Szanowni Państwo!
Na poniższych przykładach mogą Państwo poćwiczyć sprawdzanie tautologiczności formuł rachunku zdań:
(a) ~ (p → ~ p);
(b) (p ∧ q) → p;
(c) (p q) → p;
(d) [(p → q) → p] → p;
(e) ~ (p → q) → (~ q → ~ p);
(f) (~ p ~ q) → ~ (p ∧ q);
(g) (p → q) → (q → p);
(h) (p q) ~ ( ~ p q);
(i) (p → q) → (~q → ~p);
(j) [(p → q) ∧ q] → p;
(k) [~ (p ∧ q) ∧ ~p] → ~q;
(l) [(p q) (q r)] (p r);
(m) [p → ~ (q ∧ ~ r)] → (q → r);
(n) [(p q) (r q)] [(p q) r];
(o) ( ~ (p q) r] (p q);
(p) [(p q) ( ~ r q)] ( ~ p r);
(r) [(p → q) ∧ (r → s)] → [r → p) → (s → q)].
Z kolei na tych przykładach można poćwiczyć formalizowanie zdań z języka naturalnego w języku rachunku kwantyfikatorów:
(a) „Nikt nie jest dobrym sędziom we własnej sprawie”;
(b) „Istnieją twierdzenia, które uznają tylko głupcy”;
(c) „Nie tylko studenci psychologii lubią rozwiązywać testy ułożone przez siebie”;
(d) „Istnieje taki mężczyzna, który się nie podoba żadnej kobiecie”;
(e) „Nie tylko kandydaci na wyższe studia zdają egzaminy wstępne”;
(f) „Pewna pianistka nie jest uczennicą żadnego pianisty”;
(g) „Wszystko przemija”;
(h) „Nic co dobre nie trwa wiecznie”;
(i) „Dokładnie jedna liczba naturalna jest mniejsza od wszystkich innych liczb naturalnych”.