P16 057

background image

57. Careful consideration of how the angle θ relates to height h (measured from the lowest position) gives

h = R(1

cos θ). The energy at the amplitude point is equal to the energy as it swings through the

lowest position:

mgh

=

1

2

mv

2

gR (1

cos θ

m

)

=

1

2

v

2

where the mass has been canceled in the last step. The tension (acting upward on the bob when it
swings through the lowest position) is related to the bob’s weight mg and the centripetal acceleration
using Newton’s second law:

T

− mg = m

v

2

R

.

From the above, we substitute for v

2

:

T

− mg = m

2gR (1

cos θ

m

)

R

= 2mg (1

cos θ

m

) .

(a) This provides an “exact” answer for the tension, but the problem directs us to examine the small

angle behavior: cos θ

1−θ

2

/2(where θ is in radians). Solving for T and using this approximation,

we find

T

≈ mg + 2mg



θ

2

m

2



= mg



1 + θ

2

m



.

(b) At other values of θ (other than the lowest position, where θ = 0), Newton’s second law yields

T



− mg cos θ = m

v

2

R

or T



− mg



1

θ

2

2



≈ m

v

2

R

.

Making the same substitutions as before, we obtain

T



≈ mg



1 + θ

2

m

− θ

2



which is clearly smaller than the result of part (a).


Document Outline


Wyszukiwarka

Podobne podstrony:
p19 057
p41 057
2,* historia powszechna (1)id 057
P16 052
P16 071
P20 057
P16 067
p09 057
Plan P16 Kraska rys planu
P16 094
P16 096
04 2005 056 057
P16 018
P16 037
057 ROZ M A C w sprawie rodzajow materialow geodezyjnych i
P16 097
P21 057
P16 087

więcej podobnych podstron