OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE
Dane do projektu:
wymiary budynku w osiach modularnych a x b = 21 x 5,1 [m]
wysokość kondygnacji h = 5,7 [m]
rodzaj wypełnienia stropu WPS
przeznaczenie budynku - szkoła p = 3,0 [kN/m2]
ściany zewnętrzne ceramiczne z pustaków POROTHERM 38
materiał stropu WPS
obliczeniowy opór jednostkowy podłoża 0,12 [MPa]
połączenie belek stropowych z blachownicą - przegubowe
BELKA STROPOWA
Wstępne przyjęcie przekroju belki
h = (1/20 −1/25) * l
l - rozpiętość belki [m]
Przyjęto IPE 220
I PE 220 |
|
h |
220 [mm] |
bf |
110 [mm] |
tw |
5,9 [mm] |
tf |
9,2 [mm] |
R |
12 [mm] |
A |
33,4 [cm2] |
m |
26,2 [kg/m] |
Jx |
2770 [cm4] |
Jy |
205 [cm4] |
Wx |
252 [cm3] |
Wy |
37,3 [cm3] |
ix |
9,11 [cm] |
iy |
2,48 [cm] |
2. Zestawienie obciążeń na 1 mb belki
LP |
Rodzaj obciążenia |
Obciążenie charakterystyczne |
Współczynnik obciążenia |
Obciążenia obliczeniowe |
1 |
Obciążenie stałe |
|
|
|
1.1 |
Płytki kamienne |
0,61 |
1,2 |
0,73 |
1.2 |
Gładź cementowa |
0,95 |
1,3 |
1,24 |
1.3 |
Papa asfaltowa |
0,12 |
1,3 |
0,16 |
1.4 |
Beton wyrównawczy |
1,38 |
1,3 |
1,79 |
1.5 |
Zasypka |
2,14 |
1,3 |
2,78 |
1.6 |
Płyta WPS |
1,83 |
1,1 |
2,01 |
1.7 |
Tynk cem. - wap. |
0,43 |
1,3 |
0,56 |
1.8 |
I PE 220 |
0,26 |
1,1 |
0,28 |
1.9 |
Zalewka betonowa |
1,21 |
1,3 |
1,57 |
1.10 |
Zalewka między płytami |
0,14 |
1,3 |
0,18 |
|
∑ |
9,07 |
|
11,3 |
2 |
Obciążenia zmienne |
4,5 |
1,3 |
5,85 |
3 |
Obciążenie całkowite |
13,57 [kN/m] |
|
17,15 [kN/m] |
3. Przyjęcie schematu statycznego belki
pozycja A31 - od obciążenia obliczeniowego
pozycja A32 - od obciążenia charakterystycznego
4. Sprawdzanie stanu granicznego nośności
Smukłość pasa
b/t = [ 0,5 * ( bf - tw - 2R)] / tf = 4,35 < 9ε = 9
ε = √215/fd = 1 , dla stali St3Sx fd = 215 MPa klasa przekroju 1
Smukłość środnika
b/t = [ h - 2 * ( tf + R)] / tw = 30,1 < 66ε =66 klasa przekroju 1
b/t = hw/tw
Nośność obliczeniowa przekroju
Mr = αp * Wx * fd = 1,07 * 252 *10-6 * 215 * 103 = 57,97 kNm
Współczynnik zwichrzenia
ΦL = 1
Sprawdzanie warunków nośności
Mmax / ΦL * Mr = 54,239 / 1* 57,97 = 0,93 <1 warunek spełniony
5. Nośność przekroju ze względu na ścinanie
Sprawdzanie warunków smukłości
hw/tw = 30,71 < 70ε = 70
Pole przekroju czynnego przy ścinaniu
Av = hw * tw = 177,6 * 5,9 = 10,78 [cm2]
Nośność przekroju ścinanego
VR = 0,58 * Av* fd = 0,58 * 10,48*10-4 * 215 *103 = 130,68 > Vmax = 43,132
VO = 0,6 * VR = 0,6 * 130,68 = 78,410 > Vmax = 43,132 [kN]
6.Sprawdzenie stanu granicznego użytkowania , ugięcie graniczne
amax = l / 250 = 510 / 250 = 2,04 [cm]
a = 0,0052 * [(qchar*l4)/EJ] = 0,0052 * [(13,57*5,034)/205*109*2770*10-8] =
= 0,008 = 0,8 [cm] < 2,04 [cm]
7. Sprawdzanie oparcia belki na murze
Mur wykonany jest z pustaków ceramicznych POROTHERM klasy 10 i na zaprawie marki 5 .
Rmk = 2,1 [MPa]
V = 43,132 [kN]
Ogólny warunek nośności
V <= Rm * Fd * md
Rm = Rmk * mm / γm
c - głębokość oparcia belki na murze
Fd - powierzchnia docisku
Fr - powierzchnia rozdziału
mm = 0,9 (współczynnik korelacyjny)
γm = 1,7 (współczynnik materiałowy)
md - współczynnik bezpieczeństwa
σmr - naprężenia na powierzchni rozdziału
Rm = 2,1*0,9/1,7 = 1,11 [MPa]
Fd = bf * c
c => 15 + h/3 = 22,33 przyjęto c = 23 [cm]
Fd = 11 * 23 = 253 [cm2]
md = ωd - σmr/Rm *(ωd - 1)
ωd = 3√Fr/Fd
Fr = (2*c + bf)*c = (2*23 +11)*23 = 1311 [cm2]
ωd = 3√1311/253 = 1,73
σmr = V / Fr = 0,33 MPa
md = 1,73 - 0,33 / 1,11*(1,73-1) = 1,52
Rm * Fd * md = 1,11 * 103 * 253 *10-4 * 1,52 = 42,68 < V= 43,132 [kN]
Warunek niespełniony
Aby zwiększyć nośność muru zaprojektuję podkładkę pod belkę o powierzchni Fd' .
Fd' => V / Rm
Fd' => 388,6 [cm2]
Przyjęto podkładkę o Fd' = 437 [cm2] ( 19 x 23 )
σbd' = V/ Fd' = 43,132 *10-3 / 437 * 10-4 = 0,987 [MPa] < Rm = 1,11
g= √(3* σbd' * h2)/fd = √(3* 0,987 * 16)/215 = 0,47 [cm]
Przyjęto grubość 5 [mm]
V <= Rm * Fd * md
Rm =1,11 [MPa]
Fd' = 437 * 10-4 [m2]
md = ωd - σmr/Rm *(ωd - 1)
ωd = 3√Fr / Fd'
ωd = 3√1311/453 = 1,44
σmr = V / Fr = 0,33 MPa
md = 1,44 - 0,33 / 1,11*(1,44-1) = 1,31
Rm * Fd' * md = 1,11 * 103 * 437 *10-4 * 1,31 = 63,54 > V= 43,132 [kN]
Warunek spełniony
B. PODCIĄG DRUGORZĘDOWY
Wstępne przyjęcie przekroju belki
Przyjęto IPE 360
I PE 330 |
|
h |
330 [mm] |
bf |
160 [mm] |
tw |
7,5 [mm] |
tf |
11,5 [mm] |
R |
18 [mm] |
A |
62,60[cm2] |
m |
49,1 [kg/m] |
Jx |
11770[cm4] |
Jy |
788 [cm4] |
Wx |
713 [cm3] |
Wy |
98,5 [cm3] |
ix |
13,7 [cm] |
iy |
3,55 [cm] |
2. Zestawienie obciążeń na 1 mb belki
LP |
Rodzaj obciążenia |
Obciążenie charakterystyczne |
Współczynnik obciążenia |
Obciążenia obliczeniowe |
1 |
Obciążenie stałe |
|
|
|
1.1 |
Płytki kamienne |
0,3 |
1,2 |
0,36 |
1.2 |
Gładź cementowa |
0,4725 |
1,3 |
0,61 |
1.3 |
Papa asfaltowa |
0,06 |
1,3 |
0,08 |
1.4 |
Beton wyrównawczy |
1,69 |
1,3 |
0,9 |
1.5 |
Zasypka |
1,0725 |
1,3 |
1,39 |
1.6 |
Płyta WPS |
0,915 |
1,1 |
1,01 |
1.7 |
Tynk cem. - wap. |
0,21375 |
1,3 |
0,28 |
1.8 |
I PE 330 |
0,491 |
1,1 |
0,54 |
1.9 |
Zalewka betonowa |
1,6698 |
1,3 |
2,17 |
1.10 |
Zalewka między płytami |
0,14 |
1,3 |
0,18 |
|
∑ |
6,03 |
|
7,53 |
2 |
Obciążenia zmienne |
2,25 |
1,3 |
2,925 |
3 |
Obciążenie całkowite |
8,28 [kN/m] |
|
10,45 [kN/m] |
Vchar = qchara * lo / 2 = 13,57*5,03/2 = 34,13 [kN]
Vobl = qobl * lo / 2 = 17,15*5,03/2 = 43,13 [kN]
3. Schemat statyczny podciągu
pozycja B31- od obciążenia obliczeniowego
pozycja B32 - od obciążenia charakterystycznego
4. Stan graniczny nośności w przekroju α - α
Smukłość pasa
b/t = [ 0,5 * ( bf - tw - 2R)] / tf = 5,06 < 9ε = 9
ε = √215/fd = 1 , dla stali St3Sx fd = 215 MPa klasa przekroju 1
Smukłość środnika
b/t = [ h - 2 * ( tf + R)] / tw = 36,14 < 66ε =66 klasa przekroju 1
b/t = hw/tw
Nośność obliczeniowa przekroju
Mr = αp * Wx * fd = 1,07 * 713 *10-6 * 215 * 103 = 164,026 kNm
Mα = 131,393 [kNm]
Tα = 128,760 [kN]
Sprawdzanie warunków nośności
Mα-α / ΦL * Mr
L1 max = 35 * iy / β * √215/fd , β = 1 , fd = 215 , iy = 3,55
L1 max = 35 * 3,55 = 128,25 > L1/2 = 140 / 2 = 70 [cm]
ΦL = 1
Mα-α / ΦL * Mr = 131,393 / (1* 164,026) = 0,8 < 1
warunek nośności spełniony
5. Nośność przekroju α - α ze względu na ścinanie
Sprawdzanie warunków smukłości przy ścinaniu
hw/tw = 36,14 < 70ε = 70
Pole przekroju czynnego przy ścinaniu
Av = hw * tw = 27,1 * 0,75 = 20,325 [cm2]
Nośność przekroju ścinanego
VR = 0,58 * Av* fd = 0,58 * 20,325 * 10-4 * 215 *103 =
= 252,33 > Tα = 128,760 [kN]
VO = 0,6 * VR = 0,6 * 252,33 = 151,4 > Tα = 128,076 [kN]
6. Stan graniczny nośności w przekroju β - β
klasa przekroju - 1
Nośność obliczeniowa przekroju
Mr = αp * Wx * fd = 1,07 * 713 *10-6 * 215 * 103 = 164,026 [kNm]
Mβ = 74,115 [kNm]
Sprawdzanie czy belka zabezpieczona jest przed zwichrzeniem
L1 = 140 [cm]
L1 max = 35 * iy / β * √215/fd fd = 215 , iy = 3,55
βMmax = 0,55 * M1 + 0,45 * M2
M1 = 74,115 [kNm]
M2 = 55,579 [kNm]
Mmax = 69,158 [KNm]
β = (0,55 * 74,115 + 0,45 * 55,579) / 69,158
β = 65,77 / 69,158 = 0,95
L1 max = 35 * 3,55/0,95 = 130,8 < L1 = 140 [cm]
_ Belka nie jest zabezpieczona przed zwichrzeniem
λl = 0,0045 * √ ( l0 *h ) / ( b *tf ) * β * ( fd / 215 ) =
= 0,0045 * √ 140*33/16*11,5 * 0,95 *1 = 0,22 → ΦL = 1
ΦL = 1
Mβ / ΦL * Mr = 74,115 / 1 * 164,026 = 0,452 < 1
Warunek spełniony
7.Sprawdzenie stanu granicznego użytkowania, ugięcie graniczne
a max = l / 350 = 503 / 350 = 1,44 [cm]
a = 0,0052 * [(qchar*l4)/EJ] =
= 0,0052 * [( 8,28 *103 * 5,034) / 205*109 * 11770*10-8]
= 0,00114 = 0,114 [cm] < 1,44 [cm]
8. Sprawdzanie oparcia belki na murze
Mur wykonany jest z pustaków ceramicznych POROTHERM klasy 10 i na zaprawie marki 5 .
Rmk = 2,1 [MPa]
V = 74,759 [kN]
Ogólny warunek nośności
V <= Rm * Fd * md
Rm = Rmk * mm / γm
c - głębokość oparcia belki na murze
Fd - powierzchnia docisku
Fr - powierzchnia rozdziału
mm = 0,9 (współczynnik korelacyjny)
γm = 1,7 (współczynnik materiałowy)
md - współczynnik bezpieczeństwa
σmr - naprężenia na powierzchni rozdziału
Rm = 2,1*0,9/1,7 = 1,11 [MPa]
Fd = bf * c
c => 15 + h / 3 = 26 [cm]
Fd = 16 * 26 = 416 [cm2]
md = ωd - σmr/Rm *(ωd - 1)
ωd = 3√Fr/Fd
Fr = (2*c + bf)*c = (2*26 +16)*26 = 1768 [cm2]
ωd = 3√1768/416 = 1,62
σmr = V / Fr = 74,759 / 1768 = 0,423 MPa
md = 1,62 - 0,423 / 1,11*(1,62-1) = 1,384
Rm * Fd * md = 1,11 * 103 * 416 *10-4 * 1,384 = 63,91 < V= 74,759 [kN]
Warunek niespełniony
Aby zwiększyć nośność muru zaprojektuję podkładkę pod belkę o powierzchni Fd' .
Fd' => V / Rm
Fd' => 673,5 [cm2]
Przyjęto podkładkę o Fd' = 780 [cm2] ( 30 x 26 )
σbd' = V/ Fd' = 74,759 *10-3 / 780 * 10-4 = 0,96 [MPa] < Rm = 1,11
g= √(3* σbd' * h2)/fd = √(3* 0,96 * 49) / 215 = 0,81 [cm]
Przyjęto grubość 1,0 [mm]
V <= Rm * Fd * md
Rm =1,11 [MPa]
Fd' = 780 * 10-4 [m2]
md = ωd - σmr/Rm *(ωd - 1)
ωd = 3√Fr / Fd'
ωd = 3√1768 / 780 = 1,31
σmr = V / Fr = 0,423 MPa
md = 1,31 - 0,423 / 1,11*(1,31 -1) = 1,19
Rm * Fd' * md = 1,11 * 103 * 780 *10-4 * 1,19 = 103,03 > V= 74,759 [kN]
Warunek spełniony
C. BLACHOWNICA - PODCIĄG PIERWSZORZĘDOWY
Zestawienie obciążeń
LP |
Rodzaj obciążenia |
Obciążenie charakterystyczne |
Współczynnik Obciążenia |
Obciążenie obliczeniowe |
1 |
Ciężar własny blachownicy |
q=(70+10*21)*8,5= =2,38 |
1,1 |
2,618 |
2 |
Reakcje od belek stropowych |
qch =(14*68,258)/21= 45,5
|
---- |
Po=86,264*14/21= = 57,51 |
3 |
Suma |
47,88 |
---- |
60,128 |
4 |
Reakcje od podciągu |
Vch = 203,850 |
---- |
Vo = 257,520 |
Obliczenia statyczne
Pozycja C21
Pozycja C22 - schemat blachownicy
Mmax = q * l2 / 8 = 60,128 * 212/ 8 = 3314,556 [kNm]
RA = q * l / 2 = 60,128 * 21 / 2 = 631,344 [kN]
RB = q * l / 2 + Vo = 60,128 * 21 / 2 + 257,520= 888,864 [kN]
Wstępne przyjęcie przekroju
Przyjęto stal St4VX
t <= 16 fd = 235 [MPa]
16<t <= 40 fd = 225 [MPa]
Wstępne przyjęcie wysokości blachownicy
h = ( 1/10 - 1/12 ) * lo = 2,1 - 1,75 [m]
przyjęto h = 2,0 [m]
Zakładamy grubość środnika
tw = 7 + 3*h = 7 + 6 = 13 [mm]
przyjęto tw = 12 [mm]
Wskaźnik wytrzymałości na zginanie
Wx = αw * M / fd
Wx = 1,4 * 3314,556 * 10-3 / 225 = 20 624 [cm3]
Wysokość środnika
hw = α * √Wx/tw = 1,2 * √20624 / 1,2 = 157,32 [cm]
przyjęto hw = 170 [cm]
Pole przekroju środnika ( Av )
Av = hw * tw = 170 * 1,2 =204 [cm2]
Szerokość pasa
bf = hw / 4 = 170 / 4 = 42,5 [cm] przyjęto bf = 43 [cm]
Próbne pole przekroju pasa
Af = Wx/d - Av/6 = 20624 / 173 - 204 / 6 = 85,21 [cm2]
Grubość pasa
tf = Af / bf = 85,21 / 43= 1,98 [cm]
przyjęto tf = 20 [mm]
Cechy geometryczne przekroju
A = 170 * 1,2 + 2 * 43 *2 = 204 + 172 = 376 [cm2]
Jx = 1,2*1703 / 12 + 2*[ 43*23/12 + 43*2*862] = 1763469,34 [cm4]
Wx= Jx / zmax = 1763469,34 / 87 = 20269,76 [cm3]
ix = √Jx/A = 68,5 [cm]
Jy = 170*1,23 + (2 * 2 * 433 /12) = 26526,82 [cm4]
iy = √Jy/A = 8,4 [cm]
Stan graniczny nośności
Mmax = 3314,556 [kNm]
ε 1 = √215/225 = 0,98 ε 2 = √215/235 = 0,96
Wyznaczanie klasy przekroju
Smukłość pasa
b/t = [ 0,5 * ( bf - tw )] / tf = 0,5*(43-1,2)/2=10,45 < 14ε1 = 13,72
klasa przekroju 3
Smukłość środnika
b/t = 170/1,2= 141,97 > 105ε2 =100,8 klasa przekroju 4
Globalna klasa przekroju 4
Nośność przekroju klasy czwartej
MR = ψ * Wx * fd
Przyjęto rozstaw żeber a = 150 [cm]
Sprawdzanie nośności w stanie krytycznym
ψ = φP
Smukłość względna przy zwichrzeniu
_
λp = b/t * K/56 * √ fd/215
β = a/b = 150/170 = 0,88
Dla * = 0 i β < 1 * K = 0,4
_
λp = 170/1,2 * 0,4/56 * √ 235/215 = 1,06 * φP = 0,7294 * ψ = 0,7294
Nośność obliczeniowa
MR = 0,7294 * 20269,76 * 10-6 * 225 * 103 = 3326,6 [kNm]
Sprawdzanie warunków nośności
Mmax / φL * MR <= 1
Belka nie jest zabezpieczona przed zwichrzeniem
Smukłość względna przy zwichrzeniu
_
λ = 1,15 * √ MR/MCR
μx = μY = μω =1
MCR = is * √ NY * NZ
is = √ iX2 + iY2 = √ 68,52 + 8,42 = 69 [cm]
NY = π2 * E * JY / ( μY * l )2 = π2 * 205 * 106 * 26526 * 10-8 / 1,52 =
NY = 238537,3 [kN]
NZ = 1/is2 [ π2 * E * Jω / ( μω * l )2 + G * JT ]
Jω = JY * h2 / 4 = 26526,82 * 1722 / 4 = 1,962 + 10-4 [m6]
JT = 1/3 * ( 2* b * t3 + b3 * t33 ) = 1/3 * (2*43*23 + 170*1,22) = 327,25 [cm4]
NZ = 1/0,692 * [π2 * 205*106 * 1,962*10-4 / 1,52 + 80*106 * 327,25*10-8]
NZ = 37112,3 [kN]
MCR = 0,96 * √ 238537,3 * 371121,3 = 205298,22 [kNm]
_
λ = 1,15 * √ 3326,6 / 205298,22 = 0,146 * φL = 1,0
Mmax / φL * MR = 3314,556 / 3326,6 = 0,996 < 1,0
Warunek nośności spełniony
Sprawdzanie nośności środnika na ścinanie .
Tmax = 631,344 [kN]
Smukłość środnika przy ścinaniu
b / t = 170 / 1,2 = 141,67 [cm] > 70ε2 = 70 * 0,96 = 67,2 [cm]
Nośność obliczeniowa
VR = 0,58 * Pv * Av * fd
_
Pv = 1 / p
_
p = (b / t) * (kv /56) * √ fd /215
= a / b = 150 / 170 = 0,88
kv = 0,65 * * √ (2 - 0,65 * 0,88 * √ (2 - 0,88 0,6
_
p = (170 /1,2) * (0,6 /56) * √ (235/215) = 141,67*0,01107*1,045 =
= 1,584
Pv = 1 / 1,584 = 0,631
Av = hw * tw = 170 * 1,2 = 204 [cm2]
VR = 0,58*0,631*204*10-4*235*103 = 1754,51 [kN] > Tmax = 631,344 [kN]
Kształtowanie zmiennego przekroju blachownicy.
8.1 Założono zmniejszoną szerokość pasa bf1 = 330 [mm]
Jx1 = (1,2 * 1703) / 12 + 2 * [ (33 * 23) / 12 + 33 * 2 * 862 ] =
= 491300 + 2 * ( 22 +488136 ) = 1467616 [cm4]
Wx1 = Jx1 / zmax = 1467616 / 87 = 16869,15 [cm3]
MR1 = * Wx1 * fd = 0,7294 * 16869,15 * 10-6 * 225 * 103 =
= 2768,5 [kNm]
L10 = L * √ (MR - MR1) / MR = 21 * √ (3326,6 - 2768,5) / 3326,6
= 8,6 [m] = 860 [cm]
L1 = L10 + 2 * c = 860 + 2 * 5 = 870 [cm]
8.2 Założono zmniejszoną szerokość pasa bf2 = 230 [mm]
Jx2 = (1,2 * 1703) / 12 + 2 * [ (23 * 23) / 12 + 23 * 2 * 862 ] =
= 491300 + 2 * ( 15,34 + 340216) = 1171762,7 [cm4]
Wx2 = Jx2 / zmax = 1171762,7 / 87 = 13468,54 [cm3]
MR2 = * Wx2 * fd = 0,7294 * 13468,54 * 10-6 * 225 * 103 =
= 2210,4 [kNm]
L20 = L * √ (MR - MR2) / MR = 21 * √ (3326,6 - 2210,4) / 3326,6
= 12,2 [m] = 1220 [cm]
L2 = L20 + 2 * c = 1220 + 2 * 5 = 1230 [cm]
Sprawdzenie wpływu siły tnącej na nośność przekroju zginanego.
VR = 1754,51 [kN]
Vmax = 631,344 [kN]
0,3 * VR = 0,3 * 1754,51 = 526,353 [kN] < Vmax = 631,344 [kN]
Sprawdzenie dla x
M(x) = RA * x - ( q * x2 / 2 ) =
T(x) = RA - q * x = 0,3 * VR
631,344 - 60,128 * x = 526,353
60,128 * x = 104,991
x = 1,75 [m]
M(x) = 631,344 * 1,75 - (60,128 * 1,752 /2) = 1104,852 - 92,071 =
= 1012,781 [kNm]
Zredukowana nośność przekroju ze względu na ścinanie
MRv = MR2 * [ 1 - (Jv / J) * (V(x) / VR)2 ]
Jv = 1,2 * 1703 /12 = 491300 [cm4]
J = Jx2 = 1171762,7 [cm3]
V(x) = 526,353 [kN]
MRv = 2210,4*[1-(491300/1171762,7)*(526,353/1754,51)2 ] =
= 2210,4 * ( 1- 0,42 * 0,09 ) = 2126,85 [kNm]
M(x) / MRv = 1012,781 / 2123,85 = 0,48 <1
10. Stan graniczny użytkowania .
Dopuszczalne ugięcie dla podciągu
amax = L / 350 = 2100 / 350 = 6 [cm]
Ugięcie dla belki o zmiennym przekroju
a = 5,5/384 * (qch*L4/E*J) = 0,0143 * (47,88 * 214 / 205 * 106 *
* 1763469,34 * 10-8 ) = 0,0143 * 2,576 = 0,037 = 3,7 [cm]
a = 3,7 [cm] < amax = 6 [cm]
11. Obliczanie żeber usztywniających
Przyjęto obustronne żebra
bs = 100 [mm]
ts = 10 [mm]
rozstaw żeber a =150 [cm]
Warunek sztywności żebra
Js >= k * b * t3
k = 1,5 * ( b / a)2 = 1,5 * (170 / 150 )2 = 1,93 > 0,75
k * b * t3 = 1,93 * 170 * 1,23 = 566,96 [cm4]
Moment bezwładności żebra względem osi środnika
Js = 2 * [ ( ts * bs3 ) / 12 + bs * ts * ( tw / 2 + bw / 2 )2 ] =
= 2 * [ (1 * 103 ) / 12 + 10 * 1 * (1,2 / 2 + 10 / 2 )2 ] =
= 2 *( 83,34 + 313,6) = 793,88 [cm4] > 566,96 [cm4]
Wyznaczenie klasy przekroju
bs / ts = 100 / 10 = 10 <14*ε2 = 13,44
klasa przekroju 3
NRC = * Aso * fd
= 1
Aso = 2 * bs * ts + 30 * tw2 = 2 * 10 * 1 + 30 * 1,22 = 20 + 43,2 = 63,2 [cm2]
NRC = 1 * 63,2 * 10- 4 * 235 * 103 = 1485,2 [kN]
Moment bezwładności przekroju zastępczego
Jsox = 2 * [ ( ts * bs3 ) / 12 + bs * ts * ( tw / 2 + bw / 2 )2 ] + (30*tw *tw3)/12 =
=2*[ (1 * 103 ) / 12 + 10 * 1 * (1,2 / 2 + 10 / 2 )2 ] + (36 * 1,23 ) /12 =
= 2 *( 83,34 + 313,6 ) + 5,184 = 799,064 [cm4]
Promień bezwładności
iso = √ Jsox / Aso = √ 799,064 / 63,2 = 3,55 [cm]
Smukłość przekroju zastępczego
λ = ie / iso = 0,8 * hw / 3,55 = 0,8 * 170 /3,55 = 136 / 3,55 = 38,31
Smukłość porównawcza
λp = 84 * √ 215 / fd = 84 * √ 215 / 235 = 80,35
Smukłość względna
_
λ = λ / λp = 38,31 / 80,35 = 0,477
= 0,877
N / * NRC = 631,344 / 0,877 * 1485,2 = 631,344 / 1302,520 = 0,485 < 1
Warunek spełniony
D. SŁUP
Dane
Słup obciążony jest reakcją RB = P = 888,864 [kN]
Wysokość słupa l = 570 [cm]
Przyjęto stal St3SX o fd = 215 [MPa]
Wstępne przyjęcie przekroju
2 * A1 = P / 0,75 * fd = 888,864 * 10-3 / 0,75 * 215 = 0,00551 [m2] =
= 55,1 [cm2]
Przyjęto 2 C 220
2 * A1 = 2 *37,4 = 74,8 [cm2]
Cechy geometryczne przekroju
I PE 220 |
|
h |
220 [mm] |
bf |
80 [mm] |
tw |
9,0 [mm] |
tf |
12,5 [mm] |
R |
12,5 [mm] |
A1 |
37,4 [cm2] |
e1 |
2,14 [mm] |
m |
29,4 [kg/m] |
Jx1 |
2690 [cm4] |
Jy1 |
197 [cm4] |
Wx1 |
245 [cm3] |
Wy1 |
33,6 [cm3] |
ix |
8,48 [cm] |
iy |
2,30 [cm] |
Sprawdzenie klasy przekroju
ε = √ 215 / fd = √ 215 / 215 = 1
Smukłość pasa
b / t = (90 -9 -12,5) / 12,5 = 4,68 < 9 * ε = 9
klasa przekroju 1
Smukłość środnika
b / t = [220 - 2 * (12,5 + 12,5) ] / 9 = 18,89 < 33 * ε = 33
klasa przekroju 1
Wyznaczenie rozstawu ceowników e
Jy = 1,1 * Jx
Jx = 2 * Jx1 = 2 * 2690 = 5380 [cm4]
Jy = 2 * ( Jy1 + A1 * (e/2)2 )
e = 2 *√ ((1,1* Jx1 - Jy1) / A1) = 2 * √ ((1,1*2690 -197) / 37,4) =
= 17,2 [cm]
Szerokość słupa
b = 2 * e1 +e = 2 * 2,14 + 17,2 = 21,48 [cm]
przyjęto b = 22 [cm]
Rzeczywiste wymiary trzonu słupa
d = b - 2 * bf = 22 - 2 * 8 = 6 [cm]
e = b - 2 * e1 = 22 - 2 * 2,14 = 17,72 [cm]
Jy = 2 * ( Jy1 + A1 * (e/2)2 ) = 2 * ( 197 + 37,4 * (17,72 / 2)2 ) = 6266 [cm4]
iy = √ Jy / A = √ 6266 / 74,8 = 9,15 [cm]
Przyjęcie osiowego rozstawu przewiązek
L1 < 60 * i1 = 60 * 2,30 = 138 [cm]
Słup podzielono na 5 odcinków
L1 = 570 / 5 = 114 [cm] < 138 [cm]
Sprawdzanie nośności słupa przy wyboczeniu giętnym względem osi materiałowej x-x
Smukłość wyboczenia giętnego
λx = x * L / ix = 1 * 570 / 8,48 = 67,22
Smukłość porównawcza
λp = 84 * √(215 / fd) = 84
Smukłość względna przy wyboczeniu giętnym
_
λ = λx / λp = 67,22 / 84 = 0,8 → = 0,681
Nośność obliczeniowa przekroju
NRC = * Aso * fd = 1 * 74,8 * 10-4 * 215 * 103 = 1608,2 [kN]
N / * NRC = 888,864 / 0,681 * 1608,2 = 888,864 / 1095,2 = 0,81 < 1
Warunek spełniony
Sprawdzenie nośności słupa przy wyboczeniu względem osi y-y
Smukłość gałęzi
λ1 = λv = l1 / i1 = 114 / 2,30 = 49,565
Smukłość względna gałęzi
_
λ = λ1 / λp = 49,565 / 84 = 0,59 → = 0,813
Smukłość zastępcza gałęzi
λ = λy = (μy * l) / ly = (1 *570) / 9,15 = 62,265
λm = √ λ2 + m/2 * λv2 = √ 62,2952 + 2/2 + 49,5652 =
√ 3880,67 + 2456,69 = 79,61
ponieważ λm > λx
79,61 > 67,22 przekrój klasy 4
ψ = φ1
Smukłość względna
_
λm = λm / λp * √ ψ = 79,61 / 84 * √0,813 = 0,85 → = 0,747
Nośność przekroju
NRC = * A * fd = 0,813 * 74,8*10-4 * 215*103 = 1307,5 [kN]
Sprawdzenie nośności słupa
N / * NRC = 888,864 / 0,747 * 1307,5 = 0,91 < 1
WYMIAROWANIE PRZEWIĄZEK
Przyjęto wymiary przewiązek:
l = 160 [mm]
g = 8 [mm]
bf = 140 [mm]
Zastępcza siła poprzeczna
Q = 0,012 * A * fd = 0,012 * 74,8*10-4 * 215*103 = 19,3 [kN]
VQ = (Q * l1)/n*(m-1)*a = 19,3 * 1,14 / 2 * (2-1) * 0,1772 =
= 22,002 / 0,3544 = 62,1 [kN]
MQ = Q * l1 / m * n = 19,3 * 1,14 / 2 * 2 = 5,5 [kNm]
Sprawdzanie nośności ze względu na ścinanie
VQ / NR = <1
NR = 0,58 * Av * fd = 0,58 * 0,9 * 0,8 * 14*10-4 * 215*103 = 125,7 [kN]
62,1 / 125,7 = 0,494 < 1
warunek nośności ze względu na ścinanie jest spełniony
Sprawdzanie nośności ze względu na zginanie
MQ / * MR =< 1
= 1
MR = Wp * fd
Wp = 0,8 *142 / 6 =26,13 [cm3]
MR = 26,13 * 10-6 * 215 * 103 = 5,618 [kNm]
5,5 / 5,618 = 0,978 <1
warunek nośności ze względu na zginanie jest spełniony
OBLICZANIE SPOINY
Przyjęto grubość spoiny a = 5 [mm]
Nośność spoiny
* = √ (*v + *Mx)2 + *Mx2 =< *II * fd
*v = VQ / AS
AS = 0,5 * 14 + 2 * 0,5 * 5 = 7 + 5 = 12 [cm2]
*v = 62,1 * 10-3 / 12 * 10-4 = 51,75 [MPa]
e = 2*a*b*(b+a)*0,5 / a*(bp+2*b) = 2*0,5*5*(5+0,5)*0,5/0,5*(14+2*5) =
= 1,15 [cm]
Moment bezwładności układu spoin
Jx = a*bp3/12 + 2*a*b*[0,5*(bp+a)]2 = 0,5*143/12 + 2*0,5*5*[0,5*(14+0,5)]2
= 377,15 [cm4]
Jy = a*bp*e2 + 2*[a*b3/12 + a*b*(a+b/2 - 0,5*a -e)2] =
= 0,5*14*1,152 + 2*[0,5*53/12 + 0,5*5*(0,5+5/2 - 0,5*0,5 - 1,15)2] =
= 28,79 [cm4]
Jo = Jx + Jy = 405,94 [cm4]
Sprawdzanie nośności spoiny
* = √ (*v + *Mx)2 + *Mx2 =< *II * fd
*v = 51,75 [MPa]
*II = 0,8
*Mx = MQ*0,5*(bp +a)/Jo = 5,5*10-3 * 0,5* (14 + 0,5)*10-2 / 405,94*10-8 =
= 98,23 [MPa]
*My = MQ*(b - e)/Jo = 5,5*10-3 * (5 - 1,15)*10-2 / 405,94*10-8=52,16 [MPa]
* = √ (51,75 + 52,16)2 + 98,232 = 142,99 [MPa] < 172 [MPa]
WYMIAROWANIE PODSTAWY SŁUPA
Potrzebna powierzchnia blachy
F = P / Rbd = 888,864 * 10-3 / 6,7 = 1326,7 [cm2]
Przyjęto blachę o wymiarach 37x37 [cm] → F =1369[cm2]
Schemat I - b =195 [mm] , l = 202 [mm]
Schemat II - b =75 [mm] , l = 220 [mm]
Schemat III - l = 67 [mm]
*bd = P /A*B = 888,864 * 10-3 / 0,37 * 0,37 = 6,5 [MPa]
Dla schematu I
l/b = 1,03 * 1 * u/b = 0,536
u = 0,536 * b = 10,45 [cm]
Dla schematu II
l/b > 1 - zamiast tego przyjmujemy wspornik o wysięgu b
u = 1,73 * b = 1,73 * 7,5 =12,97 [cm]
Dla schematu III
u = 1,73 * b = 1,73 * 6,7 = 11,6 [cm]
td = u * √ *bd / fd = 12,97 * √ 6,5 / 215 = 2,25 [cm]
przyjęto td = 23 [mm]
WYMIAROWANIE PRZEWIĄZEK SKRAJNYCH
bs => 1,5 * bp = 1,5 * 140 = 210 [mm]
przyjęto bs = 210 [mm]
Moment zginający o przekroju *-*
M* = 888,864 / 0,37 * 0,0752 / 2 = 6,76 [kNm]
Położenie osi obojętnej
yo = (2*0,8*21*(10,5+11,5)) / (2*0,8*21+2,3*37) = 3,3 [cm]
Odległość górnej krawędzi od środka ciężkości
y = 21 + 1,15 - 3,3 = 18,85 [cm]
Jx = 2*[0,8*213/12 + 0,8*21*(10,5+1,15-3,3)2] + 37*2,33/12+37*2,3*3,32 =
= 4541,735 [cm4]
Wx = 4541,735 / 18,85 = 240,94 [cm3]
Naprężenia na górnej krawędzi
* = M* / Wx = 6,76 * 10-3 /240,94 * 10-6 = 28,05 < fd = 215
Obliczanie spoin łączących blachę trapezową z ceownikami
Przyjęto grubość spoiny a = 5 [mm]
Pole powierzchni spoin
AS1 = 4 * (0,5 * 8 + 0,5 * 21) = 58 [cm2]
*II = P / AS1 = 888,864 * 10-3 / 58 *10-4 = 153,25 < 215*0,8 = 172 [MPa]
nośność spoiny jest spełniona
Obliczanie spoin łączących blachę trapezową i ceowników z blachą podstawy
Przyjęto a = 5 [mm]
Pole powierzchni spoin
As2 = 2 * 0,5 * 36,5 + 2 * 0,5 * 22 = 58,5 [cm2]
Przyjęto dokładne frezowanie słupa , spoiny przejmują 25% siły P
Naprężenia prostopadłe wywołane siłą P
* = 0,25 * 888,864 * 10-3 / 58,5 * 10-4 = 37,98 [MPa] = *┴ = *┴
Naprężenia równoległe w spoinie w przekroju * - *
Siła poprzeczna w przekroju * - *
V* - * = (888,864 * 7,5) / 37 = 180,2 [kN]
Łączna grubość spoin w przekroju
*a = 2 * 0,5 = 1,0 [cm]
y0 = 3,3 [cm]
Jx = 4541,735 [cm4]
s = 37 * 2,3 * 3,3 = 280,83 [cm3]
*v = (V* - * * s ) / (Jx * *a)
*v = (180,2 * 10-3 * 280,83 * 10-6) / (4541,735 * 10-8 * 0,01) =
= 111,42 [MPa] = *║
Sprawdzanie warunku wytrzymałości spoin
0,7 * √ (*┴2 + 3 * (*┴2 + *║2)) = 0,7*√ (37,982+3*(37,982+111,422)) =
= 145,2 < fd = 215 [MPa]
WYMIAROWANIE GŁOWICY SŁUPA
qo = P / bf2 = 888,864 / 0,23 = 3864,63 [kN/m]
lp = 23,6 [cm]
Mmax = (qo * lp2) / 8 = 3864,63 * 0,2362 / 8 = 26,9 [kNm]
Sprawdzanie naprężeń dociskowych w podkładce centrującej
*d = (888,864 * 10-3) / (0,03 * 0,23) = 128,82 [MPa]
*d = 128,82 [MPa] < fbd = 1,25 * fd = 268,75 [MPa]
Położenie osi obojętnej
b0 = bp + 0,35 * lp = 30 + 0,35 * 236 = 112,6 =113 [mm]
y0 = (21*1*(10,5 + 0,75) - 3*3*(1,5 + 0,75))/ (3*3 + 11,3*1,5 + 21*1 )
y0 = 4,6 [cm]
Jx = 3*33/12 + 3*3*(1,5 + 0,75 +4,6)2 + 11,3*1,53/12 + 11,3*1,5*4,62 +
+ 1*213/12 + 1*21*(0,75 + 10,5 - 4,6)2 = 2491,4 [cm4]
Wx = 2491,4/17,15 = 145,3 [cm3]
Naprężenia w skrajnych włóknach
* = Mmax / Wx = 26,9*10-3 / 145,3*10-6 = 185,1 [MPa] < fd = 215 [MPa]
Sprawdzanie spoin łączących podkładkę centrującą z blachą poziomą
*║= (0,25 * P * s ) / (Jx * *a)
a = 4 [mm]
wymiary podkładki centrującej 30x30x270 [mm]
wymiary blachy poziomej 15x270x270 [mm]
wymiary przepony 10x210 [mm]
Sx = 3 * 3 * (,5 + 0,75 + 4,6) = 61,65 [cm3]
*║= (0,25 * 888,864*10-3 * 61,65*10-6) / (2491,4*10-8*2*0,004)
*║= 68,74 [MPa] < *║ * fd = 0,8 * 215 = 172 [MPa]
Obliczanie spoin łączących blachę poziomą z ceownikami i przewiązkami skrajnymi
Przyjęto grubość spoiny a = 4 [mm]
L = 2 * 22 + 2 * 16 = 76 [cm]
Naprężenia w spoinie
* = (0,25 * P) / (a * l) = (0,25 * 888,864 * 10-3) / (0,004 * 0,76 ) =
= 73,1 [MPa] < *┴ * fd = 0,9 * 215 = 193,5 [MPa]
19