. PROBLEMS
6.14
Problems
n
n
n
Y
n
n
Y
n
n
n
n
n
n
U
n
n
X
n
X
n
X
n
n
N
i
n i
n
X
n
X
n
X
n
Y
n
Y
n
cross-correlation
X,Y
t s
n
U
n
n
CHAPTER 6. A MENAGERIE OF PROCESSES
t
N
t
k
N
t
t
N
t
X
t
t
t
t
t
t
t
channel with
additive noise
t
t
t
t
X
τ
6.14. PROBLEMS
Y
W t
W t ,W s
k
n
n
N
n
correlation
coefficient.
S,D
S,D
k
k
λ
CHAPTER 6. A MENAGERIE OF PROCESSES
N
N
n
n
th
k
k
i
i
i
S
k
S
k
k
k
n
n
n
n
Z
n
n
n
i
i
i
n
i
i
n i
n
n
n
n
6.14. PROBLEMS
n
n
Note:
V
n
V
n
−1
,V
n
−2
,... ,V
0
n
n
n
n
n
Z
W
n
n
n
n
n
preemphasis
filter
n
n
n
n
n
n
n
n
n
Z
Z
Z
n
n k
Z
k
Z
j πf k
Z
X
X
Y
Y
Y
n
X
n
U
n
,W
n
U
n
,W
n
CHAPTER 6. A MENAGERIE OF PROCESSES
n
n
t
n
t
n
k
k
N
k
i
i
Y
n
n
n
n
n
n
t
t
N
t
i
i
t
t
N
t
k
λt
t
L
t
k
νt
t
t
t
t
t
t
t
6.14. PROBLEMS
t
t
t
Z
k
k
t
n
Z
t
N
t
k
k
t
Y
t
n
X
n
W
n
n
k
n
n
n
n
U
1
,U
2
n
n
n
n
CHAPTER 6. A MENAGERIE OF PROCESSES
X
X
τ
t
t T
k
k
k
k
k
k
k
k
k
k
X
X
Hint:
k
k
n
i
i
N
6.14. PROBLEMS
i
i
N
N
i
i
N
N
N
N
N
t
N
t
k
λt
t
t
s
t
Y
k
t
n
n
n
n
n
X
n
N
2(n
−1)
t
CHAPTER 6. A MENAGERIE OF PROCESSES
n
X
α τ
X
Y
Y t
n
n
sampling
sampling period
n
n
t
k
th
k
t
N
t
k
k
Y t
Y t
Hint:
k
6.14. PROBLEMS
k
th
k
α
interar-
rival times
k
k
k
k
k
k
i
i
k
Hint:
r
k
th
α
Erlang
Hint:
τ
n
τ
1
,... ,τ
n
−1
n
τ
n
λα
CHAPTER 6. A MENAGERIE OF PROCESSES
Appendix A
Preliminaries: Set Theory,
Mappings, Linear
Algebra, and Linear
Systems
A.1
Set Theory
abstract space
space
elements
points
[A.0]
APPENDIX A. PRELIMINARIES
nonempty
[A.1]
zero
one
heads
tails.
numeric
categorical
zero, one
heads, tails
[A.2]
k
[A.3]
ones
zeros
[A.4]
i
[A.5]
[A.6]
A.1. SET THEORY
[A.7]
[A.8]
[A.9]
n
n
[A.10]
st
random vari-
able
random vector
APPENDIX A. PRELIMINARIES
random process
random sequence
random time series
random process
discrete time random process
continuous time random process
k
product spaces
head, tail
head
tail
sets
subset
A.1. SET THEORY
[A.11]
[A.12]
one.
one-point set
singleton set
[A.13]
zero
[A.14]
ones
zeros
one
[A.15]
[A.16]
[A.17]
[A.18]
[A.19]
[A.20]
[A.21]
element
APPENDIX A. PRELIMINARIES
inclusion symbol
set inclusion
symbol.
complementation intersection
union
Venn diagrams
c
c
intersection
disjoint
mutually exclusive.
union
always
A.1. SET THEORY
c
APPENDIX A. PRELIMINARIES
set difference
c
symmetric difference
c
c
A.2. EXAMPLES OF PROOFS
A.2
Examples of Proofs
Relation (A.8).
c c
c
c c
c
c c
c c
c c
Relation (A.18).
c
Relation (A.11).
c
c
c
c
c
c
Relation (A.12).
c
c
c
c
c
c c
c
c
APPENDIX A. PRELIMINARIES
c c
c
c
c
c
c
c
c
c
c
c
A.2. EXAMPLES OF PROOFS
c
c
Relation (A.20).
c
c
c
Relation (A.19).
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
n
i
i
c
n
i
c
i
n
i
i
c
n
i
i
i
c
i
n
i
c
i
n
i
c
i
c
i
APPENDIX A. PRELIMINARIES
i
n
i
i
i
i i
i
family
class
k
countably
infinite
i
i
i
i
i
i
i
n
i
i
n
i
i
A.3. MAPPINGS AND FUNCTIONS
i
disjoint
pairwise disjoint
mutually exclusive
i
j
collectively exhaustive
exhaust
i
i
i
j
partition
i
A.3
Mappings and Functions
function
mapping
domain
domain of definition
range
APPENDIX A. PRELIMINARIES
image
inverse image
preimage
range space
onto.
one-to-one
A.4
Linear Algebra
x
k
i
x
k
x
k
t
A.4. LINEAR ALGEBRA
k
k
t
t
n
i
i i
n
i
i
i
,
,
,
,n
,
,
,
,n
m
,
m
,
m
,
m
,n
square
t
t
t
k,j
j,k
k,j
j,k
Hermitian
i
n
k
i,k i
APPENDIX A. PRELIMINARIES
n
n
n
n
n
n
n
n
eigenvalue
eigenvector
n
i
i,i
n
i
i
n
i
i
n
i
i
n
i
i
1
n
/n
A.5. LINEAR SYSTEM FUNDAMENTALS
k
t
t
t
n
k
n
j
k j k,j
quadratic form
t
nonnegative definite
t
positive definite
t
t
/
/
/
/
/
/
A.5
Linear System Fundamentals
system
signal
discrete time system
continuous time system
APPENDIX A. PRELIMINARIES
linear
s t s
t
t
impulse response
linear filter
time-invariant
convolution integral
s t s
s
A.5. LINEAR SYSTEM FUNDAMENTALS
s
j πf t
j πf t
stable.
APPENDIX A. PRELIMINARIES
n
k
k
k
m
i
i
i
k
k
k
k
n
k
k
k k
k n k
k n k
n k k
k
Kro-
necker
response
A.5. LINEAR SYSTEM FUNDAMENTALS
m
k
k
k
k
k
k
k
k
k
k
k
j πkf
k
k
j πkf
stable
j πf t
k
k
j πf k
k
k n k
i
i n k
APPENDIX A. PRELIMINARIES
k
causal
k
k
A.6
Problems
i
i
i
i
i
j
j
i
j
j
i
i
i
c
c
c
r
r
,
r
r
,
r
i
i
i
i
c
i
c
A.6. PROBLEMS
n
c
n
n
i
i
i
i
i
i
i
i
i
i
c
c
i
i
APPENDIX A. PRELIMINARIES
i
i
i
i
i
i
quantizer
waveform
channel,
decision
space
decision rule.
at
A.6. PROBLEMS
k
k
k
k
t
j πf t
APPENDIX A. PRELIMINARIES
n
n
n
n
n
n
n
n
j πf n
n
k
k
k
k
x,y
x,y
x
2
y
2
A.6. PROBLEMS
x
y
x,y x
y
r
x
y
x,y
x
2
y
APPENDIX A. PRELIMINARIES
Appendix B
Sums and Integrals
B.1
Summation
The sum of consecutive integers.
n
k
Proof:
n
n
k
n
n
n
The sum of consecutive squares of integers.
n
k
APPENDIX B. SUMS AND INTEGRALS
n
k
Proof:
n
k
The geometric progression
n
k
k
n
k
k
Proof:
n
n
k
k
n
n
k
k
n
k
k
n
k
k
n
k
k
n
B.1. SUMMATION
n
n
n
k
k
n
n
n
n
n
First moment of the geometric progression
k
k
Proof:
k
k
k
k
k
k
Second moment of the geometric progression
k
k
k
k
k
k
k
k
k
k
k
k
k
k
APPENDIX B. SUMS AND INTEGRALS
k
k
k
k
B.2
Double Sums
Lemma B.1 Given a sequence
n
,
N
k
N
l
k l
N
n
N
n
Proof:
k,l
N
k,l
k l
Toeplitz
n
N
Lemma B.2 Suppose that
n
is an absolutely summable se-
quence, i.e., that
n
n
Then
N
N
n
N
n
n
n
Comment:
B.3. INTEGRATION
Proof:
n
n
N
N
n
N
n
N
N
n
N
n
n n
N
n
N
n
N
n
N
n
N
n
n n
N
0
n
n N
0
n
N
n
n n
N
0
n
n n
N
0
n
n n
N
0
n
B.3
Integration
r
APPENDIX B. SUMS AND INTEGRALS
αx
k
αx
k
k
αx
k
k
k
αx
k
k
k
αx
k
x
2
x
2
8
x
2
8
x
2
y
2
8
x
2
y
2
B.4.
THE LEBESGUE INTEGRAL
π/
r
2
r
2
u
x
2
r2
2
(x
−m)2
2σ2
B.4
The Lebesgue Integral
APPENDIX B. SUMS AND INTEGRALS
Probability, Random Processes, and Ergodic Properties
N
i
i F
i
i
simple function
N
i
i
i
quantizers
n
n
n
n
n
n
n
n
n
n
n
B.4.
THE LEBESGUE INTEGRAL
n
n
n
integrable
n
n
n
n
n
n
n
APPENDIX B. SUMS AND INTEGRALS
Theorem B.1 If
n
is a sequence of nonnegative random
variables that is monotone increasing up to
(with probability 1) and
n
(with probability 1) for all
, then
n
n
Theorem B.2 If
n
is a sequence of random variables that
converges to
(with probability 1) and if there is an integrable function
which dominates the sequence in the sense that and
n
(with proba-
bility 1) for all
, then
n
n
Appendix C
Common Univariate
Distributions
Binary pmf
Uniform pmf
n
n
n
n
n
Binomial pmf
n
k
n k
n
Geometric pmf.
k
p
APPENDIX C. COMMON UNIVARIATE DISTRIBUTIONS
p
2
Poisson pmf.
k
λ
Uniform pdf.
b a
b a
2
Exponential pdf.
λr
Doubly exponential (or Laplacian) pdf.
λ r
Gaussian (or Normal) pdf.
/
r m
2
σ
2
Gamma pdf
a
b
b
b
r
a
r b
Logistic pdf.
e
r/λ
λ
e
r/λ 2
Weibull pdf
b
a
b
b
r
a
b
Rayleigh
b
b
b
Appendix D
Supplementary Reading
APPENDIX D. SUPPLEMENTARY READING
asymptotically mean stationary
n
n
i
i
APPENDIX D. SUPPLEMENTARY READING
any only if
APPENDIX D. SUPPLEMENTARY READING
Bibliography
Real Analysis and Probability
A First Course in Integration
Ergodic Theory and Information
Introductory Network Theory
The Fourier Transform and Its Applications
Probability
Introduction to Linear System Theory
Markov Chains with Stationary Transition Probabilities
A Course in Probability Theory
Stationary and Related Stochastic
Processes
Stochastic Processes
Fundamentals of Applied Probability Theory
Inequalities for Stochastic Processes:
How to Gamble If You Must
BIBLIOGRAPHY
Markov Processes
An Introduction to Probability Theory and its Applications
IEEE Trans. Inform. Theory
Introduction to Communications Engineering
Introduction to the Theory of
Random Processes
The Theory of Probability
An Elementary Introduction
to the Theory of Probability
isl.stanford.edu
http://www-isl.stanford.edu/~gray/compression.html
Probability, Random Processes, and Ergodic Properties
Fourier Transforms
Ann. Probab.
Statistical Analysis of Stationary
Time Series
Toeplitz Forms and Their Applications
Measure Theory
Lectures on Ergodic Theory
BIBLIOGRAPHY
Stationary Stochastic Processes
How to Take a Chance
Linear Systems
Lectures on Wiener and Kalman Filtering
Finite Markov Chains
Foundations of the Theory of Probability
Stochastic Processes: A Survey of the Mathematical The-
ory
Statistics of Random Processes
Probability Theory
Stochastic Convergence
Probability Theory: A Historical Sketch
Stochastic Integrals
Discrete-Parameter Martingales
The World of Mathematics
The Fourier Integral and Its Applications
Signal Analysis
Probability Measures on Metric Spaces
BIBLIOGRAPHY
Stochastic Processes
Markov Processes: Structure and Asymptotic Behavior
Real Analysis
Stationary Random Processes
Principles of Mathematical Analysis
Introduction to Topology and Modern Analysis
An Introduction to Discrete Systems
Problems in Probability Theory, Mathematical
Statistics,and Theory of Random Functions
Probability
The Fourier Integral and Certain of Its Applications
Time Series: Extrapolation,Interpolation,and Smoothing of
Stationary Time Series with Engineering Applications
Fourier Transforms in the Complex
Domain
Introduction to Random Processes
An Introduction to the Theory of Stationary Random
Functions
Index
INDEX
INDEX
INDEX
INDEX
INDEX