 
Chandra S. Pareek
 Novel approaches for linkage
mapping in dairy cattle.
”Selective DNA pooling”
 
Main sub-headings
 Definition
  Principle
  Experimental design
 
  Experimental  design  to  locate  the  QTL  region  through  selective 
DNA pooling.
 
 Microsatellite genotyping
 
 Statistical methods for accurate estimation of gene frequency from 
pooled samples.
 
 Problems in determination of gene frequency.
 
 Problems in interpreting pooling results by visual inspection.
 
 Application of Selective DNA pooling in farm animals.
 
 Advantages of Selective DNA pooling.
 
 Success of selective DNA pooling in dairy cattle.
 
Definitio
n
•  
“Selective  DNA  pooling”  is  an  advanced 
methodology
for
linkage
mapping
of
quantitative,  binary  and  complex  traits  in 
farm animals.
•  
 In human, this methodology is termed as DNA 
pooling  where  it  serves  as  mapping  of 
complex disease traits.
•  
It  is  defined  as  densitometric  genotyping  of 
physically
pooled
samples
from
phenotypically extreme individuals.
•  
The DNA pooling is performed  by taking equal 
aliquots of DNA from the pooled individuals.
 
Principle
•  
      The  principle  is  based  on  densitometric  estimates  of  marker 
allele frequency from the pooled phenotypically extreme
individuals.
•  
In this regards, the marker of choice is:
STR or microsatellite
STR or microsatellite
markers.
markers.
•  
      The  microsatellite  allele  linked  to  any  QTL  gene  can  be 
identified by any shift or deviation of allele from the pools.
•  
     The QTL linked allele, and then further tested for its feasibility 
by statistical analysis.
•  
      The  power  of  statistics  is  relied  on  the  accurate  estimates  of 
gene frequency from the pooled samples.
•  
      Several  methods  have  been  described  for  accurate  estimation 
of gene frequencies (Daniels et al. 1998, Barcellos et al. 1998,
Lipkin et al. 1998, and Collins et al. 2000).
•
 
Figure A and B: showing allelic patterns  
of a linked  marker. 
Here figure A is displaying a shift of 
marker allelein affected individuals pool.   
Figure C and D: showing allelic 
patterns  of a unlinked  marker.
Here both figures are  not displaying 
any shift or deviation of the alleles.  
Affected pool
Unaffected pool
Unaffected pool
Affected pool
 
Experimental design
 A well-defined experimental design is an essential prerequisite
to perform the selective DNA pooling.
•  
  The experimental design should include the following 
conditions.
• 1. Identification of resource families having extreme
phenotypic values for the given analysed trait.
• 2. Systemic selection of highly polymorphic STR markers from
the analysed genome.
•  
  Experimental  design  to  locate  the  QTL  region  through 
selective DNA pooling
•
 Daughter design: In case of cattle, by utilizing multiple half-
sib  families with multiple STR markers.
 Granddaughter design: In case of cattle, poultry and swine, 
by  utilizing  F2  full-sib  daughters  including  sire  and  grand 
sire.
 
Microsatellite
genotyping
•
The most commonly used touch
down protocol of Don et al. 1991, can 
be  used  for  typing  of  microsatellte 
markers,  followed  by  visualisation  of 
electrophoresis  results  in  any  DNA 
sequencing  machine  (Perkin  Elmer 
ABI-Prism, 
Pharmacia
ALF,
and
LICOR genetic analyser).
 
 Statistical methods for accurate
estimation of gene frequency from
pooled samples
The following three methods have been
described:
 
  By measuring the relative intensity of 
shadow bands (RI):
Method proposed by Lipkin et al. 1998.
By measuring the Allelic Image Pattern
(AIP) from the pools:
Method proposed by Daniels et al. 1998.
 
  By measuring the Total Allelic content 
(TAC) from the pools:
Method proposed by Collins et al. 2000.
 
first Method: Lipkin et al. 1998
Measuring relative intensity of shadow 
bands (RI)
By  giving  the  densitometric  values  of  main  and 
shadow  bands,  the  relative  intensity  of  a  given 
shadow  band  for  a  given  allele  can  be  calculated 
as:
RI
n.i
= D
n.i
/ D
n
Where,
n = is the number of repeats in the native genomic 
tract of the allele A
n
I = is the order of the shadow band
RI
n.i
= is the relative intensity of the i
th
shadow
band derived from the genomic tract of A
n
D
n
= is the densitometric intensity of the main
band derived from the genomic tract of A
n
D
n.i
=is the densitometric intensity of the i
th
shadow
band derived from the genomic tract of A
n
 
2nd method: Daniels et al.. 1998
Measuring Allelic Image Patterns 
(AIP) from the pools
• The principle of this method is based on the
analysis of microsatellite allele image patterns 
(
AIP) generated from the DNA pools.
• The
AIP statistic is calculated from the
differences in the area between two allele
image pattern expressed as a fraction of total
shared and non-shared area.
AIP = Dif / (Dif + Com)
The
AIPs from the pools and X
2
values from
individual genotyping were compared. The
results demonstrated a high correlation 
between 
AIPs and X
2
values.
 
Figure showing overlaid AIPsof two different pools amplified with the
microsatellitemarker. Area ”Dif” and ”Com” are the non-shared and
common areas betweenthe two AIPs.
 
3rd method: Collins et al.. 2000
Measuring Total Allelic content 
(
TAC) from the pools
• This is a modified method of Daniels et al..
1998.
• The principle of this method is based on
simple measurement of total allele 
differences by comparing the two pools.
• The pool comparison is done by comparing
the relative peak height differences 
between electrophoregrams for each allele 
of a microsatellite.
 
FigureA: Showing peak image profile from individual genotyping 
illustrating sutter profile and amplitude variation.
Figure B: showing peak image profiles from pooled genotyping. 
 
Problems in determination of
gene frequency
Feasibility and reliability of selective
DNA pooling is depend upon the
accurate estimates of the gene
frequency from pooled samples,
which is mostly confounded with
Sutter banding and Differential
amplification.
• 1. Sutter banding
• 2. Differential amplification.
 
Problems in interpretating
pooling results by visual
inspection
Visual inspection of numerous STR 
genotyping of pooled samples can 
be performed by visual eye balling 
of the peak image files.
There are 2 problems encountered 
during visual inspection of the 
peak image files.
True negative peaks
False positive peaks
 
Figure1: Showing shifting of 
microsatelliteallele in affected group. 
This figure represents the True result 
with correct peak profile image.
Figure3: Showing no shifting of 
microsatellitealleles but there is one 
linked marker allele in this locus.
This figure represents  a good example of 
True Negative peak profile image.
Shifted allele
control
unaffected
False .Shifted allele
Figure2: Showing shifting of 
microsatelliteallele in affected group.
This figure represents a good example 
of False positive peak profile image.
Example of correct result
Example of false positive result
Example of true negative result
 
Application of selective DNA pooling
in farm animals
In rapid genome scanning for the identification of
unknown gene or linked gene fragment.
  
In rapid estimation of STR gene frequency. More 
recently in estimation of SNP frequencies as well.
 
In identification of complex gene fragment within 
the genome through linkage analysis of STR
marker linked to that gene fragment.
In QTL mapping of the identified gene or gene
fragment.
To detect genes with small effect, for e.g., complex
disease traits in human.
 
 
 
Figure representing detection of linked allele by comparing affected and 
unaffected DNA pools.
In this figure: Marker D5S393 is showing the linked allele to the disease 
trait whereas, marker D5S410 showing no allele linked to the disease trait.
 
Advantages of selective
DNA pooling
 
To detect any linkage between marker and QTL: 
Multiple  families  with  large  numbers  of  daughters 
are required to get reasonable statistical power.
 
This requirement leads to genotyping of hundreds of 
thousands
individuals
with
high
cost
of
experiment.
 
By  means  of  selective  DNA  pooling,  the  cost  of 
numerous
genotyping
can
be
substantially
reduced.
 
Thus selective DNA pooling is an ideal and potential 
approach for analysing multiple large families with
multiple microsatellite markers.
 
 
 
 Selective DNA pooling reduces not only the
genotype cost by many folds, but also
minimizes the valuable experimental time.
 For example:individual v/s Pooled genotyping
In  case  of  individual  G:  2000  markers  x  2000 
individuals = 4 x 10
6
individuals
In case of Pooled G: The genotyping becomes
2000 x 2 = 4000.
 Success of selective DNA pooling in
dairy cattle
 Mapping of QTL genes for milk protein
percentage in Israeli HF cattle (Lipkin et al.
1998).
 
  Detection of loci that affect quantitative traits 
like milk production in New Zealand HF and
Jersey cattle population (Spelman et al. 1998).