background image

Biomass Fired Superheater for more Efficient 

 Electricity Generation from  

Waste Incineration Plants 

 
 

1. Aim of the Project  

 
The aim of the project is to demonstrate in full scale how to increase steam data for a steam 
cycle based waste to energy plant, avoiding the normal negative side effect of high 
temperature corrosion/erosion. Corrosion at high steam temperature is reduced by reduction 
in the concentration of alkali-metals, chlorides, and fly ash in the flue gas. The waste can be 
municipal solid waste or agricultural waste, however, in this project it is straw.  
 
 

 

 

Photo 1: General view of the carbonisation unit 

 

2. Introduction 

 
COWI has developed a new concept based on mild pyrolysis of straw in a carbonisation unit. 
During, the carbonisation process the straw is converted into a gas fraction and a char 
fraction. Due to a relatively low process temperature in the carbonisation reactor, the major 
part of alkali chlorides remains in the char fraction. Therefore, the less corrosive product gas 
can be used in a separate superheater to boost steam data to for example 80-110 bar and above 
500 °C depending on the fuel type and used alloys in the superheater. Thus the power to heat 
ratio can be improved considerably for new plants. For existing plants, the technical 
limitations and necessary modifications must be evaluated in each individual case.  
 
Char particles are removed from the product gas using a gas/char separator followed by a hot 
cyclone. The biomass char is used as top-up fuel the steam boiler, with a possibility of load 
levelling in order to stabilise the steam flow, in case of fluctuations. The metal temperature in 
the steam boiler is kept below the limits of accelerating high temperature corrosion.  
 

background image

The plant was commissioned in May 1996. The demonstration plant is located at Haslev, 65 
km south-west of Copenhagen, at the Haslev Combined Heat and Power (CHP) plant which 
hosted this demonstration project. Haslev CHP plant is the world's first 100% straw fired 
CHP plant. It was put into operation in 1989 and produces about 5 MWe electricity and 3.6 
MWh district heating. The plant uses 5.3 t/h straw delivered in large bales and supplies 
district heating to about 2000 domestic consumers in the town of Haslev. District heating is 
supplied at a temperature of 90 °C and returned with a temperature range of 50-60 °C. Main 
steam data are: 25 ton/h, 65 bar and 420 °C under typical working conditions. The turbine 
runs at 10,000 rpm and is connected to a generator running 1500 rpm. The electricity is 
transformed to 50 kV and connected to the main grid. The yearly electricity production is 
about 17 GWh, corresponding to the need of approximately 3000 households. The overall 
efficiency is 17.6% electricity and 70% heat on an annual basis. Under optimum conditions, 
an efficiency of 23% electricity can be reached with 85% overall efficiency. The low 
electricity gain is due to the low steam data and due to the on-off operation. New plants are 
showing slightly better performances.  
 

3. Technical Description  

 
Based on very positive results from testing of a pilot plant for more than 1000 operation 
hours, a 15 times larger full-scale plant has been constructed. On the steam line from the 
boiler to turbine a bypass has been established for connection and testing of the demonstration 
plant.  

 

 

Figure 1: Simplified diagram of the concept to use product gas to boost steam data 

 
The demonstration plant consists of one process line with a design capacity of 675 kg straw 
per hour. The carbonising unit is fed with loosely cut straw using a 2 step hydraulic piston 
feeder creating a gas-tight seal. The carbonising unit is a special designed 2 level horizontal 
double screw plug flow reactor, which is indirectly heated to approx. 600 °C by flue gas in a 
heat jacket. After separation of char and fines in the hot cyclone, the produced 500-550 °C hot 
gas fuels a special low NOx burner installed in an adiabatic combustion chamber, where 
combustion takes place at approx. 1400 °C. Heat is initially used for additional superheating, 
of the steam from the boiler to the maximum allowable temperature, then at 580-650 °C for 
heating the carbonising unit, and finally for pre-heating of the combustion air to 360-400 °C, 
before it is led to the chimney at 150-200 °C. Part of the flue gas can be re-circulated in order 
to reduce NOx formation and increase efficiency.  
 

background image

The separated char is cooled with a slight water dosing and extracted using a hydraulic piston 
feeder. From here, the char is conveyed to the combustion compartment of the boiler of the 
basic plant using a pneumatic transport system. The char is used as topping fuel, and the 
dosing can be controlled according to operational needs of the plant. The process is started by 
using a start-up fuel i.e. gas or oil, which also can be used as back-up.  
 

4. Performance of the Haslev CHP Plant 

 
The operating conditions and the performance of the plant when operated on straw is given in 
table 1. 
 

Table 1: Energy data 
 

Parameter                           

Data  

 

Straw for the carbonising unit:    0.675 t/h nom, gross (0.240 t/h net)  
Steam flow from boiler:     

11-26 t/h at 410-430 °C  

Steam from superheater:             480°C (max. 505 °C)  
Superheater surface:                 < 580 °C .  
Combustion temperature:           1250-1500 °C  
LHV gas:                            

7-8 MJ/kg  

LHV char:                           

26.8 MJ/kg  

Nominal gas capacity:                900 kW  
Marginal power share:                42%  
Marginal heat share:                 58%  
Gross overall efficiency:            78-82%  
Gas production, nom.:                430 kg/h  
Char production, nom.:               245 kg/h  
Power output marginal:              360 - 680 kWe *) 
Own consumption:                     56 kWe, at full load  
Straw for the basic boiler:          5.3 t/h  
Power output total plant:   

Approx. 5-5.5 MWe  

Heat output total plant:             Approx. 13 MJ/s  
 
*)Depending on the actual upgrading of steam data.  

 
The operational experience from monitoring more than 1000 hours of operation is very 
positive. The results of testing show an output well above the design value and a stable 
operation after the commissioning period. The operation safety and availability figures under 
gas operation have now reached a stage comparable to conventional biomass fired plants. The 
monitoring period has given all the basic data for validation of the plant and design of the 
single components for further commercial plants.  
 
The plant is fed with up to 675 kg/h straw with a moisture content of 10-22%, producing 
roughly 0.9-1 MW of gas and 1.7-1.8 MW char. Due to the low process temperature and 
absence of air, the corrosive elements remain in the char fraction, which is used as topping 
fuel in the steam boiler. The produced gas is utilised in a separate combustion chamber 
producing a flue gas with very low content of alkali metals, chlorides and particles, making 
the flue gas much less corrosive at high steam temperatures than flue gasses from direct 
combustion of municipal solid waste or straw. Therefore, the produced gas can be used to 
boost steam data in an external superheater without increasing the corrosion rate. The supply 
of char to the steam boiler can be controlled in order to stabilise the steam production, which 
also will lead to increased efficiency and output.  
 

background image

If the concept demonstrated in this project is used, when building new plants, the electricity 
gain could be increased by typically 10-15% on a given heat demand. This is an improvement 
of approximately 3% points in electricity efficiency which is considered significant. Potential 
users for the dissemination of this technology are public and private utilities in charge of 
waste management and energy production. The concept mainly addresses MSW (municipal 
solid waste) fired CHP plants, either new plants or plants to be retrofitted in respect to 
combustion line and steam turbine. 
 
The environmental impact of the plant is given in table 2. In principle the utilisation of straw 
is CO

2

 neutral. The noise level is not significant, however, there is a slight smell at the plant 

due to the carbonisation process. Therefore future plants must be located in an industrial area. 
 

Table 2: Measured emissions  
 
Component      Measurement  
 
Particles:          13 -  15 mg/Nm

3

  

SO

2

:                   160 -173 mg/Nm

3

  

CO:                      41 -  44 mg/NM

3

  

O

2

 reference:         10  %  

 
 

5. Economic Performance 

 
The total project cost including development and testing was 26 million DKK. The 
carbonisation demonstration plant was installed at a host plant at conditions which can not be 
considered optimum. The Haslev CHP plant has not been upgraded to take full advantages of 
the straw carbonisation unit which would allow to increase the pressure by 5-10 bar at higher 
steam temperatures,  (however, a technical and economic evaluation of an eventual upgrading 
is under investigation). Therefore the economic performance of the Haslev CHP plant is not 
optimum.  
 
For new plants the pay-back period is estimated to be 6-9 years, which normally is acceptable 
for CHP plants. 
 

6. Project Identifiers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Project : 

BM/422/91-DK 

Owner : 

Haslev CHP Plant 

Contractors : ANSALDO VOLUND, COWI & ELKRAFT 
Contact: 

COWI Consulting Engineers & Planners AS  
Parallelvej 15,  
DK - 2800 Lyngby,  
Denmark  
Tel: +45 45 97 22 11,  
Fax: +45 45 97 22 12 

Technology: ANSALDO VOLUND & COWI (patent holder of 

the carbonisation technology) 

Total Cost:  2,387,324 ECU 
EC Support:

704 728 ECU