7 stationary gas systems eng

background image

stationary gas power-

station

background image

Joule cycle

Brayton-Armengaud cycle

1

2

4

3

q

o

q

d

P

m

1

2

3

4

Q

d

q

o

T

s

1

2

3

4

Q

d

q

o

P

V

closed system

q

d

q

d

Theroretical – model
case

background image

efficiency of the

cycle

1

2

4

3

q

o

q

d

P

m

d

o

t

q

q

1

2

3

1

4

1

T

T

c

T

T

c

p

p

t

2

3

1

4

1

T

T

T

T

t









1

1

1

2

3

2

1

4

1

T

T

T

T

T

T

t

1

2

3

4

Q

d

q

o

P

V

q

d

Theroretical – model
case

background image

efficiency of the cycle

1

2

4

3

q

o

q

d

P

m

k

k

k

k

p

p

T

T

i

p

p

T

T

1

4

3

4

3

1

1

2

1

2









4

3

1

2

2

3

4

1

p

p

p

p

p

p

i

p

p

2

3

1

4

4

3

1

2

T

T

T

T

T

T

T

T

k

k

t

p

p

T

T

T

T

1

1

2

1

2

2

1

1

1

1

1

1









k

k

t

1

1

1





t

k

k

1

1

1

2

3

4

Q

d

q

o

T

s

q

d

Theroretical – model
case

background image

work

1

2

4

3

q

o

q

d

P

m

C

T

t

l

l

l

4

3

i

i

l

T

T

1

– minimal temperature of the cycle;

(resulted from external conditions)

T

3

=T

max

results from internal limitations (material features)

1

2

3

4

Q

d

q

o

T

s

- work at the cycle

- work of the turbine

as for an ideal gas

p

p

T

c

T

c

T

l

4

3

1

2

i

i

l

S

- work of the compressor

as for an ideal gas

p

p

C

c

T

c

T

l

1

2

summary

)

(

)

(

1

2

4

3

p

p

p

p

t

c

T

c

T

c

T

c

T

l

q

d

Theroretical – model
case

background image

work

1

2

4

3

q

o

q

d

P

m

k

k

p

p

T

T

T

T

1

1

2

4

3

1

2













1

1

1

2

1

3

4

3

T

T

T

c

T

T

T

c

l

p

p

t









1

1

1

2

1

2

1

3

T

T

T

c

T

T

T

c

l

p

p

t

:

1

2

then

T

T

if

1

1

1

1

3

 

T

c

T

c

l

p

p

t

1

2

3

4

Q

d

q

o

T

s

)

(

)

(

1

2

4

3

p

p

p

p

t

c

T

c

T

c

T

c

T

l

q

d

Theroretical – model
case

background image

maximal work for T

max

and T

min

const. :

0

d

dl

t

0

1

1

2

max

T

c

T

c

d

dl

p

p

t

k

k

opt

opt

k

k

opt

opt

T

T

p

p

p

p

T

T













2

1

min

max

1

2

1

1

2

1

max

1

2

T

T

as

then

min

max

2

T

T

T

opt

Theroretical – model
case

background image

Open cycle – gas power unit

Powietrze

Spaliny

Paliwo

1

2

4

3

P

e

open cycle

fuel

air

exhaust gases

background image

closed and open cycles

Powietrze

Spaliny

Paliwo

1

2

4

3

P

e

1

2

4

3

q

o

q

d

P

m

closed

open

m

1

=m

2

=m

3

=m

4

m

1

=m

2

m

3

=m

4

one agent

air/exhaust gases

possible choice of an agent
with a better k and c

p

fuel

air

exhaust
gases

background image

a cycle with a regeneration

system

P o w ie tr z e

S p a lin y

P a liw o

1

2 a

4 a

3

P

e

2

4

fuel

air

exhaust gases

q

d

2

4

2

2

T

T

T

T

Q

Q

a

r

r

Regeneration
factor:

background image

a cycle with intersectional cooling and

heating

exhaust gases

air

fuel

background image

a cycle with intersectional cooling and

heating

1’

2

3’

4’

T

s

1”

1

2’

2”

3”

3

4”

4

air

exhaust
gases

background image

real cycles

c

p

– changes with T

(c

p

=f(T))

• different mass flows

and different agents

• losses at the

compressor

• losses at the turbine
• losses at the

combustion
chamber

2r

T

s

1

2t

p1

p2

2r

T

s

1

2t

p1

p2

t

r

iT

l

l

t

p

r

p

T

T

c

T

T

c

2

1

2

1

t

r

T

T

T

T

2

1

2

1

compressor

turbine

background image

turbine – internal efficiency

2r

T

s

1

2t

p1

p2

tT

rT

iT

l

l

t

p

r

p

T

T

c

T

T

c

2

1

2

1

t

r

T

T

T

T

2

1

2

1

turbine

background image

balances

Powietrze

Spaliny

Paliwo

1

2

4

3

P

e

compressor

1

2

_

T

T

c

l

air

p

iC

1

2

T

T

c

m

m

l

P

pp

p

p

is

iC

turbine

4

3

_

T

T

c

l

eg

p

iT

4

3

T

T

c

m

m

l

P

ps

s

s

iT

iT

ms

is

mC

P

P

mT

iT

mT

P

P

power balance at the shaft:

G

el

mG

P

P

generator

mG

mC

mT

P

P

P

fuel

air

exhaust gases

CC

C

T

background image

balances

Powietrze

Spaliny

Paliwo

1

2

4

3

P

e

combustion chamber

gases

exhaust

fuel

air

m

m

m

_

3

_

_

_

2

_

T

c

m

m

HCV

T

c

m

g

ex

p

gases

exhaust

CC

fuel

air

p

air

mass balance

energy balance

fuel

air

exhaust gases

C

T

CC

background image

mechanical output

mC

iC

mT

iT

mC

iC

mT

iT

eC

eT

e

P

P

P

P

P

P

P

P

P

)

(

)

(

mC

iC

tC

air

mT

iT

tT

eg

mC

iC

air

mT

iT

eg

e

l

m

l

m

l

m

l

m

P

mC

iC

t

air

p

air

mT

iT

t

eg

p

fuel

air

e

T

T

c

m

T

T

c

m

m

P

)

(

)

(

)

(

1

2

_

4

3

_

background image

mechanical
output

mC

iC

t

air

p

air

mT

iT

t

eg

p

fuel

air

e

T

T

c

m

T

T

c

m

m

P

)

(

)

(

)

(

1

2

_

4

3

_

mC

iC

k

k

air

p

air

mT

iT

k

k

eg

p

fuel

air

e

air

air

eg

eg

p

p

T

c

m

p

p

T

c

m

m

P















1

1

)

(

1

1

2

min

_

1

3

4

max

_

eg

air

eg

p

air

p

eg

air

k

k

c

c

m

m

g

simplifyin

;

;

:

_

_





 

1

1

1

min

max

mC

iC

mT

iT

p

e

T

T

c

m

P





k

k

p

p

noting

p

p

p

p

and

1

1

2

4

3

1

2

:

;

:

background image

mechanical
output





 

1

1

1

min

max

mC

iC

mT

iT

p

e

T

T

c

m

P





mC

iC

mT

iT

p

e

T

T

c

m

P

min

2

max

1

mC

iC

mT

iT

e

T

T

if

P

min

max

:

0

k

k

mC

iC

mT

iT

opt

opt

T

T

p

p

so









2

1

min

max

1

2

:

background image

internal work

heat delivered

th

=

r

p

r

p

r

p

d

i

th

T

T

c

T

T

c

T

T

c

Q

P

2

3

1

2

4

3

 

power output

heat delivered (in time)

o

=

thermal efficiency

overall efficiency

HCV

m

P

Q

P

P

fuel

e

d

mC

mT

o

background image

overall efficiency

CC

r

air

p

air

eg

p

eg

mC

iC

t

air

p

air

mT

iT

t

eg

p

fuel

air

fuel

e

o

T

c

m

T

c

m

T

T

c

m

T

T

c

m

m

HCV

m

P

2

_

3

_

1

2

_

4

3

_

)

(

)

(

)

(

CC

iC

k

k

air

p

air

eg

p

fuel

air

mC

iC

k

k

air

p

air

mT

iT

k

k

eg

p

fuel

air

o

air

air

air

air

eg

eg

T

c

m

T

c

m

m

T

c

m

T

c

m

m

)

1

(

1

)

(

)

1

(

)

1

1

(

)

(

1

min

_

max

_

1

min

_

1

max

_





iC

k

k

iC

t

r

air

p

air

air

p

p

T

T

T

T

T

const

c

if

1

1

.

1

1

2

1

1

2

1

2

_

background image

overall efficiency





 

iC

CC

mC

iC

mT

iT

o

T

T

T

T

)

1

(

1

)

1

(

)

1

1

(

min

max

min

max

eg

air

eg

p

air

p

eg

air

k

k

c

c

m

m

g

simplifyin

;

;

:

_

_





k

k

p

p

noting

1

1

2

:

background image

overall efficiency changes

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0

5

10

15

20

25

spręż pi

sp

ra

w

n

o

ść

t

u

rb

o

ze

sp

o

łu

Tmax=900 k
Tmax=1100 k
Tmax=1300 k

compression

o

v

e

ra

ll

e

ffi

ci

e

n

cy

for assumed
values of inner
and
mechanical
efficiencies

background image

Recovery of exhaust gases enthalpy

– combined heat and power generation with a

gas cycle

Powietrze

Spaliny

Paliwo

1

2

5

3

P

e

4

Q

u

HCV

m

Q

P

fuel

u

el

CHP

HCV

m

P

fuel

el

el

air

exhaust
gas

fuel

T

C

CC

Remark:

It is also in practice to
relate overall efficiencies
of power units or CHP
plants based on gas
cycles to LCV

background image

Exercise 1

A simple stationary gas system consists with an one-section roto-dynamic compressor,
a combustion chamber, a gas turbine, and an electricity generator. The compressor
sucks 150 kg/s of an ambient air (t

a

=10°C, p

a

=997 hPa) and compresses it to p

2

=1.3

MPa. The internal polytrophic efficiency of the compressor is η

ipC

=0.88. Mechanical

losses at the compressor are estimated on about 35 kW. The compressed air flows into
the combustion chamber. The combustion chamber is supplied with natural gas of
LCV=37.26 MJ/m3, HCV=41.26 MJ/m3, and density ρ=0.784 kg/m3 (all those
parameters are given for standard conditions: 0.1013 MPa, 0°C). The actual pressure of
the gas is 1.3 MPa and temperature 20°C. It can be assumed that an overall efficiency
of the combustion chamber is η

CC

=0.98. One can assume also that the combustion

process is isobaric. Exhaust gases generated at the combustion chamber have a
temperature t

3

=1300 °C and supply the gas turbine where expand up to p

4

=1.02 bar.

The exhaust gases leave the gas turbine with a temperature t4=570°C. The gas turbine
drives the compressor and the generator. A mechanical efficiency of the turbine is
η

mT

=0.993 and an overall efficiency of the generator is η

G

=0.98.

Accept: c

pair

=1.004 kJ/kgK, c

pex.g.

=1.04 kJ/kgK, k

air

=1.4, k

ex.g

=1.39

Calculate:

1.

internal adiabatic efficiency of the compressor,

2.

mechanical power driving the compressor and mechanical efficiency of the compressor,

3.

fuel consumption at the combustion chamber

4.

electricity output form the generator

5.

overall efficiency of the power plant

background image

Exercise 2

A gas cycle power plant consists with an one-section roto-dynamic

compressor, a combustion chamber, a gas turbine, an electricity

generator, and a recuperator. The compressor sucks an ambient air

(t

a

=0°C, p

a

=1 bar hPa) and compresses it to p

2

=0.7 MPa. The internal

adiabatic efficiency of the compressor is η

ipC

=0.85 and a mechanical

efficiency is η

mC

=0.994. The compressed air flows into the iso-baric

recuperator, and is heated by a exhaust gases flowing form the turbine,

up to 530°C. The superheated and compressed air supplies the

combustion chamber where a fuel oil (HCV-46 MJ/kg) is combusted (also

an iso-baric process). An overall efficiency of the combustion chamber is

η

CC

=0.98. Exhaust gases temperature behind the combustion chamber is

t

3

=1100 °C. The exhaust gases expand at the turbine up to p

4

=1 bar with

an internal efficiency of the process η

iT

=0,89. The gas turbine drives the

compressor and the generator. A mechanical efficiency of the turbine is

η

mT

=0.992 and an overall efficiency of the generator is η

G

=0.975.

Electricity output of the power unit is 40 MWe.
Accept: c

pair

=1.004 kJ/kgK, c

pex.g.

=1.04 kJ/kgK, k

air

=1.4, k

ex.g

=1.39

Calculate:

1.

fuel consumption at the combustion chamber

2.

overall efficiency of the power plant

3.

regeneration factor

4.

outlet temperature of the exhaust gases


Document Outline


Wyszukiwarka

Podobne podstrony:
Moss inert gas system
Gas systems after market services
ENG LINUX System Administrators Nieznany
07 04 Saloon with bulb failure warning system (with gas discharge headlamps)
SKELETAL SYSTEM dla stud Eng
Lambda Control System AL 720 ENG
6548 Octan Gas Station (1 z 5)
Hydrogen Gas Injector System For Internal Combustion Engine
6548 Octan Gas Station (2 z 5)
SMeyer CA1227094A1 Hydrogen Air & Non Combustible Gas Mixing Combustion System
6548 Octan Gas Station (4 z 5)
#0202 – At the Gas Station
6548 Octan Gas Station (3 z 5)
6548 Octan Gas Station (5 z 5)
System for Shooting Using Compressed Gas US Patent 5909000
Lambda Control System AL 720 ENG

więcej podobnych podstron