Chemistry HL paper 2 TZ2

background image

2208-6114

10 pages

M08/4/CHEMI/HP2/ENG/TZ2/XX

Thursday 8 May 2008 (afternoon)

CHEMISTRY

HIGHER lEvEl

PaPER 2

INSTRUCTIONS TO CANDIDATES

Write your session number in the boxes above.

Do not open this examination paper until instructed to do so.

Section A: answer all of Section A in the spaces provided.

Section B: answer two questions from Section B. Write your answers on answer sheets. Write

your session number on each answer sheet, and attach them to this examination

paper and your cover sheet using the tag provided.

At the end of the examination, indicate the numbers of the questions answered in the candidate

box on your cover sheet and indicate the number of sheets used in the appropriate box on your

cover sheet.

2 hours 15 minutes

Candidate session number

0

0

© International Baccalaureate Organization 2008

22086114

0110

background image

2208-6114

–2–

M08/4/CHEMI/HP2/ENG/TZ2/XX

Section a

Answer all the questions in the spaces provided.

1.

Hydrogenandnitrogen(II)oxidereacttogetherexothermicallyasfollows.

2H (g) 2NO(g)

2H O(g) N (g)

2

2

2

+

+

Therateofthisreactionwasinvestigatedinaseriesofexperimentscarriedoutatthesame

temperature,theresultsofwhichareshowninthetablebelow.

Experiment

Initial

[H (g)]

2

/

moldm

−3

Initial[NO(g)]/

moldm

−3

Initialrateofreaction/

moldm s

3

1

1

2.0

×

10

3

4.0

×

10

3

4.0

×

10

3

2

4.0

×

10

3

4.0

×

10

3

8.0

×

10

3

3

6.0

×

10

3

4.0

×

10

3

4

2.0

×

10

3

2.0

×

10

3

1.0

×

10

3

5

2.0

×

10

3

1.0

×

10

3

(a) ExplainhowtheresultsfromExperiments1and2canbeusedtodeducethattheorderof

reactionwithrespecttohydrogenis1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Deducetheorderofreactionwithrespecttonitrogen(II)oxide,givingareasonforyour

answer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) Useyouranswersfromparts(a)and(b)todeducetherateexpressionforthereaction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(d) CompletethetableabovebycalculatingtherateofreactionforeachofExperiments

3and5(writeyouranswersinthetable).

[2]

(This question continues on the following page)

0210

background image

2208-6114

–3–

turn over

M08/4/CHEMI/HP2/ENG/TZ2/XX

(Question 1 continued)

(e) UsetheresultsfromExperiment1todeterminethevalueof,andtheunitsfor,therate

constant,k,forthereaction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(f) Suggestamechanismforthereactionthatisconsistentwiththerateexpression.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(g) Thereactionisfasterinthepresenceofaheterogeneouscatalyst.Explainthemeaningof

thetermheterogeneousasappliedtoacatalyst.Drawalabelledenthalpyleveldiagram

thatshowstheeffectofthecatalyst.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

0310

background image

2208-6114

–4–

M08/4/CHEMI/HP2/ENG/TZ2/XX

2.

(a) A 25.0

cm

3

sample of an aqueous solution of barium hydroxide, of concentration

0.146mol

dm

−3

wasexactlyneutralizedby28.7

cm

3

ofaqueousnitricacid,according

tothefollowingequation.

Ba(OH) (aq) 2HNO (aq)

Ba(NO ) (aq) 2H O(l)

2

3

3 2

2

+

+

Calculatetheconcentration(inmol

dm

−3

)ofthenitricacid.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) Asolutioncontaining0.142molaqueousnitricacidwasaddedtoasolutioncontaining

0.107molbariumhydroxide.Calculatetheamount(inmol)ofbariumnitrateformed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(c) A 0.010 mol sample of the barium nitrate formed was heated until it had completely

decomposedaccordingtothefollowingequation.

2Ba(NO ) (s)

2BaO(s) 4NO (g) O (g)

3 2

2

2

+

+

Use the ideal gas equation to calculate the total volume, in

cm

3

, of gaseous products

obtainedat387Kand

1 12 10

5

. ×

Pa.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

0410

background image

2208-6114

–5–

turn over

M08/4/CHEMI/HP2/ENG/TZ2/XX

3.

Values of first ionization energy for the elements are shown in Table 7 of the Data Booklet.

(a) Define the term first ionization energy and write an equation to illustrate it, using

magnesiumasanexample.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) Explain why the first ionization energy of aluminium is lower than that of magnesium.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) Explain why the third ionization energy of magnesium is much higher than its first

ionizationenergy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(d) Use the Aufbau principle to deduce the full electron configuration of cobalt. Identify the

sub-level from which an electron is removed when the first ionization energy of cobalt

ismeasured.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

0510

background image

2208-6114

–6–

M08/4/CHEMI/HP2/ENG/TZ2/XX

4.

(a) Using information from Table 16 of the Data Booklet, write an equation for the

dissociation of chloroethanoic acid, and calculate the pH value of a 0.200 mol

dm

−3

solutionofchloroethanoicacidat298K.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[5]

(b) TheapproximatepHvaluesoffourequimolaraqueoussaltsolutionsareshowninthe

followingtable.

Solution

A

B

C

D

pH

2

6

7

9

Thesolutionsarelistedbelow.Matcheachofthesolutionswiththeletter(A,B,CorD)

bywritingtheletternexttotheappropriatesolution.

potassiumbromide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

potassiumethanoate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iron(II)chloride. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iron(III)chloride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) Giveareasonforeachofyourchoicesinpart(b).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

0610

background image

2208-6114

–7–

turn over

M08/4/CHEMI/HP2/ENG/TZ2/XX

Section b

Answer two questions. Write your answers on the answer sheets provided. Write your session number

on each answer sheet, and attach them to this examination paper and your cover sheet using the tag

provided.

5.

(a) Define the term standard enthalpy of formation,andwriteanequationtoillustrateit,

usingmethanolasyourexample.

[4]

(b) Onereactionusedinthemanufactureofmethanolisshownbelow.

CO (g) 3H (g)

CH OH (g) H O(g)

2

2

3

2

+

+

Define the term average bond enthalpy. Using values from Table 10 of the Data Booklet,

calculatetheenthalpychangeforthisreaction.

[5]

(c) One industrial method of manufacturing ethanoic acid uses methanol as a feedstock in the

followingexothermicreaction.

CH OH (l) CO(g)

CH COOH (l)

3

3

+

The standard enthalpy of formation of CO (g) is –111 kJ

mol

−1

.Usinginformationfrom

Table 11 of the Data Booklet, calculate the enthalpy change for the reaction above.

[2]

(d) Typical conditions used for the reaction in part (c) are 450K and 30atm. Use Le

Chatelier’sprincipletopredictandexplaintheeffectonthepositionofequilibriumof,

separately,increasingeachofthesevalues.

[4]

(e) Statewhatismeantbythesymbol

S

Ö

.Predict,withareason,thesignof

S

Ö

forthe

reactioninpart(c).

[2]

(f) Methanolcanbemadefrom“synthesisgas”,producedbythefollowingreaction.

CH (g) H O(g)

3H (g) CO(g)

4

2

2

+

+

Forthisreaction,

H

Ö

= +210 kJ

and

S

Ö

= +

216

1

J K

.

Usethesevaluestoexplainwhythisreactionisnotspontaneousat298K.Calculatethe

temperatureatwhichitbecomesspontaneous.

[4]

(g) Areactionthatcanbeusedtopreparemethanolisshowninthefollowingequation.

CH Br NaOH

CH OH NaBr

3

3

+

+

Givethenameofthemechanismofthisreactionandshowthemechanism,usingcurly

arrowstorepresentthemovementofelectronpairs.

[4]

0710

background image

2208-6114

–8–

M08/4/CHEMI/HP2/ENG/TZ2/XX

6.

(a) TheVSEPRtheorycanbeusedtopredictthedistributionofelectronpairsandtheshapes

andbondanglesofmanymoleculesandions.Showhowthistheorycanbeusedto

explainwhyammoniahasatetrahedraldistributionofelectronpairs,atrigonalpyramidal

shapeandabondangleof107°.

[3]

(b) ApplytheprinciplesoftheVSEPRtheorytoeachofthefollowingspecies,ineachcase

predictingtheshapeoftheelectronpairdistribution,theshapeoftheactualspeciesand

thebondangle(s).

(i) F

2

O

(ii)

F O
ICl

2

4

[3]

[3]

(c) Thecompoundchloroethene,

CH =CH Cl

2

,canbeusedtoillustrateseveraltermsused

inthetheoryofbonding.Usingthiscompoundastheexample,explainwhatismeantby

eachofthefollowing.

(i) Lewisstructure

[1]

(ii) Sigmaandpibonds

[4]

(iii) Hybridization

[2]

(d) Thecarbon-chlorinebondlengthinchloroetheneis0.169nm.Useinformationfrom

Table 9 of the Data Booklet to explain how delocalization of electrons can occur in this

moleculeandsuggestavalueforitscarbon-carbonbondlength.

[4]

(e) Arrangethefollowingcompoundsinorderofincreasingboilingpoint(startingwiththe

lowestboilingpoint)andexplainyourchoicebyreferencetotheintermolecularforces

involved.

[5]

bromoethene

chloroethene

ethene

0810

background image

2208-6114

–9–

turn over

M08/4/CHEMI/HP2/ENG/TZ2/XX

7.

(a) Aluminiumandoxygencombinetogethertoformacompoundthathasahighmelting

pointandisagoodconductorofelectricitywhenmolten.Writeanequationtorepresent

thereactionandexplain,intermsofitsbondingandstructure,whythecompoundhas

theseproperties.

[4]

(b) Aluminiumandchlorinecombinetogethertoformacompound

Al Cl

2

6

thathasalow

meltingpointandisapoorconductorofelectricitywhenmolten.Explain,intermsofits

bondingandstructure,whyithastheseproperties.

[3]

(c) Describe the two different ways in which current flows during the electrolysis of molten

aluminiumoxide.Writeanequationshowingtheformationofeachoftheproducts.

[4]

(d) Samplesofaluminiumoxideandaluminiumchlorideareadded,withstirring,toseparate

beakers of pure water. Suggest the pH value of the liquid in each beaker after the stirring,

givingareasonforyourchoice.Writeanequationforanyreactionoccurring.

[5]

(e) Ahalf-cellismadeusinganaluminiumrodandanaqueoussolutionofaluminiumsulfate.

State two conditions that must apply if this half-cell is used to measure the standard

electrodepotentialofaluminium.

[2]

(f) The cell described in part (e) is connected to a silver half-cell, both under standard

conditions. Using information from Table 15 of the Data Booklet, deduce the overall

equationforthereactionthatoccurs,andcalculatethecellpotential.

[3]

(g) Whenwaterreactswithzincionsitactsasaligandintheformationofthecomplexion

[Zn (H O) ]

2

4

2+

.Explainwhatismeantbythetermligand.Explainwhysolutionscontaining

thiscomplexionarecolourlessbutthosecontaining

[Fe(H O) ]

2

6

3+

arecoloured.

[4]

0910

background image

2208-6114

–10–

M08/4/CHEMI/HP2/ENG/TZ2/XX

8.

(a) Explainwhythe

1

HNMR

spectrum of butane shows two peaks with areas in the ratio 3:2. [2]

(b) Describethestructuralfeatureresponsibleforopticalisomerism.Outlinehowoptical

isomerscanbedistinguished.

[3]

(c) Alcohols can be oxidized by refluxing with hot acidified potassium dichromate(VI).

Statethecolourchangeoccurringwhenthiscompoundactsasanoxidizingagentandthe

oxidationnumberofthechromiumcompoundformed.

[2]

(d) Therearefourstructuralisomersofthealcoholwiththeformula

C H OH

4

9

.Thesealcohols

canbedistinguishedusingtheinformationreferredtoinparts(a)to(c).Thefollowing

tablegivesfurtherinformationaboutthesefouralcohols.

Alcohol Number of peaks in

1

HNMR

spectrum Opticalisomers

Finalorganicoxidationproductwith

acidified potassium dichromate(VI)

A

5

no

carboxylicacid

B

5

yes

ketone

C

4

no

carboxylicacid

D

2

no

nooxidationoccurs

DeducethestructuralformulaofeachofthealcoholsAtoD.

[4]

(e) ForalcoholB,drawtwostructurestorepresenttheopticalisomers,showingclearlythe

relationshipbetweenthem.Writeanequationfortheoxidationofoneoftheoptical

isomersofB,using[O]torepresenttheoxidizingagentandshowingthestructureofthe

organicproduct.

[3]

(f) AlcoholsAandCcanbeoxidizedtodifferentproductstothosenamedin(d)usingthe

sameoxidizingagentasinpart(c).Statethetypeofcompoundformedintheseoxidations

anddescribetheconditionsusedtoobtainthistypeofcompound.

[2]

(g) Three alkenes are formed by the dehydration of alcohols A to D. Draw the structures of

these alkenes.

[3]

(h) There are three possible compounds with the molecular formula

C H O

3

8

. Two of

these compounds E and F have infrared spectra that show absorption in the regions

of 1000–1300

cm

−1

and 3230–3550

cm

−1

. Use this information, and table 18 in the

Data Booklet, to deduce the structures of E and F. Explain how you could distinguish

betweenEandF.

[6]

1010


Wyszukiwarka

Podobne podstrony:
Chemistry HL paper 2 TZ2
Chemistry HL paper 1 TZ2
Chemistry HL paper 3 TZ2
Chemistry HL paper 2 TZ2mk
M Physics HL paper 2 TZ2 M07 E
Chemistry HL paper 3 TZ2mk
E Physics HL paper 1 TZ2 M07 E
M Physics HL paper 1 TZ2 M07 E
E Physics HL paper 2 TZ2 M07 E
Chemistry HL paper 2 TZ1
May 2002 History HL Paper 3 EU
Nov 2003 History Europe HL paper 3
Mathematics HL paper 3 discrete mathematics
Mathematics HL paper 3 series and differential equations 001
Mathematics HL paper 3 discrete mathematics 001
Mathematics HL paper 3 statistics and probability 001
Nov 2001 History HL Paper 3
Mathematics HL paper 3 series and differential equations
Mathematics HL paper 3 sets relations and groups

więcej podobnych podstron