Rozkład empiryczny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Okreslenie empirycznego rozkładu polega na przyporzadkowaniu kolejnym wartosciom przyjmowanym przez ceche odpowiednio zdefiniowanych czestosci ich wystepowania. |
|
|
|
|
|
|
wzór: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l = (x_max - x_min) / k |
(max(zakres_a)-min(zakres_a))/pierwiastek(max(zakres_a)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l - rozkład empiryczny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n - liczba cech występowania |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x - wartości |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k =√n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przykład: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ilość wyjazdów |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
|
|
ilość osób |
3 |
10 |
6 |
18 |
26 |
37 |
49 |
36 |
27 |
29 |
28 |
20 |
12 |
20 |
8 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l = |
(16 - 1) / k |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k = |
√16 = 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l = |
15 / 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l ≈ |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xi |
ni |
xi |
ni*xi |
(xi - x)2 * ni |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 - 5 |
37 |
3 |
111 |
1247.28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 - 9 |
148 |
7 |
1036 |
482.75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 - 13 |
104 |
11 |
1144 |
500.59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 - 17 |
41 |
15 |
615 |
1572.96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
2906 |
3803.59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia arytmetyczna |
x = 1 / ni *ni*xi = 1/330*2906= |
|
|
|
8.80606060606061 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia liczba wyjazdów badanych wyniosła 8.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wariancja |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wariancja s2 próbki x1, . . . , xn nazywamy srednia arytmetyczna kwadratów odchylen poszczególnych wartosci xi od sredniej arytmetycznej xi próbki, tzn. |
|
|
|
|
|
|
wzór: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s2 = 1/n * (xi - x)2 * ni |
1/suma(zakres_b)*F26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przykład: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s2 = 11.53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rozkład Gaussa (rozkład normalny lub krzywa dzwonowa) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
skumulowana funkcja rozkładu |
funkcję gęstości prawdopodobieństwa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wartość |
średnia |
odch.stand |
|
|
|
|
|
|
|
|
-5 |
0 |
3 |
0.047790352272815 |
0.03315904626425 |
8% |
|
|
|
|
|
|
|
-4 |
0 |
3 |
0.091211219725868 |
0.054670024891998 |
15% |
|
|
|
|
|
|
|
-3 |
0 |
3 |
0.158655253931457 |
0.080656908173048 |
24% |
|
|
|
|
|
|
|
-2 |
0 |
3 |
0.252492537546923 |
0.106482668507451 |
36% |
|
|
|
|
|
|
|
-1 |
0 |
3 |
0.369441340181764 |
0.125794409230998 |
50% |
|
|
|
|
|
|
|
0 |
0 |
3 |
0.5 |
0.132980760133811 |
63% |
|
|
|
|
|
|
|
1 |
0 |
3 |
0.630558659818236 |
0.125794409230998 |
76% |
|
|
|
|
|
|
|
2 |
0 |
3 |
0.747507462453077 |
0.106482668507451 |
85% |
|
|
|
|
|
|
|
3 |
0 |
3 |
0.841344746068543 |
0.080656908173048 |
92% |
|
|
|
|
|
|
|
4 |
0 |
3 |
0.908788780274132 |
0.054670024891998 |
96% |
|
|
|
|
|
|
|
5 |
0 |
3 |
0.952209647727185 |
0.03315904626425 |
99% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
skumulowana funkcja rozkładu |
funkcję gęstości prawdopodobieństwa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wartość |
średnia |
odch.stand |
|
|
|
|
|
|
|
|
-5 |
0 |
2 |
0.006209665325776 |
0.008764150246784 |
1% |
|
|
|
|
|
|
|
-4 |
0 |
2 |
0.022750131948179 |
0.026995483256594 |
5% |
|
|
|
|
|
|
|
-3 |
0 |
2 |
0.066807201268858 |
0.064758797832946 |
13% |
|
|
|
|
|
|
|
-2 |
0 |
2 |
0.158655253931457 |
0.120985362259572 |
28% |
|
|
|
|
|
|
|
-1 |
0 |
2 |
0.308537538725987 |
0.17603266338215 |
48% |
|
|
|
|
|
|
|
0 |
0 |
2 |
0.5 |
0.199471140200716 |
70% |
|
|
|
|
|
|
|
1 |
0 |
2 |
0.691462461274013 |
0.17603266338215 |
87% |
|
|
|
|
|
|
|
2 |
0 |
2 |
0.841344746068543 |
0.120985362259572 |
96% |
|
|
|
|
|
|
|
3 |
0 |
2 |
0.933192798731142 |
0.064758797832946 |
100% |
|
|
|
|
|
|
|
4 |
0 |
2 |
0.977249868051821 |
0.026995483256594 |
100% |
|
|
|
|
|
|
|
5 |
0 |
2 |
0.993790334674224 |
0.008764150246784 |
100% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
skumulowana funkcja rozkładu |
funkcję gęstości prawdopodobieństwa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wartość |
średnia |
odch.stand |
|
|
|
|
|
|
|
|
-5 |
0 |
1 |
2.86651571879195E-07 |
1.4867195147343E-06 |
0% |
|
|
|
|
|
|
|
-4 |
0 |
1 |
3.167124183312E-05 |
0.000133830225765 |
0% |
|
|
|
|
|
|
|
-3 |
0 |
1 |
0.00134989803163 |
0.004431848411938 |
1% |
|
|
|
|
|
|
|
-2 |
0 |
1 |
0.022750131948179 |
0.053990966513188 |
8% |
|
|
|
|
|
|
|
-1 |
0 |
1 |
0.158655253931457 |
0.241970724519143 |
40% |
|
|
|
|
|
|
|
0 |
0 |
1 |
0.5 |
0.398942280401433 |
90% |
|
|
|
|
|
|
|
1 |
0 |
1 |
0.841344746068543 |
0.241970724519143 |
108% |
|
|
|
|
|
|
|
2 |
0 |
1 |
0.977249868051821 |
0.053990966513188 |
103% |
|
|
|
|
|
|
|
3 |
0 |
1 |
0.99865010196837 |
0.004431848411938 |
100% |
|
|
|
|
|
|
|
4 |
0 |
1 |
0.999968328758167 |
0.000133830225765 |
100% |
|
|
|
|
|
|
|
5 |
0 |
1 |
0.999999713348428 |
1.4867195147343E-06 |
100% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
skumulowana funkcja rozkładu |
funkcję gęstości prawdopodobieństwa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wartość |
średnia |
odch.stand |
|
|
|
|
|
|
|
|
-10 |
2 |
2 |
9.86587645037701E-10 |
3.03794142491164E-09 |
0% |
|
|
|
|
|
|
|
-8 |
2 |
2 |
2.86651571879195E-07 |
7.43359757367149E-07 |
0% |
|
|
|
|
|
|
|
-6 |
2 |
2 |
3.167124183312E-05 |
6.69151128824427E-05 |
0% |
|
|
|
|
|
|
|
-4 |
2 |
2 |
0.00134989803163 |
0.002215924205969 |
0% |
|
|
|
|
|
|
|
-2 |
2 |
2 |
0.022750131948179 |
0.026995483256594 |
5% |
|
|
|
|
|
|
|
0 |
2 |
2 |
0.158655253931457 |
0.120985362259572 |
28% |
|
|
|
|
|
|
|
2 |
2 |
2 |
0.5 |
0.199471140200716 |
70% |
|
|
|
|
|
|
|
4 |
2 |
2 |
0.841344746068543 |
0.120985362259572 |
96% |
|
|
|
|
|
|
|
6 |
2 |
2 |
0.977249868051821 |
0.026995483256594 |
100% |
|
|
|
|
|
|
|
8 |
2 |
2 |
0.99865010196837 |
0.002215924205969 |
100% |
|
|
|
|
|
|
|
10 |
2 |
2 |
0.999968328758167 |
6.69151128824427E-05 |
100% |
|
|
|
|
|