Badanie drgań tłumionych RLC za pomocą oscyloskopu, Ćwiczenie nr 9


Ćwiczenie 9

Temat: Badanie drgań tłumionych RLC za pomocą oscyloskopu

Wprowadzenie teoretyczne

Drgania elektryczne - periodyczne zmiany natężenia i napięcia prądu w obwodzie elektrycznym, którym towarzyszą drgania natężenia pola elektrycznego i magnetycznego w przestrzeni otaczającej obwód. Częstość zmian natężenia prądu w obwodzie w przypadku drgań elektrycznych wymuszonych w stanie ustalonym równa jest częstości przyłożonego źródła napięcia, amplituda zaś tego prądu wynosi :

0x08 graphic

Gdzie :

E0 - amplituda siły elektromotorycznej

R - opór omowy obwodu

C - pojemność

L - indukcyjność obwodu

ω - częstość kołowa obwodu

Drgania elektryczne zachodzą również w bardziej złożonych obwodach elektrycznych stosowanych np.: w radiotechnice, w liniach energetycznych, w rezonatorach objętościowych itp. Drgania elektryczne, których amplituda maleje w czasie, noszą nazwę drgań elektrycznych tłumionych. Przy tłumieniu następuje przemiana energii drgań elektrycznych w inne energie. W przypadku drgań elektrycznych wielkiej częstotliwości (szczególnie w drganiach obwodów otwartych - antenach ) tłumienie występuje wskutek wypromieniowania energii.

0x08 graphic
Drgania elektryczne tłumione - drgania w których amplituda nie jest stała lecz maleje w czasie wskutek rozpraszania się energii układu drgającego. W układach drgających elektrycznych straty energii są związane z rezystancją przewodników oraz polaryzacją w dielektrykach i ferromagnetykach, a energia jest wypromieniowywana w postaci fal elektromagnetycznych. Równanie drgań tłumionych układu o jednym stopniu swobody ma postać :

Gdzie :

β - współczynnik tłumienia

ω0­ - częstość kołowa drgań harmonicznych swobodnych

t - czas

W układzie drgającym o rezystancji R i indukcyjności L, β=R/2L . Dla β<ω0 układ wykonuje drgania tłumione opisane funkcją :

0x08 graphic
0x08 graphic
Gdzie :

- częstość kołowa drgań tłumionych

0x08 graphic

0x08 graphic
Dekrement logarytmiczny tłumienia δ - jest to stosunek dwóch kolejnych wychyleń następujących po sobie w odstępach okresu T:

0x08 graphic
Czas τ, po upływa którego amplituda drgań tłumionych zmniejsza się e - krotnie ( e - podstawa logarytmu naturalnego ), nazywa się czasem relaksacji :

Dobroć Q - wielkość bezwymiarowa charakteryzująca własności rezonansowe układu drgającego. W przypadku rezonansu elektrycznego szeregowego ( rezonansu napięć ) dobroć obwodu wskazuje, ile razy amplituda napięcia na pojemności jest przy rezonansie większa od napięcia zewnętrznego źródła siły elektromotorycznej. W przypadku rezonansu równoległego (rezonans prądów) dobroć obwodu wskazuje, ile razy amplituda natężenia w obwodzie równoległym jest przy rezonansie większa od amplitudy natężenia prądu zewnętrznego źródła prądu. Z energetycznego punktu widzenia dobroć obwodu jest proporcjonalna do stosunku całkowitej energii elektromagnetycznej WL zmagazynowanej w obwodzie, do energii WT , traconej w ciągu jednego okresu drgań T na ciepło Joule'a.

0x08 graphic
Gdzie :

0x08 graphic

- maksymalna energia pola magnetycznego obwodu

Im - amplituda natężeń prądu płynącego w obwodzie

L - współczynnik samoindukcji obwodu

R - opór omowy obwodu

Prawa Kirchofa :

  1. Algebraiczna suma wszystkich natężeń prądów schodzących się w węźle jest równa zero

0x08 graphic

n - liczba przewodników schodzących się w węźle

  1. W dowolnym zamkniętym obwodzie ( dowolnie wybranym z rozgałęzionej sieci przewodników ) algebraiczna suma iloczynów natężeń prądów Ik i oporów Rk odpowiednich odcinków obwodu jest równa algebraicznej sumie sił elektromotorycznych εk ( ogniw, akumulatorów, prądnic, baterii ) istniejących w tym obwodzie :

0x08 graphic

m - liczba odcinków w zamkniętym obwodzie

Prawo Ohma - prawo stwierdzające, że natężenie prądu elektrycznego I płynącego przez przewodnik (np. metal, elektrolit ) jest wprost proporcjonalne do napięcia U panującego na jego końcach jeśli jest tylko utrzymywana stała temperatura przewodnika:

0x08 graphic

Prawo Ohma dla gęstości prądu- gęstość prądu przewodnictwa jest proporcjonalna do natężenia E pola elektrycznego w przewodniku i ma taki sam kierunek, tj.

0x01 graphic
0x01 graphic

Gdzie:

γ - współczynnik proporcjonalności nazywany przewodnością właściwą (przewodnictwem właściwym)

p=1/γ - oporność elektryczna właściwa (opór właściwy) ośrodka

Przebieg doświadczenia :

Inwentarz doświadczenia: zasilacz, płytka montażowa z potencjometrem i opornikiem zabezpieczającym 3MΩ, kondensatory C1 = 10000pF i C2 = 47000pF, neonówka, opornica dekadowa, indukcyjność dekadowa, oscyloskop.

Chcemy zaobserwować drgania tłumione periodyczne, aperiodyczne oraz krytyczne a także sprawdzić czy model teoretyczny tych drgań poprawnie opisuje zaobserwowane przebiegi.

Schemat układu

0x08 graphic

0x08 graphic
0x08 graphic
0x08 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic

0x08 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic

0x08 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic

0x08 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic

0x08 graphic
0x08 graphic

0x08 graphic

0x08 graphic
0x08 graphic

0x08 graphic

C1 = 10000pF C2 = 47000pF

1

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

C1

C2

R

L

0-250V

3 MΩ



Wyszukiwarka