P25 063

background image

63. We imagine moving all the charges on the surface of the sphere to the center of the the sphere. Using

Gauss’ law, we see that this would not change the electric field outside the sphere. The magnitude of
the electric field E of the uniformly charged sphere as a function of r, the distance from the center of
the sphere, is thus given by E(r) = q/(4πε

0

r

2

) for r > R. Here R is the radius of the sphere. Thus, the

potential V at the surface of the sphere (where r = R) is given by

V (R)

=

V





r=

+



R

E(r) dr =



R

q

4πε

0

r

2

dr =

q

4πε

0

R

=



8.99

× 10

9 N

·m

2

C

2

 

1.50

× 10

8

C



0.160 m

= 8.43

× 10

2

V .


Document Outline


Wyszukiwarka

Podobne podstrony:
p41 063
P25 008
P25 023
68 063
P25 087
P27 063
p08 063
P25 078
p38 063
P25 049
P25 086
P25 047
P25 083
P25 036
0513 063
P25 020
P25 080
p12 063

więcej podobnych podstron