LEAD(IV) ACETATE 1 predominates (eq 3).12 Conjugated dienes undergo 1,2- and 1,4- Lead(IV) Acetate1 diacetoxylation,13 while cyclopentadiene in wet acetic acid gives monoacetates of cis-cyclopentene-1,2-diol (eq 4).14 Pb(OAc)4 LTA C6H13 MeOH [546-67-8] C8H12O8Pb (MW 443.37) OMe OMe O InChI = 1/4C2H4O2.Pb/c4*1-2(3)4;/h4*1H3,(H,3,4);/q;;;;+4/p- OMe + OAc + 4/f4C2H3O2.Pb/q4*-1;m C6H13 C6H13 C6H13 (1) InChIKey = JEHCHYAKAXDFKV-XDSBQQJHCT 52% 12% 23% (oxidizing agent for different functional groups;1 oxidation of un- LTA, AcOH 45 °C saturated and aromatic hydrocarbons;2 oxidation of monohydrox- (2) MeO MeO ylic alcohols to cyclic ethers;3 1,2-glycol cleavage;4 acetoxylation 94% OAc of ketones;1 decarboxylation of acids;5 oxidative transformations AcO of nitrogen-containing compounds6) LTA Alternate Names: lead tetraacetate; LTA. AcOH ć% Physical Data: mp 175 180 C; d 2.228 g cm-3. OAc Solubility: soluble in hot acetic acid, benzene, cyclohexane, chlo- OAc roform, carbon tetrachloride, methylene chloride; reacts rapidly OAc OAc + + (3) with water. Form Supplied in: colorless crystals (moistened with acetic acid 86% 11% 1% and acetic anhydride); widely available, 95 97%. LTA, AcOH Analysis of Reagent Purity: iodometrical titration. O H2O, rt Drying: in some cases, acetic acid must be completely removed (4) H, Ac 75 80% by drying the reagent in a vacuum desiccator over potassium O hydroxide and phosphorus pentoxide for several days. Handling, Storage, and Precautions: the solid reagent is very Aromatic hydrocarbons react with LTA in two ways: on the hygroscopic and must be stored in the absence of moisture. aromatic ring and at the benzylic position of the side chain. Bottles of lead tetraacetate should be kept tightly sealed and Oxidation of the aromatic ring results in substitution of aromatic ć% stored under 10 C in the dark and in the presence of about 5% hydrogens by acetoxy or methyl groups.1c Benzene itself is stable of glacial acetic acid. towards LTA at reflux and is frequently used as solvent in LTA reactions. However, mono- and polymethoxybenzene deriva- tives are oxidized by LTA in acetic acid to give acetoxylation products (eq 5).15 Oxidation of anthracene in benzene gives 9,10- Original Commentary diacetoxy-9,10-dihydroanthracene, whereas in AcOH a mixture of 10-acetoxy-9-oxo-9,10-dihydroanthracene and anthraquinone Ø Ø Mihailo Lj. Mihailović & Zivorad Ceković is obtained.16 The LTA oxidation of furan affords 2,5-diacetoxy- University of Belgrade, Belgrade, Serbia 2,5-dihydrofuran (eq 6).17 Oxidations of Alkenic and Aromatic Hydrocarbons. Lead LTA AcOH tetraacetate reacts with alkenes in two ways: addition of an oxygen MeO OMe MeO OMe (5) functional group on the double bond and substitution for hydrogen 58% at the allylic position.2 In addition to these two general reactions, OAc depending on the structure of the alkene, other reactions such as LTA skeletal rearrangement, double bond migration, and C C bond AcOH cleavage can occur, leading to complex mixtures of products, and (6) AcO OAc OO 69% these reactions therefore have little synthetic value (eq 1).1a,b,2,7 Styrenes afford 1,1-diacetoxy derivatives when the LTA reaction Aromatic compounds possessing a C H group at the benzylic is performed in acetic acid (eq 2), while in benzene solution position are readily oxidized by LTA to the corresponding products resulting from the addition of both the methyl and an benzyl acetates. Benzylic acetoxylation is preferably performed in acetoxy group to the alkenic double bond are formed.7,8 Other refluxing acetic acid (eq 7).18 Acetoxylation at the benzylic posi- nucleophiles, such as azide ion, carbanions, etc. can be introduced tion can be accompanied by methylation of the aromatic ring, onto the alkenic bond in a similar fashion.9 In the LTA oxida- followed sometimes by acetoxylation of the newly introduced tion of cyclic alkenes, depending on ring size, structure, solvent, methyl group.18 and reaction conditions, several types of products are formed. Thus 1,2-diacetates and 3-acetoxycycloalkenes are obtained OAc LTA from cyclohexene (cyclopentanecarbaldehyde is also formed),10 AcOH cycloheptene, and cyclooctene.11 Norbornene reacts with LTA to (7) 62% give rearrangement products in which 2,7-diacetoxynorbornane MeO MeO Avoid Skin Contact with All Reagents 2 LEAD(IV) ACETATE LTA Oxidative Cyclization of Alcohols to Cyclic Ethers. The LTA benzene oxidation of saturated alcohols, containing at least four carbon EtO OH reflux atoms in an alkyl chain or an appropriate carbon skeleton, to five-membered cyclic ethers represents a convenient synthetic OEt + (11) method for intramolecular introduction of an ether oxygen func- O O OEt tion at the nonactivated ´-carbon atom of a methyl, methylene, or 46% 2% methine group (eq 8).3,19,20 The reactions are carried out in non- polar solvents, such as benzene, cyclohexane, heptane, and carbon Secondary aliphatic alcohols containing a ´-methylene group tetrachloride, either at reflux temperature1a,d,3,20,21 or by UV afford a cis/trans mixture of 2,5-dialkyltetrahydrofurans in about irradiation at rt.22 33 70% yield (eq 12).20,22 The LTA oxidation of secondary alcohols is much slower than that of primary alcohols and iso- ´ R1 LTA meric six-membered cyclic ethers are not formed.20,21 Tertiary R R R1 (8) O aliphatic alcohols, because of unfavorable steric and electronic benzene, reflux OH factors, are less suitable for the preparation of tetrahydrofurans by LTA oxidation.22,27 The conversion of alcohols to cyclic ethers is a complex reaction LTA involving several steps: (i) reversible alkoxylation of LTA by the benzene (12) substrate; (ii) homolytic cleavage of the RO Pb bond in the result- + O O reflux OH ing alkoxy lead(IV) acetate with formation of an alkoxy radical; 40 45:55 60 (iii) intramolecular 1,5-hydrogen abstraction in this oxy radical whereby a ´-alkyl radical is generated; (iv) oxidative ring closure In the cycloalkanol series, the ease of intramolecular for- to a cyclic ether via the corresponding ´-alkyl cation (eq 9).3,20 mation of cyclic ether products strongly depends on ring size. The crucial step is the formation of the ´-alkyl radical by way of Cyclohexanol, upon treatment with LTA, affords only 1% of 1,4- 1,5-hydrogen migration. This type of rearrangement is a general cyclic ether, whereas cycloalkanols with a larger ring, such as reaction of alkoxy radicals, and, independently of the radical pre- cycloheptanol and cyclooctanol, can adopt appropriate conforma- cursor, involves a transition state in which the ´-CH group must tions necessary for transannular reaction, affording bicyclic ethers be conformationally suitably oriented with respect to the attack- in moderate yields (eq 13).28 Large-ring cycloalkanols, such as ing oxygen radical.1,3,23,24 Regioselective hydrogen abstraction cyclododecanol, cyclopentadecanol, and cyclohexadecanol, also proceeds preferentially from the ´-carbon atom, since in that case give the corresponding 1,4-epoxy compounds as major cyclization an energetically favorable quasi-six-membered transition state is products.3a,28 However, the special geometry of cyclodecanol is involved.3,23,24 not favorable for the normal reaction and the 1,4-cyclic ether is formed in only 2.5% yield, whereas 1,2-epoxycyclodecane (13%) Pb(OAc)3 ´ LTA and the rearranged 8-ethyl-7-oxabicyclo[4.3.0]nonane (13%) are O OH the predominant cyclization products.29 Ä… (ii) (i) LTA OH benzene " OH O" O O (9) + (13) O (iii) (iv) reflux 35% 1% The LTA oxidation of primary aliphatic alcohols affords 2- The LTA oxidation of alcohols to cyclic ethers has been success- alkyltetrahydrofurans in 45 75% yield. A small amount of fully applied as a synthetic method for activation of the angular tetrahydropyran-type ether is also formed (eq 10).3a,20 The 18- and 19-methyl groups in steroidal alcohols containing a ²- oxidation rate depends on the structural environment of the pro- oriented hydroxy group at C-2, C-4, C-6, and C-11 (eq 14).3c,30,31 activated carbon atom, with the rate decreasing in the order: Hydroxy terpenoids with suitable stereochemistry can also methine > methylene > methyl ´-carbon atom.3 When the ´- undergo transannular cyclic ether formation (eq 15).32 carbon atom is adjacent to an ether oxygen function, the reaction rate and the yield of cyclic ethers increases.25 An ether oxygen LTA cyclohexane attached to the ´-carbon atom increases considerably the yield of OH reflux six-membered cyclic ethers (eq 11). An aromatic ring adjacent RO 40 90% to a ´-methylene group does not noticeably affect the yield of X tetrahydrofuran ethers, but when the phenyl group is attached to an µ-methylene group, the yield of six-membered cyclic ethers are X = H, Cl, Br, OH O enhanced.26 (14) RO X LTA benzene LTA, benzene R + (10) ROH reflux O reflux O R (15) 51% 45 75% 3 5% OH O A list of General Abbreviations appears on the front Endpapers LEAD(IV) ACETATE 3 Another possible reaction of alkoxy radical intermediates, formed (eq 20).38,39 The oxidation rates often provide a reliable formed in the LTA oxidation of alcohols in nonpolar solvents, is means for the determination of the stereochemical relationship of the ²-fragmentation reaction.3 This process, which competes with the hydroxy groups.39,40 intramolecular 1,5-hydrogen abstraction, consists of cleavage of CO2Bu CO2Bu a bond between the carbinol (Ä…) and ²-carbon atoms, thus afford- H OH LTA CO2Bu H O ing a carbonyl-containing fragment and products derived from Pb(OAc)2 (19) 2 benzene CHO an alkyl radical fragment (usually acetates and/or alkenes).1a,3,22 H OH H O CO2Bu CO2Bu 77 87% Interesting synthetic applications of the LTA ²-fragmentation reaction are the formation of 19-norsteroids from their 19-hydroxy OH O OH precursors and the preparation of 5,10-secosteroids (containing a LTA LTA HO ten-membered ring) from 5-hydroxy steroids (eq 16).32 k = 100 k = 1 OH (20) O H LTA, benzene reflux 1,2-Glycol cleavage by LTA has been widely applied for the (16) oxidation of carbohydrates and sugars (eq 21).4,37 Because 39% AcO AcO OH O of structural and stereochemical differences, the reactivity of individual glycol units in sugar molecules is often different, thus In the LTA oxidations of primary and secondary alcohols in non- rendering the LTA reaction a valuable tool for structural deter- polar solvents, the corresponding aldehydes or ketones are usually mination and for degradation studies in carbohydrate chemistry.41 obtained as minor byproducts (up to 10%).3,20,21 However, in the CH2OH presence of excess pyridine or in pyridine alone, either with heat- O O OHC CHO LTA H O ing or at rt, the cyclization and ²-fragmentation processes are sup- AcOH OH (21) pressed and good preparative yields of aldehydes or ketones are OH 89% O OH OH obtained (eq 17).20,21,33 Carbonyl compounds are also obtained OH when the LTA oxidation of alcohols is carried out in benzene so- lution in the presence of manganese(II) acetate.33 Ä…-Acetoxylation of Ketones. The reaction of enolizable OH LTA pyridine ketones with LTA is a standard method for Ä…-acetoxylation (eq 22).1,3,42 The reactions are usually carried out in hot acetic acid or in benzene solution at reflux. The reaction proceeds via an + (17) O enol lead(IV) acetate intermediate, which undergoes rearrange- O ment to give the Ä…-acetoxylated ketone. Acetoxylation of ketones 58% 2% is catalyzed by Boron Trifluoride.43 Enol ethers, enol esters, enamines,1 ²-dicarbonyl compounds, ²-keto esters, and malonic In addition to cyclic ethers, ²-fragmentation products, and car- esters are also acetoxylated by LTA.42 bonyl compounds, acetates of starting alcohols are also usually formed in the LTA oxidation, in yields up to 20%.20 Ph Unsaturated alcohols, possessing an alkenic double bond at O O LTA the ´ or more remote positions, react with LTA in nonpolar sol- OAc O O (22) Ph vents to give acetoxylated cyclic ethers in good yield (eq 18),34,35 Ph benzene Pb O AcO 75% while 5-, 6- and 7-alkenols undergo in great predominance an AcO exo-type cyclization, affording six-, seven- and eight-membered acetoxymethyl cyclic ethers, respectively.35 Decarboxylation of Acids. Oxidative decarboxylation of OAc LTA, benzene carboxylic acids by LTA depends on the reaction conditions, core- OH OAc + agents, and structure of acids, and hence a variety of products O reflux (18) O such as acetate esters, alkanes, alkenes, and alkyl halides can be 26% 14% obtained.1,5 The reactions are performed in nonpolar solvents (benzene, carbon tetrachloride) or polar solvents (acetic acid, pyridine, HMPA).5 Mixed lead(IV) carboxylates are involved 1,2-Glycol Cleavage. LTA is one of the most frequently used as intermediates, and by their thermal or photolytic decom- reagents for the cleavage of 1,2-glycols and the preparation of position decarboxylation occurs and alkyl radicals are formed the resulting carbonyl compounds (eq 19).1,4 The reactions are (eq 23).5,44,45 performed either in aprotic solvents (benzene, nitrobenzene, 1,2- dichloroethane) or in protic solvents such as acetic acid.36,37 The " rate of LTA glycol cleavage is highly dependent on the structure n R CO2H + Pb(OAc)4 (RCO2)nPb(OAc)4 n (or h½) and stereochemistry of the substrate. In general, there is correla- tion between the oxidation rate and the spatial proximity of the n R" + CO2 + Pb(OAc)2 (23) hydroxy groups.36 1,2-Diols having a geometry favoring the for- mation of cyclic intermediates are much more reactive than 1,2- Oxidation of alkyl radicals by lead(IV) species give carboca- diols whose structure does not permit such intermediates to be tions and, depending on the reaction conditions and structure of Avoid Skin Contact with All Reagents 4 LEAD(IV) ACETATE the substrate acids, various products derived from the intermedi- Oxidative Transformations of Nitrogen-containing Com- ate alkyl radicals and corresponding carbocations (dimerization, pounds. The LTA oxidation of aliphatic primary amines con- hydrogen transfer, elimination, substitution, rearrangement, etc.) taining an Ä…-methylene group results in dehydrogenation to alkyl are obtained.5 Decarboxylation of primary and secondary acids cyanides (eq 31).51 However, aromatic primary amines give usually affords acetate esters as major products (eq 24).44 When symmetrical azo compounds in varying yield (eq 32).52 a mixture of acetates and alkenes is formed, it is recommended LTA, benzene (in order to improve the yields of acetate esters) to run the reaction reflux in the presence of potassium acetate (eq 25).5 The LTA decarboxy- C6H13CH2NH2 C6H13CN (31) 62% lation of tertiary carboxylic acids gives a mixture of alkenes and acetate esters.46 For the preparative oxidative decarboxylation of LTA, benzene Ar acids to alkenes, see Lead(IV) Acetate Copper(II) Acetate. reflux Ar NH2 (32) N N 30 50% Ar CO2H OAc LTA, benzene reflux (24) Primary amides react with LTA in the presence of alcohols to 75% give the corresponding carbamates (eq 33), but in the absence of alcohol, isocyanates are formed.53 benzene OAc + CONH2 LTA, t-BuOH NHCO2-t-Bu reflux, 16 h Et3N, 50 60 °C 13% 47% (33) LTA (25) CO2H 62% AcOH, KOAc 77% 60 °C, 0.3 h Aliphatic ketoximes, upon treatment with LTA in an inert solvent, undergo acetoxylation at the Ä…-carbon producing 1- A useful modification of the LTA reaction with carboxylic acids nitroso-1-acetoxyalkanes (eq 34),54 whereas hydrazones afford is the oxidation in the presence of halide ions, whereby the corre- azoacetates (eq 35) or, when the reactions are performed in sponding alkyl halides are obtained (eqs 26 and 27).47 Halodecar- alcohol solvent, azo ethers.55 Arylhydrazines, N,N -disubstituted boxylations of acids are performed by addition of a molar equiv- hydrazines,56 and N-amino compounds57 are oxidized by LTA to alent of the metal halide (lithium, sodium, potassium chloride) different products. to a carboxylic acid and LTA, the reactions being performed in boiling benzene solution.5,47 For the iododecarboxylation of LTA NO NOH acids, see Lead(IV) Acetate Iodine. CH2Cl2 OAc (34) 78% LTA, LiCl benzene, reflux i-Pr i-Pr (26) t-Bu CO2H t-Bu Cl 92% H NAr N Ar LTA N LTA, LiCl N (35) benzene, reflux OAc CH2Cl2 CO2H Cl (27) 100% Bis-decarboxylation of 1,2-dicarboxylic acids by LTA is a use- Other Applications. By LTA oxidation of phenols, acetoxycyclohexadienones, quinones, and dimerization products ful method for the introduction of alkenic bonds (eq 28).48 The can be formed.58 Alkyl sulfides,59 alkyl hydroperoxides,60 and reactions are performed in boiling benzene in the presence of organometallic compounds61 are also oxidized by LTA. pyridine or in DMSO. In some cases, LTA bis-decarboxylation can be effected by using acid anhydrides (eq 29).49 Bis- decarboxylation of 1,1-dicarboxylic acids yields the correspond- ing ketones (eq 30).50 First Update LTA, benzene CO2Et CO2Et py, 80 °C CO2H (28) Brian M. Mathes CO2H 65% Eli Lilly and Company, Indianapolis, IN, USA O Formation of Alkyl Halides. Lead tetraacetate (LTA) has been LTA, py O (29) utilized to add halogens to a variety of unsaturated materials. 20% Conversion of enol ethers to Ä…-haloketones has been realized.62 O A wide variety of alkyl and silyl enol ethers was efficiently trans- formed to the corresponding Ä…-haloketones using LTA and a metal LTA, benzene halide salt such as CaCl2 in protic solvents (eq 36). This technique reflux CO2H is a very good complement to established halogenation reactions O (30) CO2H 60% using bromine or N-halosuccinimides. A list of General Abbreviations appears on the front Endpapers LEAD(IV) ACETATE 5 OH O OO pyridine, CHCl3 Cl LTA, CaCl2, MeOH, rt (42) (36) (AcO)3Pb Ph 99% Ph LTA has been further used to affect the transformation of alkenes to carboxylates ²-haloethers and (eqs 37 and 38).63 Oxidation. Trimethylsilyl ketene acetals can be oxidized to LTA in acetic acid with metal halide salts at room temperature Ä…-acetoxy carbonyl compounds in moderate yield using LTA affords ²-halocarboxylates in good yields (eq 37). NaI, ZnBr2, and (eq 43).71 Mechanistic data supports the theory that LTA attacks ZnCl2 are the preferred halide sources. In some cases, these halide the enol ether forming a reactive carbocation which traps the addition reactions are regioselective, but are most often mixtures carboxylate to form product. Solvent choice has a profound of Markovnikov and anti-Markovnikov addition products. The effect on the reaction, as dichloromethane is the preferred corresponding ²-haloether synthesis gave regioselective addition solvent for the formation of Ä…-carboxyloxy esters, while benzene in the Markovnikov sense. is better in the formation of Ä…-carboxyloxy lactones. O O LTA, NaI, AcOH (37) O OSiMe3 LTA, benzene O O O I (43) 66% O O LTA, NaI, MeOH (38) LTA is reported to oxidize furans to the corresponding I furanones.72 After initial formation of a furanyl stannane, the stan- nane is then tranmetallated with Pb. A bis-oxygenated interme- Halogenated aryl compounds have been directly accessed using diate is then formed and further treatment with acid affords the LTA. Aryl chlorides have been obtained using LTA in combina- desired product (eq 44). tion with SnCl4 (eq 39).64 The reaction proceeds in high yield and in most cases gives the expected regioisomers based on known Oxidative Cyclization of Alcohols to Lactones. Alcohols can substituent effects. A major benefit of this method is that alkyl be cyclized to ethers as described above,3,19,20 however new side-chains on the ring are unaltered, with only aryl chlorination methodology has been found to insert carbon monoxide into this observed. Similarly, using Br2or I2 in AcOH provides the corre- reaction pathway to form lactones (eq 45).73 As noted, this re- sponding aryl bromide and aryl iodide in good yield.65 action proceeds through a radical mechanism, with trapping of CO. The major side-product for this reaction is the corresponding LTA, SnCl4, CH2Cl2 (39) cyclic ether, as expected. Suppression of this side-product can be Cl achieved by varying temperature and concentration of substrate. 1. n-BuLi, SnBu3Cl O Cl 2. LTA (2 equiv), CH2Cl2 96% LTA, SnCl4, CH2Cl2 (40) + Cl O O 55:45 O O H2SO4, AcOH (44) O 95% O Alkylations. LTA can be used for the transmetallation of various mercury and tin reagents in route to alkylations of varied substrates. Transmetallation of vinyl, as well as aryl, tin, CO (105 atm), LTA and mercury reagents leads to a reactive Pb intermediate used in OH 63% the alkylation of soft carbon nucleophiles such as ²-dicarbonyl compounds (eq 41).66,67,70 Mechanistic data suggest that these relatively unstable lead compounds break down into reactive O cations.68 This methodology has been further extended to the alkylation of phenols using both vinyl and alkynyl lead species O (45) (eq 42).69 O O OEt O pyridine, CHCl3 Oxidative Heteroatom Rearrangements. LTA oxidations of (41) O (AcO)3Pb Ph primary amines with unsaturated ortho substituents have been OEt used to access benzoxazoles (eq 46),74 benzimidazoles,75 and Ph indazoles (eq 47).76 In the benzoxazole case, the LTA Avoid Skin Contact with All Reagents 6 LEAD(IV) ACETATE cyclization tolerates a more diverse set of substituents on the aryl 1. (a) Mihailović, M. Lj.; eković, %7Å„.; Lorenc, Lj. In Organic Synthesis by Oxidation with Metal Compounds; Mijs, W. J.; de Jonge, C. R. H. I., ring than a comparable cyclization using azide. Eds.; Plenum: New York, 1986; p 741. (b) Rubottom, G. M. In Oxidation in Organic Chemistry; Trahanovsky, W. S., Ed.; Academic: New York, O O H O 1982; Part D, p 1. (c) Butler, R. N. In Synthetic Reagents; Pizey, J. S., H N LTA, CHCl3 Ph N Ed.; Ellis Horwood: Chichester, 1977; Vol. 3, p 277. (d) Rotermund, G. Ph W., Methoden Org. Chem. (Honben-Weyl) 1975, 4/1b, 204. (e) Criegee, 75% (46) O NH2 R. In Oxidation in Organic Chemistry, Wiberg, K., Ed.; Academic: New N York, 1965; Part A, p 277. O O 2. Moriarty, R. M. In Selective Organic Transformations; Thyagarajan, B. S., Ed.; Wiley: New York, 1972; Vol. 2, p 183. O 3. (a) Mihailović, M. Lj.; eković, %7Å„., Synthesis 1970, 209. (b) Mihailović, 1. acyl hydrazide M. Lj.; Partch, R. E. In Selective Organic Transformations, Thyagarajan, B. S., Ed.; Wiley: New York, 1972; Vol. 2, p 97. (c) Heusler, K.; Kalvoda, 2. LTA, THF, rt NH2 J., Angew. Chem., Int. Ed. Engl. 1964, 3, 525. 4. (a) Bunton, C. A. In Oxidation in Organic Chemistry; Wiberg, K., Ed.; Academic: New York, 1965; Part A, p 398. (b) Prelin, A. S., Adv. O Carbohydr. Chem. 1959, 14, 9. 5. Sheldon, R. A.; Kochi, J. K., Org. React. 1972, 19, 279. (47) N NH 6. (a) Aylward, J. B., Q. Rev., Chem. Soc. 1971, 25, 407. (b) Butler, N R. N.; Scott, F. L.; O Mahony, Chem. Rev. 1973, 73, 93. (c) Warkentin, J., Synthesis 1970, 279. Ring expansions of cyclic enamides via oxidation with LTA 7. Lethbridge, A.; Norman, R. O. C.; Thomas, C. B.; Parr, W. J. E., J. Chem. has also been realized (eq 48).77 Mechanistic studies have shown Soc., Perkin Trans. 1 1974, 1929, 1975, 231. that the exocyclic carbon is incorporated into the ring system. 8. Criegee, R.; Dimroth, P.; Noll, K.; Simon, R.; Weis, C., Chem. Ber. 1957, Lead adds across the double bond, followed by formation of a 90, 1070. cyclopropane intermediate originating from the adjoining benzene 9. Zbiral, E., Synthesis 1972, 285, and references cited therein. ring, thus requiring an aromatic neighbor to successfully complete 10. (a) Criegee, R., Angew. Chem. 1958, 70, 173. (b) Anderson, C. B.; this transformation. Winstein, S., J. Org. Chem. 1963, 28, 605. H3CO 11. Cope, A. C.; Gordon, M.; Moon, S.; Park, C. H., J. Am. Chem. Soc. 1965, 1. diethyl pyrocarbonate 87, 3119. N 2. LTA, AcOH 12. Kagan, J., Helv. Chim. Acta 1972, 55, 2356. H3CO 76% 13. (a) Criegee, R.; Beucker, H., Justus Liebigs Ann. Chem. 1939, 541, 218. (b) Posternak, Th.; Friedli, H., Helv. Chim. Acta 1953, 36, 251. 14. Brutcher, F. V., Jr.; Vara, F. J., J. Am. Chem. Soc. 1956, 78, 5695. H3CO 15. (a) Cavill, G. W. K.; Solomon, D. H., J. Chem. Soc. 1955, 1404. N R (48) (b) Preuss, F. R.; Janshen, J., Arch. Pharm. (Weinheim, Ger.) 1958, 291, H3CO 350, 377. O 16. (a) Rindone, B.; Scolastico, C., J. Chem. Soc. (C) 1971, 3983. (b) Fieser, L. F.; Putnam, S. T., J. Am. Chem. Soc. 1947, 69, 1038, 1041. 17. (a) Elming, N.; Clauson-Kaas, N., Acta Chem. Scand. 1952, 6, 535. Aziridination. Methodology leading to the diastereo- (b) Elming, N., Acta Chem. Scand. 1952, 6, 578. selective aziridination of alkenes has been published.78-80 18. (a) Heiba, E. I.; Dessau, R. M.; Koehl, W. J., Jr., J. Am. Chem. Soc. 1968, N-Aminoquinazolone and N-aminophthalimide are transformed 90, 1082. (b) Cavill, G. W. K.; Solomon, D. H., J. Chem. Soc. 1954, 3943. into the active N-acetoxy intermediate by LTA (eq 49). Studies comparing this aziridination reaction with epoxidations utilizing 19. (a) Mićović, V. M.; Mamuzić, R. I.; Jeremić, D.; Mihailović, M. Lj., Tetrahedron Lett. 1963, 2091; Tetrahedron 1964, 20, 2279. (b) Cainelli, m-chloroperbenzoic acid show very similar profiles in terms of G.; Mihailović, M. Lj.; Arigoni, D.; Jeger, O., Helv. Chim. Acta 1959, regioselectivity and increased stereochemical selectivity (eq 50). 42, 1124. 20. (a) Mihailović, M. Lj.; eković, %7Å„.; Maksimović, Z.; Jeremić, D.; Lorenc, Lj.; Mamuzić, R. I., Tetrahedron 1965, 21, 2799. (b) eković, %7Å„.; Boanjak, J.; Mihailović, M. Lj. reviewed in Fieser & Fieser 1986, 12, LTA N N 270. (49) -Q-NOAc 21. (a) Mihailović, M. Lj.; Boanjak, J.; Maksimović, Z.; eković, %7Å„.; Lorenc, N O N O Lj., Tetrahedron 1966, 21, 955. (b) Partch, R. E., J. Org. Chem. 1965, NH2 HN 30, 2498. OAc 22. (a) Mihailović, M. Lj.; Jakovljević, M.; eković, %7Å„., Tetrahedron 1969, 25, 2269. (b) Mihailović, M. Lj.; Mamuzić, R. I.; %7Å„igić-Mamuzić, Lj.; Boanjak, J.; eković, %7Å„., Tetrahedron 1967, 23, 215. HN HN OH OH OH 23. Hesse, R. H., In Advances in Free Radical Chemistry, Williams, G. H. + Q-NOAc Ed. Logos: London, 1969; Vol. 3, p 83. (50) 24. Akhtar, M., In Advances in Photochemistry; Noyes, W. A.; Hammond, 95:5 G. S.; Pitts, J. N., Eds. Interscience: New York, 1964; Vol. 2, p 263. A list of General Abbreviations appears on the front Endpapers LEAD(IV) ACETATE 7 25. (a) Mihailović, M. Lj.; Miloradović, M., Tetrahedron 1966, 22, 723. 44. (a) Kochi, J. K.; Bacha, J. D.; Bethea, T. W., J. Am. Chem. Soc. 1967, (b) Mihailović, M. Lj.; Milovanović, A.; Konstantinović, S.; Janković, 89, 6538. (b) Kochi, J. K., J. Am. Chem. Soc. 1965, 87, 1811. (c) Kochi, J.; eković, %7Å„.; Partch, R. E., Tetrahedron 1969, 25, 3205. J. K., J. Am. Chem. Soc. 1965, 87, 3609. (d) Davies, D. I.; Waring, C., J. Chem. Soc. (C) 1968, 1865, 2332. 26. (a) Mihailović, M. Lj.; %7Å„ivković, L.; Maksimović, Z.; Jeremić, D.; eković, %7Å„.; Matić, R., Tetrahedron 1967, 23, 3095. (b) Mihailović, M. 45. Kochi, J. K.; Bacha, J. D., J. Org. Chem. 1968, 33, 2746. Lj.; Matić, R.; Orbović, S.; eković, %7Å„., Bull. Soc. Chim. Beograd 1971, 46. (a) Bennett, C. R.; Cambie, R. C., Tetrahedron 1967, 23, 927. (b) Bennett, 36, 363 (Chem. Abstr. 78, 42 502). C. R.; Cambie, R. C.; Denny, W. A., Aust. J. Chem. 1969, 22, 1069. Ø Ø Ø 27. Mihailović, M. Lj.; Jakovljević, M.; Trifunović, V.; Vukov, R.; eković, (c) Mihailović, M. Lj.; Bosnjak, J.; Ceković, Z., Helv. Chim. Acta 1974, %7Å„., Tetrahedron 1968, 24, 6959. 57, 1015. (d) Huffman, J. W.; Arapakos, P. G., J. Org. Chem. 1965, 30, 1604. 28. (a) Mihailović, M. Lj.; eković, %7Å„.; Andrejević, V.; Matić, R.; Jeremić, D., Tetrahedron 1968, 24, 4947. (b) Cope, A. C.; McKervey, M. A.; 47. (a) Kochi, J. K., J. Am. Chem. Soc. 1965, 87, 2500. (b) Kochi, J. K., Weinshenker, N. M.; Kinnel, R. B., J. Org. Chem. 1970, 35, 2918. J. Org. Chem. 1965, 30, 3265. (c) Jenkins, C. L.; Kochi, J. K., J. Org. Chem. 1971, 36, 3095. 29. Mihailović, M. Lj.; Andrejević, V.; Jakovljević, M.; Jeremić, D.; Stojiljković, A.; Partch, R. E., J. Chem. Soc., Chem. Commun. 1970, 48. (a) Grob, C. A.; Ohta, M.; Weiss, A., Angew. Chem. 1958, 70, 343. 854. (b) Grob, C. A.; Ohta, M.; Renk, E.; Weiss, A., Helv. Chim. Acta 1958, 41, 1191. (c) Grob, C. A.; Weiss, A., Helv. Chim. Acta 1960, 43, 000. 30. Heusler, K.; Kalvoda, J., In Steroid Synthesis; Fried, J.; Edwards, J. A., Eds. Reinhold; New York, 1972; Vol. II, p 237. 49. (a) van Tamelen, E. E.; Pappas, S. P., J. Am. Chem. Soc. 1963, 85, 3297. (b) Cimarusti, C. M.; Wolinsky, J., J. Am. Chem. Soc. 1968, 90, 113. 31. (a) Heusler, K.; Kalvoda, J.; Anner, G.; Wettstein, A., Helv. Chim. Acta 1963, 46, 352. (b) Heusler, K.; Kalvoda, J.; Wieland, P.; Anner, G.; 50. (a) Tufariello, J. J.; Kissel, W. J., Tetrahedron Lett. 1960, 6145. Wettstein, A., Helv. Chim. Acta 1962, 45, 2575. (c) Shoppee, C. W.; (b) Meinwald, J.; Tufariello, J. J.; Hurst, J. J., J. Org. Chem. 1964, 29, Coll, J. C.; Lack, R. E., J. Chem. Soc. (C) 1970, 1893. (d) Bowers, A.; 2914. Denot, E.; IbáÅ„ez, L. C.; Cabezas, M. E.; Ringold, H. J., J. Org. Chem. 51. (a) Mihailović, M. Lj.; Stojiljković, A.; Andrejević, V., Tetrahedron 1962, 27, 1862. (e) Bowers, A.; Villotti, R.; Edwards, J. A.; Denot, E.; Lett. 1965, 461. (b) Stojiljković, A.; Andrejević, V.; Mihailović, M. Lj., Halpern, O., J. Am. Chem. Soc. 1962, 84, 3204. Tetrahedron 1967, 23, 721. 32. (a) Amorosa, M.; Caglioti, L.; Cainelli, G.; Immer, H.; Keller, J.; Wehrli, 52. (a) Pausacker, K. H.; Scroggie, J. G., J. Chem. Soc. 1954, 4003. H.; Mihailović, M. Lj.; Schaffner, K.; Arigoni, D.; Jeger, O., Helv. Chim. (b) Dimroth, K.; Kalk, F.; Neubauer, G., Chem. Ber. 1957, 90, 2058. Acta 1962, 45, 2674. (b) Mihailović, M. Lj.; Stefanović, M.; Lorenc, Lj.; (c) Richter, H. J.; Dressler, R. L., J. Org. Chem. 1962, 27, 4066. Gaaić, M., Tetrahedron Lett. 1964, 1867. (c) Mihailović, M. Lj.; Lorenc, 53. (a) Acott, B.; Beckwith, A. L. J.; Hassanali, A., Aust. J. Chem. 1968, Lj.; Gaaić, M.; Rogić, M.; Melera, A.; Stefanović, M., Tetrahedron 1966, 21, 197. (b) Acott, B.; Beckwith, A. L. J.; Hassanali, A., Aust. J. Chem. 22, 2345. 1968, 21, 185. (c) Baumgarten, H. E.; Smith, H. L.; Staklis, A., J. Org. 33. (a) Mićović, V. M.; Mihailović, M. Lj., Recl. Trav. Chim. Pays-Bas 1952, Chem. 1975, 40, 3554. (d) Baumgarten, H. E.; Staklis, A., J. Am. Chem. 71, 970. (b) Partch, R. E., Tetrahedron Lett. 1964, 3071. (c) Mihailović, Soc. 1965, 87, 1141. M. Lj.; Konstantinović, S.; Vukićević, R., Tetrahedron Lett. 1986, 27, 54. (a) Kropf, H.; Lambeck, R., Justus Liebigs Ann. Chem. 1966, 700, 1, 18. 2287. (b) Kaufmann, S.; Tökés, L.; Murphy, J. W.; Crabbé, P., J. Org. Chem. 34. (a) Moon, S.; Lodge, J. M., J. Org. Chem. 1964, 29, 3453. (b) Moriarty, 1969, 34, 1618. (c) Shafiullah, D.; Ali, H., Synthesis 1979, 124. R. M.; Kapadia, K., Tetrahedron Lett. 1964, 1165. (c) Moon, S.; Haynes, 55. (a) Iffland, D. C.; Salisbury, L.; Schafer, W. R., J. Am. Chem. Soc. 1961, L., J. Org. Chem. 1966, 31, 3067. (d) Bowers, A.; Denot, B., J. Am. Chem. 83, 747. (b) Harrison, M. J.; Norman, R. O. C.; Gladstone, W. A. F., J. Soc. 1960, 82, 4956. Chem. Soc. (C) 1976, 735. Ø Ø 35. Mihailović, M. Lj.; Ceković, Z.; Stanković, J.; Pavlović, N.; 56. (a) Aylward, J. B., J. Chem. Soc. (C) 1969, 1663. (b) Hoffman, R. W., Konstantinović, S.; Djokić-Mazinjanin, S., Helv. Chim. Acta 1973, 56, Chem. Ber. 1964, 97, 2763, 2772. (c) Clement, R. A., J. Org. Chem. 3056. 1960, 25, 1724. (d) Schaap, A. P.; Faler, G. R., J. Org. Chem. 1973, 38, 36. (a) Criegee, R.; Höger, E.; Huber, G.; Kruck, P.; Marktscheffel, F.; 3061. Schellenberger, H., Justus Liebigs Ann. Chem. 1956, 599, 81. (b) Criegee, 57. Person, H.; Fayat, C.; Tonnard, F.; Foucand, A., Bull. Soc. Chem. Fr. R.; Büchner, E.; Walther, W., Chem. Ber. 1940, 73, 571. 1974, 635. 37. (a) Wolf, F. J.; Weijlard, J., Org. Synth., Coll. Vol. 1963, 4, 124. 58. (a) Wessely, F.; Sinwel, F., Monatsh. chem. 1950, 81, 1055. (b) Wessely, (b) Bishop, C. T., Methods Carbohydr. Chem. 1972, 6, 350. (c) O Colla, F.; Zbiral, E.; Sturm, H., Chem. Ber. 1960, 93, 2840. (c) Harrison, P. S., Methods Carbohydr. Chem. 1965, 5, 382. M. J.; Norman, R. O. C., J. Chem. Soc. (C) 1970, 728. (d) Mihailović, 38. (a) Criegee, R.; Kraft, C.; Rank, B., Justus Liebigs Ann. Chem./Liebigs Ø Ø M. Lj.; Ceković, Z., In The Chemistry of the Hydroxyl Group; Patai, S., Ann. Chem. 1933, 507, 159. (b) Bunton, C. A.; Carr, M. D., J. Chem. Ed.; Wiley: New York, 1971; Part 1, p 505. Soc. 1963, 770. 59. Field, L.; Lawson, J. E., J. Am. Chem. Soc. 1958, 80, 838. 39. (a) Criegee, R.; Marchand, B.; Wannowius, H., Justus Liebigs Ann. 60. (a) Kropf, H.; Goschenhofer, D., Tetrahedron Lett. 1968, 239. (b) Kropf, Chem. 1942, 550, 99. (b) Moriconi, E. J.; Wallenberger, F. T.; O Connor, H.; Wallis, von H., Synthesis 1981, 237, 633. W. F., J. Am. Chem. Soc. 1958, 80, 656. 61. (a) Corey, E. J.; Wollenberg, R. H., J. Am. Chem. Soc. 1974, 96, 5581. 40. (a) Angyal, S. J.; Young, R. J., J. Am. Chem. Soc. 1959, 81, 5467. (b) Heck, R. F., J. Am. Chem. Soc. 1968, 90, 5542. (c) Barborak, J. C.; (b) Clark-Lewis, J. W.; Williams, L. R., Aust. J. Chem. 1963, 16, 869. Pettit, R., J. Am. Chem. Soc. 1967, 89, 3080. (c) Bauer, H. F.; Stuetz, D. E., J. Am. Chem. Soc. 1956, 78, 4097. 62. Motohashi, S.; Satomi, M., Synthesis 1982, 1021. 41. (a) Perlin, A. S.; Brice, C., Can. J. Chem. 1956, 34, 541. (b) Gorin, P. A. 63. Motohashi, S.; Satomi, M.; Fujimoto, Y.; Tatsuno, T., Chem. Pharm. J.; Perlin, A. S., Can. J. Chem. 1958, 36, 480. (c) Perlin, A. S., J. Am. Bull. 1983, 31, 1788. Chem. Soc. 1954, 76, 5505. (d) Charlson, A. J.; Perlin, A. S., Can. J. 64. Muathen, H., Tetrahedron 1996, 52, 8863. Chem. 1956, 34, 1200. 65. Skulski, L.; Lulinski, P.; Krassowska-Swiebocka, B., Synthesis 1995, 42. (a) Rawilson, D. J.; Sosnovsky, G., Synthesis 1973, 567. (b) Cavill, G. 926. W. K.; Solomon, D. H., J. Chem. Soc. 1955, 4426. 66. Pinhey, J.; Moloney, M., J. Chem Soc., Perkin Trans, I 1988, 2847. 43. (a) Henbest, H. B.; Jones, D. N.; Later, G. P., J. Chem. Soc. 1961, 4472. (b) Cocker, J. D.; Henbest, H. B.; Phillips, G. H.; Slater, G. P.; Thomas, 67. Pinhey, J.; Moloney, M.; Roche, E., J. Chem Soc., Perkin Trans, I 1989, D. A., J. Chem. Soc. 1965, 6. 333. Avoid Skin Contact with All Reagents 8 LEAD(IV) ACETATE 68. Pinhey, J.; Moloney, M.; Stoermer, M., J. Chem Soc., Perkin Trans, I Am. Chem. Soc. 1998, 120, 8692. 1990, 2645. 74. Moore, H.; Schafer, W.; Aguado, A., Synthesis 1974, 30. 69. Pinhey, J.; Hambley, T.; Holmes, R.; Parkinson, C., J. Chem Soc., Perkin 75. Stevens, F. F.; Bower, J. D., J. Chem. Soc. 1949, 2971. Trans, I 1992, 1917. 76. Kotali, A.; Harris, P., Heterocycles 1984, 37, 1541. 70. Konopelski, J.; Deng, H., Org. Lett 2001, 3, 3001. 77. Knochel, P.; Berk, S.; Yeh, M. C. P., J. Org. Chem. 1988, 53, 5791. 71. Rubottom, G.; Gruber, J.; Marrero, R.; Juve, H.; Kim, C. W., J. Org. 78. Atkinson, R. S.; Kelly, B., J. Chem Soc., Chem. Commun. 1988, 624. Chem. 1983, 48, 4940. 79. Chen, K.; Yang, K. S., J. Org. Chem. 2001, 66, 1676. 72. Yamamoto, M.; Munkata, H.; Kishikawa, K.; Kohmoto, S.; Yamada, K., 80. Kuznetsov, M.; Kuznetsova, L.; Schantl, J.; Wurst, K., Eur. J. Org. Chem. Bull. Chem. Soc. Jpn. 1992, 65, 2366. 2001, 1309. 73. Ryu, I.; Tsunoi, S.; Okuda, T.; Tanaka, M.; Komatsu, M.; Sonoda, N., J. A list of General Abbreviations appears on the front Endpapers