Połączenia nierozłączne

Połączenia nierozłączne

       Do procesów technologicznych łączenia (spajania) metali zaliczamy między innymi połączenia cieplne, do których można zaliczyć: lutowanie, zgrzewanie, spawanie i napawanie.

Lutowanie

Lutowanie jest procesem technologicznym polegającym na łączeniu części metalowych za pomocą specjalnych stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. Rozróżniamy dwa rodzaje lutowania: miękkie (temperatura topnienia lutu do 450 stopni ) i twarde (temperatura topnienia lutu powyżej 450 stopni). Zjawisko spajania, zachodzące między nagrzanym metalem lutowanym a stopionym spoiwem, polega na ścisłym przyleganiu ciekłego lutu do oczyszczonej powierzchni łączonych metali (zjawisko adhezji ). Cząsteczki ciekłego lutu przenikają w głąb łączonych metali wskutek dyfuzji. Proces ten jest związany z siłą przyciągania między atomami ciekłego lutu a atomami lutowanego metalu. Siła przyciągania atomów metalu lutowanego musi być większa niż siła topionego lutu, aby lut dobrze pokrywał (zwilżał) materiał lutowany. Proces ten jest zależny od rodzaju metalu lutowanego i lutu oraz czystości lutowanej powierzchni, temperatury nagrzania, przewodności cieplnej i czasu nagrzewania.

Zgrzewanie

Zgrzewanie to sposób łączenia metali polegający na tym, że części metalowe w miejscu łączenia doprowadza się przez nagrzewanie do stanu plastycznego ( ciastowatego ) lub do nadtopienia powierzchni łączonych przekrojów ( zgrzewanie iskrowe ) i następnie łączy się je z zastosowaniem odpowiedniej siły, np. przez kucie, prasowanie lub zgniatanie, bez używania metalu dodatkowego, tj. spoiwa. Zależnie od źródła ciepła, które służy do nagrzania części łączonych do stanu plastycznego lub do nadtopienia powierzchni łączonych, rozróżniamy następujące zasadnicze rodzaje zgrzewania : elektryczne oporowe, tarciowe, zgniotowe i wybuchowe.

Spawanie

Spawanie jest obecnie najbardziej rozpowszechnionym sposobem łączenia metali, polegającym na miejscowym rozgrzaniu metalu do stanu topnienia. Spawanie odbywa się z dodawaniem lub bez dodawania spoiwa oraz bez stosowania jakiegokolwiek nacisku lub uderzenia. Rozróżnia się następujące rodzaje spawania: gazowe, elektryczne, łukiem krytym, żużlowe, w osłonie argonu, w osłonie dwutlenku węgla, plazmowe, elektronowe i inne.

Spawanie łukowe ręczne

      Zasada działania- spawacz zajarza łuk między końcem elektrody a metalem rodzimym przedmiotu. Łuk stapia metal rodzimy i elektrodę tworząc jeziorko spawalnicze, które jest osłaniane przez warstwę stopionego topnika i gaz wytwarzany przez topnik stanowiący otulinę rdzenia elektrody. Spawacz przesuwa elektrodę w kierunku jeziorka w celu utrzymania stałej długości łuku, równocześnie przesuwając ją w kierunku spawania. Wartość natężenia prądu jest nastawiana w źródle prądu. Długość elektrod jest znormalizowana i najczęściej wynosi 450 mm Jeżeli elektroda stopi się do długości ok.50 mm, wtedy spawacz przerywa łuk. Zestalony żużel należy usunąć z powierzchni spoiny i kontynuować spawanie nową elektrodą. Typowe zastosowania- wytwarzanie zbiorników ciśnieniowych, kadłubów okrętowych, konstrukcji stalowych, łączenie rur i rurociągów, budowa i naprawa maszyn.

Charakterystyka metody

      Spawanie łukowe ręczne elektrodą otuloną jest procesem, w którym trwałe połączenie uzyskuje się przez stopienie ciepłem łuku elektrycznego topliwej elektrody otulonej i materiału spawanego.Łuk elektryczny jarzy się między rdzeniem elektrody pokrytym otuliną i spawanym materiałem. Elektroda otulona przesuwana jest ręcznie przez operatora wzdłuż linii spawania i ustawiona pod pewnym kątem względem złącza. Spoinę złącza tworzą stopione ciepłem łuku rdzeń metaliczny elektrody, składniki metaliczne otuliny elektrody oraz nadtopione brzegi materiału spawanego(rodzimego). Udział materiału rodzimego w spoinie, w zależności od rodzaju spawanego metalu i techniki spawania, wynosić może 10-40%.

Łuk spawalniczy może być zasilany prądem przemiennym lub prądem stałym z biegunowością ujemną lub dodatnią. Osłonę łuku stanowią gazy i ciekły żużel powstałe w wyniku rozpadu otuliny elektrody pod wpływem ciepła łuku. Skład osłony gazowej w zależności od składu chemicznego otuliny, stanowią CO2, CO, H2O oraz produkty ich rozpadu. Spawanie rozpoczyna się po zajarzeniu łuku między elektrodą otuloną a spawanym przedmiotem; intensywne ciepło łuku, o temperaturze w środku łuku dochodzącej do 6000 K, stapia elektrodę, której metal przenoszony jest do jeziorka spoiny. Przenoszenie metalu rdzenia elektrody otulonej w łuku spawalniczym może odbywać się w zależności od rodzaju otuliny , grubokroplowo, drobnokroplowo lub nawet natryskowo

Ilość tworzącego się gazu i żużla osłaniających łuk oraz ich skład chemiczny zależą od rodzaju otuliny elektrody i jej grubości. Stosuje się otuliny o różnej grubości w stosunku do średnicy rdzenia, a ich nazwy: rutylowe, kwaśne, zasadowe, fluorkowe, cyrkonowe, rutylowo-zasadowe, celulozowe itd., zależne są od właściwości chemicznych składników otuliny. Elektrody produkowane są zwykle o średnicy rdzenia w zakresie 1,6 do 6,0 mm i długości od 250 do 450 mm.

Zasadnicze funkcje otuliny to:

Wszystkie te funkcje służą do zapewnienia wymaganej jakości i własności eksploatacyjnych złącza spawanego.

W skład stanowiska do spawania łukowego ręcznego elektrodą otuloną wchodzą:

Parametry spawania

Przebieg procesu spawania w znacznym stopniu uzależniony jest od umiejętności operatora (spawacza). Ustalone w warunkach technologicznych spawania konkretnej konstrukcji parametry spawania stanowią dla operatora dane wyjściowe, do których dostosowuje swe doświadczenie spawalnicze i zdolności manualne.

Do podstawowych parametrów spawania elektrodą otuloną należą:

      a) Natężenie prądu spawania dobiera się zazwyczaj na podstawie danych katalogowych producenta. Parametr ten w największym stopniu decyduje o energii cieplnej łuku, a więc głębokości wtopienia i prędkości stapiania. Przy stałej średnicy elektrody, ze wzrostem natężenia prądu, wzrasta temperatura plazmy łuku, wzrasta wydajność stapiania i ilość stapianego metalu spawanego oraz głębokość, szerokość i długość jeziorka spoiny. Dobór natężenia prądu spawania zależy od rodzaju spawanego materiału, rodzaju elektrody, jej średnicy, rodzaju prądu, pozycji spawania oraz techniki układania poszczególnych ściegów spoiny.

      b) Napięcie łuku proporcjonalne jest do długości łuku i wywiera wyraźny wpływ na charakter przenoszenia metalu w łuku, prędkość spawania i efektywność układania stopiwa. Ze wzrostem napięcia łuku wzrasta jego energia i w efekcie objętość jeziorka spoiny. Szczególnie wyraźnie zwiększa się szerokość i długość jeziorka. Przy stałym natężeniu prądu podwyższenie napięcia łuku nieznacznie wpływa na głębokość wtopienia. Długość łuku regulowana jest przez operatora i zależy od jego umiejętności manualnych i percepcji wizualnej. Dobór napięcia łuku zależy od rodzaju elektrody, pozycji spawania, rodzaju i natężenia prądu oraz techniki układania ściegów spoiny.

      c) Prędkość spawania jest prędkością, z jaką elektroda przesuwana jest wzdłuż złącza spawanego. Prędkość spawania rozpatrywana może być jako prędkość przemieszczania się końca elektrody, ale również jako prędkość wykonania jednego metra złącza i wtedy uwzględnione są wszystkie czasy pomocnicze, np. czas wymiany elektrody, oczyszczania poprzedniego ściegu itd.

Prędkość przesuwania łuku wzdłuż złącza zależy od:

      d) Średnica elektrody otulonej decyduje o gęstości prądu spawania, a przez to o kształcie ściegu spoiny, głębokości wtopienia i możliwości spawania w pozycjach przymusowych. Zwiększenie średnicy elektrody, przy stałym natężeniu prądu, prowadzi do obniżenia głębokości wtopienia i zwiększenia szerokości spoiny. Prawidłowo dobrana średnica elektrody to ta, przy której dla prawidłowego natężenia prądu i prędkości spawania uzyskuje się spoinę o wymaganym kształcie i wymiarach, w możliwie najkrótszym czasie.

      e) Pochylenie elektrody względem złącza pozwala na regulację kształtu spoiny, głębokości wtopienia, szerokości lica i wysokości nadlewu tablica 1. Pochylenie elektrody w kierunku przeciwnym do kierunku spawania powoduje, że siła dynamiczna łuku wciska ciekły metal jeziorka do przodu i maleje głębokość wtopienia, a wzrasta wysokość i szerokość lica. Pochylenie elektrody w kierunku spawania powoduje, że ciekły metal wciskany jest do tylnej części jeziorka, wzrasta głębokość wtopienia, a maleje szerokość i wysokość lica.


Rodzaj spoiny

Pozycja spawania

Pochylenie elektrody w stosunku do płaszczyzny złącza

Pochylenie elektrody w stosunku do osi prostopadłej spoiny

Skierowanie elektrody w stosunku do kierunku spawania

Czołowa

Podolna

90

5 - 10
lub 10 - 30

Przeciwnie

Czołowa

Naścienna

80 - 100

5 - 10

Przeciwnie

Czołowa

Pionowa z dołu do góry

90

5 - 10

Zgodnie

Czołowa

Pułapowa

90

5 - 10

Przeciwnie

Pachwinowa

Naboczna

45

5 - 10
lub 10 - 30

Przeciwnie

Pachwinowa

Pionowa z dołu do góry

35 - 55

5 - 10

Zgodnie

Pachwinowa

Pułapowa

30 - 45

5 - 10

Przeciwnie

Zajarzenie łuku

Zajarzenie łuku odbywać się może przez zwarcie końca elektrody z przedmiotem i szybkie cofnięcie na wymaganą długość łuku lub wykonywanie końcem elektrody ruchów wahadłowych z pocieraniem o powierzchnię przedmiotu. Łuk zajarzamy w obrębie spawania, z wyprzedzeniem względem początkowego punktu spawania o około 10mm, a po ustabilizowaniu łuku cofamy go do punktu początkowego w celu rozpoczęcia normalnego spawania.

Urządzenia do spawania łukowego elektrodą otuloną

Do spawania łukowego elektrodą otuloną wykorzystuje się:

Spawanie acetylenowo-tlenowe

      Zasada działania - u wylotu końcówki o specjalnej budowie, zamocowanej do korpusu palnika, spala się mieszanina tlenu z acetylenem. Za pomocą tego płomienia spawacz stapia metal rodzimy uzyskując jeziorko spoiny. W miarę potrzeby doprowadza ręcznie spoiwo w postaci drutu do przedniego brzegu jeziorka. W celu uzyskania jednolitego postępującego stapiania spawacz powinien przesuwać palnik wzdłuż brzegów złącza. Zastosowanie-wyroby lekkie, takie jak przewody wentylacyjne; rurociągi o małych średnicach.

Płomień acetylenowo - tlenowy

      Spalając mieszaninę tlenu z gazem palnym u wylotu dyszy palnika można otrzymać dość wysokie temperatury.

      Niestety przy spalaniu większości mieszanin gazowych płomień ma zbyt niskie temperatury niewystarczające do spawania wielu metali z wyjątkiem kilku o niskiej temperaturze topnienia. Jedynym wyjątkiem jest acetylen. Zmieszany z tlenem we właściwym stosunku tworzy płomień o temperaturze ok. 3100°C co jest wystarczające w licznych zastosowaniach spawalniczych.

Ciepło w spawaniu acetylenowo - tlenowym

      W metodzie spawania acetylenowo-tlenowego analiza jest stosunkowo prosta. Ciepło wykorzystywane do stapiania jest wytworzone przez spalanie acetylenu u wylotu otworu dyszy. Im więcej acetylenu dostarczamy, tym więcej będzie ciepła, czyli należy sterować dopływem acetylenu. Jeżeli płomień acetylenowo-tlenowy jest używany do spawania, to dopływ ciepła do złącza zależy też od sprawności spalania. Maksimum ciepła uzyskuje się wtedy, gdy następuje całkowite spalenie acetylenu w utleniającym płomieniu, tj. w płomieniu zawierającym więcej tlenu niż jest to niezbędne do związania z acetylenem. Jednak takie spalanie nie jest zalecane, gdyż nie tworzy płomienia o najwyższej temperaturze a może spowodować utlenianie się spoiny. Zwykle wybiera się taki stosunek acetylenu do tlenu, aby otrzymany płomień był neutralny tj. bez nadmiaru żadnego z gazów. Odpowiednie ilości acetylenu i tlenu nastawia się za pomocą zaworów wbudowanych w palnik. Wskutek tego gaz dochodzący do dyszy jest kontrolowaną mieszaniną tlenu i acetylenu

Metody spawania gazowego

Rozróżniamy trzy zasadnicze metody spawania gazowego:

      a) Spawanie metodą w lewo-polega na prowadzeniu palnika od strony prawej do lewej, przy pochyleniu palnika pod kątem od 60°(przy materiałach grubszych), do 10°(przy materiałach cieńszych). Spoiwo podczas spawania prowadzi się pod kątem około 45°. Przy spawaniu metodą w lewo spoiwo jest prowadzone przed palnikiem. Płomień palnika roztapia brzegi metalu, tworząc otworek w dolnej części spawanego materiału. Spawacz prowadzi palnik prawą ręką, postępowym ruchem w lewo nie czyniąc nim żadnych ruchów bocznych. Bardzo ważne jest aby spoiwo cały czas było w obrębie płomienia, gdyż rozgrzany jego koniec w zetknięciu z powietrzem szybko się utlenia i spawacz wprowadza do spoiny tlenki.

      b) Spawanie metodą w prawo-stosuje się przeważnie do grubszych materiałów(ponad 3mm) wymagających ukosowania brzegów. Przy spawaniu w prawo palnik prowadzi się pod kątem 55°,a spoiwo pod kątem 45°. Spoiwo posuwa się za palnikiem od strony lewej do prawej. Palnikiem nie wykonuje się żadnych ruchów poprzecznych, lecz prowadzi się go równomiernie ruchem prostoliniowym wzdłuż brzegów spawanych. Spoiwem trzymanym w jeziorku stopionego metalu wykonuje się ruch(w kształcie półksiężyca lub elipsy) w kierunku poprzecznym do spoiny. Metodę spawania w prawo stosuje się do robót odpowiedzialnych, zwłaszcza rurociągów przeznaczonych do pracy na wysokie ciśnienie i trudne warunki eksploatacyjne (częste zmiany temperatury i ciśnienia)

c) Metodę spawania w górę -stosujemy do wszystkich grubości materiału, przy czym materiał o grubości powyżej 4mm powinien być spawany przez dwóch spawaczy jednocześnie. Palnik należy prowadzić pod kątem 30° do osi pionowej, a drut pod kątem około 20°. Palnik prowadzi się równomiernym ruchem prostoliniowym, a spoiwo ruchem skokowym. Metoda ta pozwala na łatwiejsze utrzymanie oczka oraz mniejsze zużycie gazów.

Spawanie TIG

      Zasada działania-łuk jarzy się między końcem elektrody wolframowej a metalem rodzimym złącza. Elektroda się nie stapia, ,a spawacz utrzymuje stałą długość łuku. Wartość natężenia prądu jest nastawiana na źródle prądu. Spoiwo zwykle jest dostępne w postaci drutu o długości 1m. Doprowadza się je w miarę potrzeby do przedniego brzegu jeziorka. Jeziorko jest osłaniane przez gaz obojętny wypierający powietrze z obszaru łuku. Jako gaz ochronny najczęściej stosowany jest argon.

Charakterystyka metody

      Obecnie spawanie TIG jest jednym z podstawowych procesów wytwarzania konstrukcji, zwłaszcza ze stali wysokostopowych, stali specjalnych, stopów niklu, aluminium, magnezu, tytanu i innych. Spawać można w szerokim zakresie grubości złączy, od dziesiętnych części mm do nawet kilkuset mm. Spawanie TIG prowadzone może być prądem stałym lub przemiennym.

      Urządzenia do spawania TIG są tanie i łatwe w obsłudze. W procesie spawania łukowego elektrodą nietopliwą w osłonie gazowej, połączenie spawane uzyskuje się przez stopienie metalu spawanych przedmiotów i materiału dodatkowego ciepłem łuku elektrycznego jarzącego się pomiędzy nietopliwą elektrodą i spawanym przedmiotem w osłonie gazu obojętnego lub redukcyjnego. Jest to "najczystszy" z wszystkich procesów spawania łukowego, porównywany z metalurgicznego punktu widzenia do mikroodlewania łukowego w osłonach gazowych. Elektroda nietopliwa wykonana jest z wolframu i zamocowana jest w specjalnym uchwycie palnika, umożliwiającym regulację położenia elektrody i jej wymianę. Koniec elektrody wystaje poza dyszę gazową od kilku do nawet kilkudziesięciu milimetrów, w zależności od warunków technologicznych spawania. Powłoka gazu ochronnego, podawana przez dyszę palnika wokół elektrody nietopliwej, chłodzi elektrodę i chroni ciekły metal spoiny i nagrzaną strefę spawania łączonych przedmiotów przed dostępem gazów z atmosfery. Jeziorko ciekłego metalu tworzone jest bez udziału topnika, niema więc wtrąceń niemetalicznych w spoinie i na jej powierzchni, a stopienie materiału rodzimego i dodatkowego odbywa się bez istotnych zmian w składzie chemicznym. Równocześnie nie ma rozprysku metalu, typowego dla innych procesów spawania łukowego, a możliwości podawania z zewnątrz łuku materiału dodatkowego, pozwala na niezależne sterowanie energią liniową łuku i ilością podawanego do obszaru spawania materiału dodatkowego. Przepływ prądu w łuku odbywa się w zjonizowanym gazie, a głównymi nośnikami prądu są elektrony wybite z atomów gazu ochronnego. Zajarzenie łuku odbywa się przez krótkotrwałe zwarcie elektrody nietopliwej z przedmiotem lub specjalną płytką startową i szybkie jej cofnięcie. Drugim sposobem jest zastosowanie łuku pomocniczego między elektrodą a spawanym przedmiotem, utworzonego w wyniku przepływu prądu o małym natężeniu i wysokiej częstotliwości oraz wysokim napięciu.

Parametry spawania

Podstawowymi parametrami spawania TIG są:

Spawanie TIG przeprowadzone może być prądem stałym oraz prądem przemiennym.

      a) Spawanie prądem stałym -przebiegać może z biegunowością dodatnią lub ujemną. Gdy elektroda podłączona jest do bieguna dodatniego (biegunowość dodatnia). Aby przenieść natężenie prądu z biegunowością dodatnią, elektroda musi mieć znacznie większą średnicę niż przy podłączeniu do bieguna ujemnego. Stosowane jest przy spawaniu w osłonie argonu lub helu prawie wszystkich metali i stopów z wyjątkiem cienkich blach z aluminium i jego stopów.

      b) Spawanie prądem przemiennym -pozwala na wykorzystanie zalety spawania prądem stałym z biegunowością dodatnią (zjawisko rozpylania powierzchniowej warstwy tlenków) bez specjalnych ograniczeń prądowych, wymaganych przy spawaniu prądem stałym z biegunowością dodatnią. Gorsza jest jednak stabilność łuku.

      c) Natężenie prądu - decyduje o głębokości wtopienia i szerokości spoiny, ale z drugiej strony oddziałuje na temperaturę końca elektrody nietopliwej. Wzrost natężenia prądu spawania zwiększa głębokość wtopienia i umożliwia zwiększenie prędkości spawania. Nadmierne natężenie prądu powoduje, że koniec elektrody wolframowej ulega nadtopieniu i pojawia się niebezpieczeństwo powstania wtrąceń metalicznych w spoinie.

      d) Napięcie łuku - decyduje w zależności od rodzaju gazu ochronnego o długości łuku oraz o kształcie spoiny i ściśle zależy od zastosowanego natężenia prądu oraz rodzaju materiału elektrody. Wzrost napięcia łuku zwiększa szerokość lica spoiny, maleje przy tym głębokość wtopienia i pogarszają się warunki osłony łuku i ciekłego metalu spoiny. Argon ma niski potencjał jonizacyjny -15,7 V, łuk jarzy się więc bardzo stabilnie

      e) Prędkość spawania - przy stałym natężeniu prądu i napięciu łuku, decyduje o energii liniowej spawania, a więc ilości wprowadzanego ciepła do obszaru złącza. Przez zmianę prędkości spawania regulować można nie tylko przemiany strukturalne w złączu, ale wielkość i rozkład naprężeń i odkształceń spawalniczych. Prędkość spawania wpływa równocześnie na głębokość przetopienia i szerokość spoiny parametr ten jest również ważny z uwagi na koszt procesu spawania. W przypadku spawania ręcznego TIG prędkość spawania jest parametrem wynikowym, zależnym od umiejętności operatora oraz wymaganego kształtu ściegu spoiny, przy danym natężeniu prądu i napięciu łuku.

Podstawowe gazy ochronne

Gazy ochronne do spawania TIG, to gazy obojętne Ar i He lub ich mieszanki z ewentualnym dodatkiem H2 (tab.2). niekiedy do gazu obojętnego dodawany jest azot, którego zadaniem jest podwyższenie temperatury łuku i umożliwienie dzięki temu spawania z dużymi prędkościami miedzi i jej stopów, często bez podgrzania wstępnego. Inne reaktywne gazy ochronne, jak np. CO2, powodują szybkie zużycie elektrody lub niestabilne jarzenie się łuku. W żadnym wypadku nie należy stosować dodatku CO2 lub O2 do argonu lub helu, gdyż powoduje to bardzo szybkie zużycie drogiej elektrody nietopliwej.

     a) Własności fizyczne gazów ochronnych. Gaz ochronny ma za zadanie nie tylko osłaniać elektrodę nietopliwą i obszar spawania przed dostępem atmosfery, ale decyduje również o energii liniowej spawania(napięcie łuku) ,kształcie spoiny i nawet składzie chemicznym stopiwa.

Podstawowymi własnościami fizycznymi gazów ochronnych, decydującymi o ich wpływie na proces spawania TIG, są:

Rodzaj metalu spawanego

Rodzaj procesu spawania

Rodzaj gazu ochronnego

Opis podstawowych własności

Aluminium i stopy aluminium

Ręczne

Ar

Łatwe zajarzenie łuku i duża czystość spoiny

Automatyczne

He , He+Ar

Duże prędkości spawania, możliwość spawania bez podgrzewania wstępnego

Magnez i stopy magnezu

Grubość złącza poniżej 1,5mm

Ar

Łatwość regulacji przetopienia i duża czystość spoiny

Grubość złącza powyżej 1,5mm

He

Dobre przetopienie, najlepsze wyniki przy spawaniu prądem stałym

Stal węglowa

Ręczne

Ar

Łatwość regulacji kształtu spoiny i zajarzenia łuku, możliwość spawania we wszystkich pozycjach

Automatyczne

Ar+He

Zwiększone przetopienie i szybkość spawania

Stale Cr-Ni Austenityczne

Ręczne

Ar

Ułatwiona regulacja przetopienia cienkich blach

Automatyczne

Ar+He

Zwiększona głębokość przetopienia i szybkość spawania

Ar+max 35% H2

Unika się podtopień, wymagane jest mniejsze natężenie przepływu niż czystego Ar

He

Największe głębokości przetopienia i energie liniowe spawania

Cu, Ni i ich stopy

Ręczne i automatyczne

Ar

Duża łatwość spawania cienkich blach i ściegów graniowych cienkich rur

Ar+He

Zapewnione wyższe energie liniowe spawania

He

Możliwość spawania grubych blach z dużymi prędkościami bez podgrzewania wstępnego

Tytan i jego stopy

Ręczne i automatyczne

Ar

Duża czystość spoiny

He

Większa głębokość przetopienia przy spawaniu grubych blach


Elektrody nietopliwe.

      Elektrody nietopliwe do spawania TIG są podstawowym elementem obwodu spawania i od ich cech eksploatacyjnych zależy w dużym stopniu jakość spawania oraz ekonomiczność procesu. Cechy te to łatwość zajarzenia łuku i stabilność jarzenia się łuku, trwałość oraz szybkość zużycia elektrody. Elektrody nietopliwe wytwarzane są z czystego wolframu lub ze stopów wolframu.

Materiał dodatkowy

      Materiał dodatkowy do spawania TIG może mieć postać drutu, pałeczki, taśmy lub wkładki stapianej bezpośrednio w złączu. Do spawania ręcznego stosowane są druty lub pręty proste o średnicy 0,5 ¸ 9,5 mm i o długości 500-1000mm. Jako materiały dodatkowe do spawania TIG w większości przypadków stosowane są materiały o tym samym składzie chemicznym, co spawany materiał. W niektórych przypadkach konieczne jest zastosowanie materiału dodatkowego o wyraźnie różnym składzie chemicznym od spawanego materiału. I tak np. do spawania stali odpornych na korozję typu 9% Ni stosuje się stopy niklu; mosiądze spawa się brązami aluminiowymi, fosforowymi lub krzemowymi. Zazwyczaj dąży się jednak do tego, aby materiał dodatkowy miał lepsze własności niż materiał spawany.

Urządzenia do spawania TIG

Proces spawania metodą TIG jest sterowany za pomocą złożonych układów montowanych w tzw. przystawce do zasilacza lub razem z zasilaczem w jednej obudowie.

Schemat stanowiska do spawania metodą TIG

Spawanie MIG/MAG

      Zasada działania - łuk jarzy się między końcem elektrody a metalem rodzimym w linii złącza. Elektroda jest przesuwana ze stałą prędkością za pomocą silnika o nastawnej prędkości obrotowej. Prąd zależy od prędkości podawania elektrody. Długość łuku jest utrzymywana przez źródło prądu, a spawacz powinien prowadzić wylot prowadnika elektrody na stałej wysokości nad jeziorkiem(zwykle kilkanaście mm). Przestrzeń łukowa i spawany metal są osłaniane gazem dobranym odpowiednio do spawanego metalu. Gazami powszechnie używanymi są: argon, argon z dodatkiem 5% tlenu lub 20% dwutlenku węgla albo czysty dwutlenek węgla. Typowe zastosowani - wyrób o średniej grubości łączonych elementów, cienkie blachy.

Charakterystyka metody

      Spawanie łukowe elektrodą topliwą w osłonach gazowych (MIG-spawanie w osłonach gazów obojętnych, MAG-spawanie w osłonach gazów aktywnych), jest obecnie jedną z najpowszechniej stosowanych metod spawania konstrukcji. Dokładna osłona łuku jarzącego się między elektrodą topliwą a spawanym materiałem zapewnia, że spoina formowana jest w bardzo korzystnych warunkach. Spawanie MIG/MAG zastosowane więc może być do wykonania wysokiej jakości połączeń wszystkich metali, które mogą być łączone za pomocą spawania łukowego. Należą do nich stale węglowe i niskostopowe, stale odporne na korozję, aluminium, miedź, nikiel i ich stopy. Spawanie MIG/MAG polega na stapianiu materiału spawanego i materiału elektrody topliwej ciepłem łuku elektrycznego jarzącego się pomiędzy elektrodą topliwą i spawanym przedmiotem, w osłonie gazu obojętnego lub aktywnego. Metal spoiny formowany jest z metalu stapiającego się drutu elektrodowego i nadtopionych brzegów materiału spawanego. Podstawowe gazy ochronne stosowane do spawania MIG/MAG to gazy obojętne argon, hel oraz gazy aktywne; CO2, H2, O2, N2, i NO, stosowane oddzielnie lub tylko jako dodatki do argonu czy helu. Elektroda topliwa w postaci drutu pełnego, zwykle o średnicy od 0,5¸4,0 mm, podawana jest w sposób ciągły przez specjalny system podający, z prędkością w zakresie od 2,5¸50 m/min. Palnik chłodzony może być wodą lub powietrzem.

      Spawanie MIG/MAG prowadzone może być prądem stałym lub przemiennym we wszystkich pozycjach. Obecnie prawie wyłącznie stosuje się spawanie MIG/MAG prądem stałym z biegunowością dodatnią. Spawanie prowadzone jest jako półautomatyczne zmechanizowane, automatyczne lub w sposób zrobotyzowany. Dzięki dużej uniwersalności procesu, łatwość regulacji , spawanie MIG/MAG pozwala na wykonywanie różnorodnych konstrukcji z różnych metali i stopów w warunkach warsztatowych i montażowych, we wszystkich pozycjach.

Parametry spawania

Podstawowymi parametrami spawania MIG/MAG są:

      a) Spawanie prądem stałym z biegunowością dodatnią jest najpowszechniej stosowanym sposobem spawania MIG/MAG. Przy małych natężeniach prądu, elektroda stapia się w osłonie gazów obojętnych grubokroplowo bez rozprysku, natomiast w osłonie CO2 ze znacznym rozpryskiem, nawet do kilkunastu procent. Odrywanie kropli od końca elektrody jest utrudnione, a przenoszenie przez łuk nieosiowe.

      b) Spawanie prądem stałym z biegunowością ujemną w osłonie gazów obojętnych i aktywnych umożliwia tylko spawanie z grubokroplowym i nieosiowym przenoszeniem metalu w łuku, bez względu na wielkość natężenia prądu. Rozprysk metalu jest znaczny, a głębokość przetopienia znacznie mniejsza niż przy biegunowości dodatniej; choć wydajność stapiania elektrody jest nawet o 100% wyższa

      c) Spawanie prądem przemiennym wymaga użycia źródeł prądu o wysokim napięciu biegu jałowego w celu zapewnienia stabilnego jarzenia się łuku i grubokroplowego przenoszenia metalu w łuku. Gdy prąd przemienny ma biegunowość ujemną, przenoszenie metalu jest utrudnione i występuje rozprysk, natomiast przy biegunowości dodatniej łuk jarzy się stabilnie. Naniesienie powłoki emulsyjnej na elektrodę topliwą zapewnia, podobnie jak przy spawaniu prądem stałym z biegunowością ujemną, stabilne i natryskowe przenoszenie metalu w łuku. Spawanie prądem przemiennym ma niewielkie zastosowanie w przemyśle.

      d) Natężenie prądu - jest ściśle powiązane ze zmianą szybkości podawania drutu, która musi być równa prędkości stapiania drutu. Wzrost natężenia prądu powyżej wartości krytycznej, dla danej średnicy elektrody, zmniejsza wielkość kropli, zwiększa częstotliwość ich przejścia i poprawia stabilność łuku.

Przy dużych gęstościach prądu, rzędu 600-700 A/mm2, uzyskuje się najlepsze wyniki spawania, wysoka jest wydajność spawania dochodząca do ponad 20 kg stopiwa na godzinę. Równocześnie duża jest głębokość wtopienia, lecz spawanie ograniczone jest tylko do pozycji podolnej i nabocznej. Przy stałym natężeniu prądu głębokość wtopienia zwiększa się wraz z obniżeniem średnicy elektrody.

      e) Napięcie łuku - ściśle zależy od składu gazu ochronnego. Wzrost napięcia łuku sprawia, że wzrasta szerokość ściegu spoiny i obniża się głębokość wtopienia. Nadmierne napięcie łuku prowadzi do powstania rozprysku, porowatości i podtopień lica spoiny. Zbyt niskie napięcie łuku powoduje, że spoiny są porowate i pojawiają się nacieki lica.

      f) Prędkość spawania - jest parametrem wynikowym dla danego natężenia prądu i napięcia łuku, przy zachowaniu właściwego kształtu spoiny. Gdy prędkość spawania ma być nawet nieznacznie zmieniona, należy zmienić natężenie prądu lub napięcie łuku w celu utrzymania stałego kształtu spoiny.

Gaz ochronny

Gaz ochronny - decyduje o sprawności osłony obszaru spawania, ale i o sposobie przenoszenia metalu w łuku, prędkości spawania i kształcie spoiny.


Gazy obojętne, argon i hel, choć doskonale chronią ciekły metal spoiny przed dostępem atmosfery, nie są odpowiednie we wszystkich zastosowaniach spawania MIG/MAG

Gaz ochronny

Działanie chemiczne

Spawane metale

Ar

obojętny

Zasadniczo wszystkie metale poza stalami węglowymi.

He

obojętny

Al., Cu, stopy Cu, stopy Mg, zapewniona duża energia liniowa spawania.

Ar+20-80% He

obojętny

Al., Cu, stopy Cu, Mg, zapewnione duże energie liniowe spawania, mała przewodność cieplna gazu.

N2

redukujący

Spawanie miedzi z dużą energią liniową.

Ar+20-25% N2

redukujący

Spawanie miedzi z dużą energią liniową łuku, lepsze jarzenie się łuku niż w osłonie 100% N2.

Ar+1-2% O2

słabo utleniający

Zalecana głównie do spawania stali odpornych na korozję i stali stopowych.

Ar+3-5% O2

utleniający

Zalecana do spawania stali węglowych i niskostopowych.

CO2

utleniający

Zalecana wyłącznie do spawania stali niskowęglowych.

Ar+20-50% CO2

utleniający

Zalecana wyłącznie do spawania stali węglowych i niskostopowych.

Ar+10% CO2+5% O2

utleniający

Zalecana wyłącznie do spawania stali węglowych i niskostopowych.

CO2+20% O2

utleniający

Zalecana wyłącznie do spawania stali niskowęglowych i niskostopowych.

90% He+7,5% Ar+2,5% CO2

slabo utleniający

Stale odporne na korozję.

60% He+35% Ar+5%CO2

utleniający

Stale niskostopowe o wysokiej udarności.

Przez zmieszanie w odpowiednich proporcjach helu lub argonu z gazami aktywnymi chemicznie uzyskuje się zmianę charakteru przenoszenia metalu w łuku i wzrasta stabilność łuku i pojawia. Równocześnie możliwe jest znaczne ograniczenie lub całkowite wyeliminowanie rozprysku.

Podstawowymi gazami aktywnymi są: CO2, O2, NO, N2, H2.

Natężenie przepływu gazu ochronnego dobrane musi być tak, aby zapewniona była stała osłona obszaru spawania, nawet podczas przeciągów czy wiatru. Natężenie przepływu powinno ustawiać się tak, aby na jeden milimetr średnicy dyszy gazowej przypadał 1,0 l/min.

Druty elektrodowe

      a) Średnica drutu elektrodowego - decyduje o gęstości prądu, a w efekcie o głębokości wtopienia i o charakterze przenoszenia metalu w łuku. Dla danej wartości natężenia prądu wydajność stapiania wzrasta ze zmniejszeniem się średnicy drutu. Druty o małej średnicy, do 1,2 mm, zaleca się stosować do spawania złączy cienkich blach oraz przy spawaniu w pozycjach przymusowych. Większe średnice drutów od 1,2 mm¸4,0 mm stosowane są w spawaniu półautomatycznym lub automatycznym, w pozycji podolnej.

      b) Długość wolnego wylotu elektrody - wpływa na intensywność podgrzania drutu na długości między końcówką prądową a stapiającym się końcem drutu, a więc o jego temperaturze i prędkości stapiania. W związku z tym, ze wzrostem długości wolnego wylotu elektrody , przy tym samym natężeniu prądu, znacznie wzrasta wydajność stapiania elektrody, a więc wyższe są prędkości układania ściegów wypełniających przy spawaniu wielowarstwowym.

Urządzenia do spawania MIG/MAG

      a) zasilacze łuku spawalniczego

Podstawowymi zespołami w urządzeniach do spawania elektrodami topliwymi w osłonach gazowych są zasilacze łuku spawalniczego, dostarczające energię do łuku.

Jako zasilacze są stosowane prostowniki:

      b) podajniki drutu elektrodowego

Drugim ważnym zespołem stosowanym w urządzeniach do spawania elektrodą topliwą w osłonach gazowych jest podajnik drutu elektrodowego. Istnieją dwa sposoby podawania drutu elektrodowego: klasyczny (stosowany od dawana) za pomocą rolek napędzanych poprzez przekładnię klasyczną oraz nowszy z przekładnią planetarną. Podajnik drutu elektrodowego składa się z silnika napędowego, przekładni mechanicznej, rolek napędzających drut, szpuli z drutem oraz układu sterowania.

      c) uchwyty spawalnicze

Uchwyty spawalnicze są wykonywane w dwóch odmianach: fajkowe- chłodzone naturalnie lub wodą oraz pistoletowe- wyposażone w zespół napędowy elektrody typu "ciągnij", chłodzone wodą. Uchwyty powinny być łatwe i wygodne w użyciu, a ich masa nie powinna przekraczać 0,4 kg. Do zapewnienia dobrego przepływu prądu do ruchomej elektrody w postaci drutu służy rurka kontaktowa, której otwór musi być dopasowany do średnicy tego drutu. Uchwyt spawalniczy jest połączony z podajnikiem za pomocą przewodu giętkiego. W przypadku uchwytów chłodzonych wodą przewód ten składa się z powłoki ochronnej, węża doprowadzającego gaz, przewodu prądowo wodnego, węża doprowadzającego wodę, węża z wkładką wewnętrzną do transportu elektrody drutowej oraz żył sterujących.




Wyszukiwarka

Podobne podstrony:
polaczenia nierozlaczne spawane
polaczenia nierozlaczne oznaczanie rys 01
SCIAGA pkm polaczenia nierozlaczne, PKM egzamin kolosy ( łukasik, Salwiński )
2 2 POŁĄCZENIA NIEROZŁĄCZNE
materiały egzamin, 15.Połączenia nierozłączne, Połączenia nierozłączne w połączeniu takim elementy s
polaczenia nierozlaczne oznaczanie rys 02
Polaczenia nierozlaczne id 3640 Nieznany
polaczenia nierozlaczne sklejane wciskowe
polaczenia nierozlaczne zgrzewane lutowane
polaczenia nierozlaczne nitowe
Wykład 6 Polaczenia nierozlaczne nitowe
polaczenia nierozlaczne spawane
Połączenia nierozłączne
polaczenia nierozlaczne sklejane wciskowe
polaczenia nierozlaczne nitowe
polaczenia nierozlaczne zgrzewane lutowane
polaczenia nierozlaczne oznaczanie rys 01
05 Wykonywanie połączeń rozłącznych i nierozłącznych
,pytania na obronę inż,Nierozłączne i rozłączne połączenia elementów mechanicznych

więcej podobnych podstron