Foucault And Lescourret Information Sharing, Liquidity And Transaction Costs In Floor Based Trading Syst~0

background image

Inform ationSharing,Liquid ity and T ransac tionCosts

inF loor-B ased T rad ingSystem s.

1

T hierry Fouc ault

HE C and CE P R

1,rue d e la Lib ¶eration

78351 J ouy enJ osas,France.

E m ail:f

ouc ault@hec .f

r

Laurence Lesc ourret

CR E ST and Doc torat HE C

15,B oulevard G ab rielP ¶eri

9 2 2 4 5 M alako®,France.

E mail:lescourr@ensae.f

r

Novemb er,2 0 0 1

1

W e thank G iovanni Cespa, A sani Sarkarand seminarparticipants atCR EST , L avalU ni-

versity, the A FFI20 0 0 conference, the EEA 20 0 0 conference, the FM A 20 0 1 M eetings and the
InternationalFinanceConference T unisie 20 0 1 .A llerrors areours.

background image

Ab strac t

In

f

orm ationSharin

g, Liquid ity an

d T ran

sac tionCostsinF l

oor-B ased T rad ing

System s.

W e c onsid er inf

orm ationsharingb etw eentrad ers(\°oor b rokers") w ho possessd i®erent

typesofinf

ormation,namelyinf

orm ationonthe payo® ofa riskysec urityor inf

ormationon

the volume ofliquid itytrad inginthissec urity.W e interpret these trad ersasd ual-c apac ity

b rokersonthe °oor ofanexc hange.W e id entif

y c onditionsunder w hic h the trad ersare

b etter o® sharing inf

ormation. W e also show that inf

orm ationsharing im proves pric e

d iscovery, red uc esvolatility and low ersexpec ted trad ing c osts. Inf

orm ationsharing c an

im prove or im pair the d epth ofthe m arket, d epend ing onthe valuesofthe param eters.

O verallour analysissuggeststhat inf

orm ationsharing am ong °oor b rokersim provesthe

perf

orm ance of°oor-b ased trad ingsystem s.

K eyw ord s: M arket M ic rostruc ture,F loor-B ased T rad ingSystem s,O penO utc ry,Inf

or-

m ationSharing,Inf

orm ationSales.

J E L Classi¯c ationNumb ers: G 10 ,D82 .

background image

1

In

trod uc tion

T he organiz ationoftrad ing onthe NY SE hasb eenrem arkab ly stab le since its¯rst c on-

stitutionin1817.T rad ingisc onduc ted through openoutc ry ofb id sand o®ersofb rokers

ac tingonb ehalfoftheir c lientsor f

or their ow nac c ount.

1

T histrad ingm echanism isnot

unique to the NY SE .E quity m arketslike the Frankf

urt Stoc k E xc hange and the AM E X

or d erivativesm arketslike the CB O T and the CB O E are °oor m arkets.

2

How ever °oor-

b ased trad ing m ec hanism sare endangered spec iesasthey are progressively replac ed b y

f

ully autom ated trad ing system s

3

. G iventhistrend tow ard autom ation, it isnaturalto

ask w hether °oor-b ased trad ing system sc anprovid e greater liquid ity and low er exec u-

tionc oststhanautomated trad ingsystem s.T hisquestionisofparam ount importance f

or

m arket organizersand trad ers. Inf

ac t, it hasb eenhotly d eb ated b etw eenmemb ersof

E xc hangesw ho c onsid ered sw itc hingf

rom °oor to elec tronic trad ing

4

.Inord er to survive

°oor-b ased trad ing m ec hanism smust outperf

orm autom ated trad ing system salong som e

d imensions.

Autom ated trad ing system sd ominate °oor-b ased trad ing systems inm any respec ts.

F irst °oor m arketsare more expensive to operate (see Dom ow itz and Steil(19 99 )).Sec -

ond physic alspac e lim itsthe numb er ofpartic ipantsin°oor marketsb ut not inautomated

trad ingsystem s.F inally trad ersw ithout anac c essto the °oor are at aninf

orm ationald is-

ad vantage c om pared w ith the trad ersonthe °oor.T hisd isad vantage islikelyto exac erb ate

agency prob lem sb etw eeninvestorsand their b rokers(Sarkar and W u (199 9)).

B y d esign, °oor-b ased marketsf

oster person-to-personc ontac ts. Hence the ab ility of

m arket partic ipantsto share inf

ormationisgreater inthese markets.T hisf

eature isof

ten

view ed asb eingone ad vantage,ifnot the unique one,of°oor-b ased trad ingsystem s.

5

For

instance Harris(2 0 0 0 ),p.8,pointsout that

1

O fcourse,many tradingrules have been changed since the creation ofthe N Y SE.B utithas always

beena° oormarket.SeeH asbrouck,So¯anos andSosebee(1 993)foradetaileddescriptionofthetrading
rules on the N Y SE.

2

In Frankfurt,the° ooroperates in parallelwith an electronictradingsystem.

3

T heM arch¶

aT ermeInternationaldeFrance(M A T IF),theT orontoStockExchangeandT heL ondon

InternationalFinancialFutures and O ptions Exchange (L IFFE)shutdown their° oorin 1 997,1 998 and
20 0 0 ,respectively.

4

See the Economist(July 31 st1 999):\A home grown revolutionary"and the Economist(A ugust26th

20 0 0 ):\ O utofthepits".

5

Covaland Shumway (1 998)show thatthe levelofnoise on the ° oorofCB O T '

s 30 yearT reasury

B ond futures a®ects price volatility.T his alsosuggests thatperson toperson contacts on the ° oorhave
an impacton priceformation.

1

background image

`F loor-based trad ingsystem sd om inate elec tronic trad ingsystemsw henbrokers

need to exc hange inf

ormationabout their c lientsto arrange their trad es.'

Inf

orm ationsharing isa f

unctionofthe °oor w hic h isd i± c ult to replic ate inelec tronic

trad ing system s. T hese system susually restric t the set ofm essagesthat c anb e sent b y

users(generally trad ersc anonly post pric esand quantities).Furtherm ore trad inginthese

system sisinm ost c asesanonym ous. T hisf

eature preventstrad ersf

rom d eveloping the

reputationofhonestly sharinginf

orm ationthrough enduringrelationships.

Inf

orm ationsharingonthe °oor c antake plac e b etw eentw o typesofpartic ipants.F irst

°oor-b rokersc anexc hange inf

orm ationontheir trad ing motivationsw ith m arket-makers.

B enveniste,M arc usand W hilelm (199 2 ) m od elthistype ofinf

orm ationsharingand show

that it m itigatesad verse selec tion.Sec ond °oor-b rokersc anc ommunic ate w ith other °oor-

b rokers.For instance,So¯anosand W erner (1997),p.

6 notic e that

`Inad d ition, by standinginthe c row d , °oor brokersmay learnabout ad d itional

broker-represented liquid ity that is not re°ec ted inthe spec ialist quotes: °oor

brokers w illof

tenexc hange inf

orm ationontheir intentions and capabilities,

espec ially w ith competitorsw ith w hom they have good w orkingrelationships.'

O ur purpose inthispaper isto analyz e thistype ofinf

orm ationsharing.At ¯rst glance,

inf

orm ationsharing am ong °oor b rokersispuzz ling.Inf

ac t standard m od elsw ith asym -

m etric inf

orm ation(e.

g.K yle (19 85)) show that inf

orm ed trad ersw ant to hid e their inf

or-

m ationrather thand isclose it to potentialc om petitors.Furtherm ore,inf

orm ationsharing

reinf

orc esinf

orm ationalasymetriesb etw eenthose w ho share inf

orm ationand those w ho

d o not.It istheref

ore not ob viousthat it should im prove m arket quality.Hence w e ad -

d resstw o questions.F irst, isit optimalf

or °oor b rokersto share inf

orm ationw ith their

c om petitors? Sec ond, w hat isthe e®ec t ofinf

orm ationsharing am ong °oor b rokerson

the overallperf

orm ance ofthe m arket? Inpartic ular w e stud y the impac t ofinter-°oor

b rokersc om munic ationonstandard m easuresofm arket quality, nam ely pric e volatility,

pric e d iscovery,m arket liquid ity and trad ingc osts.

W e m od el°oor trad ingand inf

orm ationsharingusingK yle (1985)'sm od elasa w orkhorse.

AsinR oÄell(199 0 ),w e assum e that trad ers(°oor b rokers) have ac c essto tw o typesofin-

f

orm ation: (i) f

undamentalinf

orm ationw hic h isinf

orm ationonthe payo® ofthe sec urity

and (ii) non-f

undam entalinf

orm ationw hic h isinf

orm ationonthe volume ofliquid ity(non-

inf

orm ed ) trad ing.W e c onsid er the possib ility f

or tw o °oor b rokersendow ed w ith d i®erent

2

background image

typesofinf

orm ation(one hasf

undam entalinf

orm ationand the other hasnon-f

undamental

inf

orm ation) to share inf

orm ation.M ore spec i¯c ally w e assum e that °oor b rokershave in-

f

orm ationsharingagreem ents(they f

orm a \c lique").Anagreem ent spec i¯esthe prec ision

w ith w hic h eac h b roker reportshisor her inf

orm ationto the other b roker.Af

ter rec eiving

f

undam entalor non-f

undam entalinf

orm ation,the b rokersina c lique pooltheir inf

orm ation

ac c ord ingto the term softheir agreem ent just b ef

ore sub m ittingtheir ord ersf

or exec ution.

W e estab lish the f

ollow ingresults.

²T here isa w id e range ofparam etersfor w hich it isoptim alfor °oor b rokersto share

their inf

orm ation(i.e.their expec ted pro¯tsare larger w ith inf

orm ationsharing).

²Inform ationsharing c anim prove or impair the d epth ofthe market, d epending on

the valuesofthe parameters.

²Inform ationsharingalw aysred uc esthe aggregate trad ingc ostsfor liquid ity trad ers.

How ever w heninf

orm ationsharingim pairsm arket d epth,som e liquid ity trad ersare

hurt.

²Inform ationsharingoc c ursat the expense ofthe °oor b rokersw ho are not part to

the inf

orm ationsharingagreem ent.

²Inform ationsharingimprovespric e d iscovery and red uc esm arket volatility.

Intuitively inf

orm ationsharing intensi¯esc om petitionb etw een°oor b rokersand inthis

w ay it low ersthe totalexpec ted pro¯tsofall°oor b rokers(red uc esthe aggregate trad ing

c osts). Inf

orm ationsharing also c hanges the alloc ationoftrad ing pro¯ts am ong °oor

b rokers.M ore spec i¯c ally the °oor b rokersw ho share inf

orm ationc apture a larger part of

the totalexpec ted pro¯ts, at the expense of°oor b rokersw ho d o not share inf

orm ation.

T hese tw o e®ec ts explainw hy inf

orm ationsharing c ansimultaneously b ene¯t liquid ity

trad ersand the °oor b rokersw ho share their inf

orm ation. O verallinf

ormationsharing

b etw een°oor b rokersisanad vantage f

or °oor-b ased trad ingsystem ssince it resultsin(a)

low er trad ingc osts, (b ) f

aster pric e d iscovery and (c ) low er pric e volatility.Interestingly,

inline w ith our result, Venkataram an(2 0 0 0 ) ¯ndsthat trad ing c ostsonthe NY SE are

low er thanonthe P arisB ourse (anautom ated trad ingsystem ),c ontrollingf

or d i®erences

instocksc harac teristic s.

6

6

T heissen (1 999)compares e®ective bid-askspreads in an automated tradingsystem (X etra)and the

° oorofthe FrankfurtStock Exchange forstocks thattrade in both systems.H e ¯nds thatthe average

3

background image

O ur analysisisrelated to the literature oninf

ormationsales(e.g.Ad m atiand P °eid erer

(19 86), (19 88) and F ishm anand Hagerty (199 5)). Inc ontrast w ith this literature, w e

assum e that the m ed ium f

or inf

orm ationexc hange isinf

orm ation, not m oney. Ac tually

inour m od el, the trad er w ho rec eivesinf

orm ationrew ard sthe inf

orm ationprovid er b y

d isclosinganother type ofinf

orm ation.Hence w e c onsid er °oor-b ased system sasm arkets

f

or trad ingsharesand f

orum to b arter inf

orm ation.Another im portant d i®erence isthat w e

c onsid er c om munic ationofinf

orm ationonthe volum e ofliquid ity trad ing.W e show that

it m ay b e optim alto `

sell'(b arter) suc h aninf

orm ationand that salesofnon-f

undam ental

inf

orm ationhave anim pac t onmarket quality.

T he m od elisd escrib ed inthe next sec tion.Sec tion3 show sthat it c anb e optim alf

or

°oor b rokersto share inf

orm ation.Sec tion4 analyz esthe im pac t ofinf

orm ationsharing

onvariousm easuresofm arket perf

orm ance.Sec tion5 c onclud es.T he proof

sw hic h d o not

appear inthe text are inthe Appendix.

2

T he M od el

2 .

1

Inf

orm ationSharin

gAgreem en

ts

T he T rad ingCrow d .

W e c onsid er a m od eloftrad inginthe market f

or a riskysec urityw hic h isb ased onK yle

(19 85). T he ¯nalvalue ofthe sec urity, w hic h isd enoted ~

v, isnorm ally d istrib uted w ith

m ean¹ and a variance ¾

2

v

that w e norm alize to 1.T his¯nalvalue ispub lic ly revealed at

d ate 2 .T rad inginthissec uritytakesplac e at d ate 1.At thisd ate,investorssub mit m arket

ord ersto b uy or to sellsharesofthe sec urity.T he exc essd em and (supply) isc leared at

the pric e posted b y a c ompetitive and risk-neutralm arket m aker.

T he trad ing \c row d " f

or the sec urity isc om posed ofN + 1 °oor b rokers.

7

At tim e

1, there are tw o typesof°oor b rokers: (i) N f

undam entalspec ulatorsand (ii) one non

f

undam entalspec ulator, B .Fundam entalspec ulatorshave inf

orm ationonthe ¯nalvalue

ofthe sec urity.For simplic ity,asinK yle (19 85),w e assum e that theyperf

ec tlyob serve this

¯nalvalue,just b ef

ore sub m ittingtheir ord ersat d ate 1.B roker B , the non-f

undamental

quoted spreads on the° oorcan belargerorsmallerthan in theautomated tradingsystem,dependingon
thestockcharacteristics.O naveragethequotedspreads areequal.T his is consistentwithourresultthat
theimpactofinformation sharingon marketdepth is ambiguous.

7

T hemarket-makercan alsobeconsidered as beinga° oorbrokerwhohas noinformation.

4

background image

spec ulator, rec eivesord ersf

rom liquid ity trad ers. W e d enote ~

x

B

the totalquantity that

b roker B m ust exec ute onb ehalfofliquid ity trad ers.Asa w hole, liquid ity trad ershave

a net d em and equalto ~

x = ~

x

0

+ ~

x

B

shares. W e assume that ~

x

0

and ~

x

B

are norm ally

and independently d istrib uted w ith m eans0 and variances¾

2

0

and ¾

2

B

respec tively. W e

norm alize the variance ofthe ord er °ow d ue to liquid ity trad ing,¾

2

x

,to 1,i.e.

:

¾

2

x

= ¾

2
B

+ ¾

2

0

= 1:

Inthisw ay,¾

2

B

c anb e interpreted asb roker B 'sm arket share ofthe totalord er °ow f

rom

liquid ity trad ers.T he rem ainingpart ofthe ord er °ow c anb e seenasb einginterm ed iated

b y °oor b rokersw ho d o not trad e f

or their ow nac c ount or asb eing routed elec tronic ally

to the °oor.

8

,

9

B oth typesofspec ulatorsc anengage inproprietary trad ing. Inpartic ular b roker B

c anac t b oth as anagent (she c hannels a f

rac tionofliquid ity trad ers' ord ers) and as

a principal(she sub mitsord ersf

or her ow nac c ount). T hisprac tic e isknow nas`

d ual-

trad ing' and isauthoriz ed insec uritiesm arkets(see Chakravarty and Sarkar (2 0 0 0 ) f

or a

d iscussion).

10

M od elsw ith d ual-trad inginclud e R Äoell(19 90 ),Sarkar (199 5) or F ishm anand

Longsta® (199 2 ).Inthese m od els,asinthe present artic le,b rokersengaged ind ual-trad ing

exploit their ab ility to ob serve ord erssub m itted b y uninf

orm ed (liquid ity) trad ers.

11

None

ofthese m od elshasc onsid ered inf

orm ationsharing off

und am entaland nonf

undam ental

inf

orm ationam ong b rokers, how ever.O ur purpose isto stud y the e®ec tsofthisac tivity.

Asargued inthe introd uc tion,thistype ofinf

orm ationexchange isa d istinctive f

eature of

°oor m arkets.T he spec ulatorsw ith f

undam entalinf

ormationc anb e seenasb rokersw ho

exc lusively trad e f

or their ow nac c ount (like scalpersand loc alsind erivativesm arkets).

T hey c ould also b e seenasb rokersw ho have no c ustom ers' ord ersto exec ute at d ate 1.

It isreasonab le to assume that the ord er °ow f

rom liquid ity trad ersisindependent

ac rossb rokers (f

or instance b rokers have d i®erent c lients). Inc ontrast, signals onthe

f

undam entalvalue ofthe sec urity are c orrelated . For these reasons, w e assum ed that

only one °oor b roker ob servesthe non-f

undam entalinf

ormation, ~

x

B

,w hereasseveral°oor

8

In the U .

S, fullline brokerage houses engage in proprietary trading activities.D iscountbrokers do

not,however.

9

Forinstance, on the N Y SE,orders can reach amarket-makerthrough ° oorbrokers orelectronically

through asystem called SuperD ot.

1 0

Forinstance, Chakravarty and Sarkar(20 0 0 )observe thatin the N Y SE potentialdualtraders are

nationalfulllinebrokeragehouses andtheinvestmentbanks.

1 1

See also M adrigal(1 996). W e borrowthe distinction between `fundamental'vs. `

non-fundamental'

speculators from this author.

5

background image

b rokersob serve the f

undamentalinf

orm ation,~

v.W e have analyz ed the m od elw henthere is

m ore thanone non-f

und am entalb roker (w ith independent ord er °ow ) and b rokersperf

ec tly

share inf

orm ation(inf

orm ationsharingisd escrib ed b elow ).T he presentationofthe m od el

ism ore c om plex b ut the c onclusionsare qualitatively sim ilar to those w e ob taininthe

c ase w ith only one non-f

undamentalb roker. O ne reasonf

or w hic h the m od elis more

c om plexisthat the numb er ofc liques(groupsofpaired b rokersw ith d istinct inf

ormation)

isendogenous. Inequilib rium , thisnum b er c anb e sm aller thanthe m aximum possib le

numb er ofc liques.For instance ifthere isanequalnumb er, N , off

und am entaland non-

f

undam entalb rokers, the numb er ofc liquesc anb e sm aller thanN . Inpartic ular, w ith

perf

ec t inf

ormationsharing, thisisnec essarily the c ase w hen¾

2

0

= 0 . Inthisc ase, the

aggregate ord er °ow c hanneled b y the non-f

undam entalb rokersw ho are not a± liated to

a c lique playsthe role of~

x

0

inthe present artic le.

In

f

orm ationSharin

g.

W e mod elinf

orm ationsharing asf

ollow s.W e assume that the nonf

undam entalspec -

ulator, B , hasanagreem ent to share inf

orm ationw ith one f

und am entalspec ulator, S.

Ac c ord ing to thisagreem ent, b ef

ore trad ing at d ate 1, the non-f

und am entalspec ulator

sendsa signal

^

x = ~

x

B

+ ~

´;

to the f

undam entalspec ulator.Inexc hange,the f

undam entalspec ulator sendsa signal

^

v = ~

v + ~

";

to the nonf

undam entalspec ulator.T he random variab les~

´ and ~

" are independently and

norm allyd istrib uted w ith meanzero and variances¾

2

´

and ¾

2

"

,respec tively.W e ref

er to the

inverse of¾

2

´

(resp.¾

2

"

) asthe prec isionofthe signalsent b y b roker B (S).T he larger is¾

2

´

2

"

),the lessprec ise isthe signalsent b y spec ulator B (spec ulator S) and hence the low er

isitsinf

orm ative value.T w o polar c asesare ofpartic ular interest.F irst there isperf

ec t

inf

ormationsharingif¾

2

´

= ¾

2

"

= 0 .Sec ond there isno informationsharingif¾

2

´

= ¾

2

"

=

1 .

In-b etw eenthese tw o c ases, there isinf

orm ationsharing b ut it isim perf

ec t (at least one

spec ulator d oesnot perf

ec tly d isclose hisor her inf

orm ation). T he inf

orm ationsetsof

spec ulatorsB and S at d ate 1 are d enoted y

B

= (~

x

B

; ^

x;^

v) and y

S

= (~

v; ^

x; ^

v),respec tively.

Inreality °oor b rokersare likely to exc hange inf

orm ationw ith the b rokersw ith w hom

they have enduring relationships.Inthisc ase their d ec isionto share inf

orm ationw ith a

6

background image

givenb roker must b e b ased onthe long-term (average) b ene¯tsofinf

ormationsharing.For

thisreason,w e assum e that the spec ulatorsd ec id e to share inf

ormationb yc om paringtheir

ex-ante (i.e.prior to rec eivinginf

orm ation) expec ted pro¯tsw ith and w ithout inf

orm ation

sharing.W e say that inf

orm ationsharingispossib le ifthere existsa pair (¾

2

´

2

"

) suc h that

the expec ted pro¯tsofspec ulator S and B are larger w henthere isinf

orm ationsharing.

Insec tion3,w e id entif

y param eters' valuesf

or w hic h inf

orm ationsharingispossib le.

R em arks.

It isw orth stressingthat w e f

oc usonthe possib ilityofaninf

orm ationsharingagreem ent

b ut not onitsimplementation. Inpartic ular, w e d o not ad d ressenf

orc em ent issues. In

that, w e f

ollow the literature oninf

orm ationsalesw here the quality ofthe inf

orm ation

w hich issold isassum ed to b e c ontrac tib le.

12

W e also assum e that the inf

orm ationsharing

agreem ent and its c harac teristic s (¾

2

´

2

"

) are know nb y allpartic ipants (includ ing the

m arket-m aker).T hisc om monknow led ge assum ptionisalso standard inthe literature on

inf

orm ationsales.

2 .

2

T he equil

ib rium ofthe F l

oor M arket

Inthissec tion,w e d erive the equilib rium ofthe trad ingstage at d ate 1,giventhe c harac -

teristic softhe inf

ormationsharingagreement b etw eenspec ulatorsB and S.T hen,inthe

next sec tion,w e analyze w hether or not it isoptim alf

or B and Sto exc hange inf

orm ation.

W e d enote b y Q

S

(y

S

) and Q

B

(y

B

), the ord erssub m itted b y spec ulatorsS and B , re-

spec tively.Inthe set off

undamentalspec ulators, w e assignindex1 to spec ulator S.An

ord er sub m itted b y the other f

undamentalspec ulatorsi= 2 ;:::;N isd enoted Q

i

(~

v).T he

totalexc essd emand that must b e c leared b y the c om petitive m arket m aker istheref

ore

O =

i= N

X

i= 2

Q

i

(~

v) + Q

S

(y

S

) + Q

B

(y

B

) + ~

x:

Asthe market maker isassum ed to b e c om petitive,he setsa pric e p(O ) equalto the asset

1 2

See A dmati and P ° eiderer(1 986),(1 988).Some papers have shown howincentives contracts can be

used toinduce an information providertotruthfully revealthe quality ofhis signal(see A llen (1 990 )or
B hattacharya and P ° eiderer(1 985)). R eputation e®ects may also help to sustain information sharing
agreements (seeB enabou andL aroque (1 992)).

7

background image

expec ted value c onditionalonthe net ord er °ow ,i.e.

p(O ) = E(~

v

jO ):

(1)

Anequilib rium c onsistsoftrad ing strategiesQ

S

(:), Q

B

(:), Q

i

(:);i= 2 ;:::;N and a c om -

petitive pric e f

unctionp(:) suc h that (i) eac h trad er'strad ingstrategy isa b est response to

other trad ers' strategiesand (ii) the d ealer'sb id d ing strategy isgivenb y E quation(1).

13

For givenc harac teristic s, (¾

2

´

2

"

), ofaninf

ormationsharing agreement, the next lemm a

d escrib esthe unique linear equilib rium ofthe trad inggam e.

Lem m a 1 : T he trad ingstage hasa unique linear equilibrium w hic h isgivenby

p(O ) =

¹ + ¸O ;

(2 )

Q

S

(y

S

) =

a

1

(~

v

¡¹)+ a

2

(^

v

¡¹)+ a

3

^

x;

(3)

Q

i

(~

v) =

a

0

(~

v

¡¹);i= 2 ;:::;N

(4 )

Q

B

(y

B

) =

b

1

~

x

B

+ b

2

^

x + b

3

(^

v

¡¹),

(5)

w here coe± c ientsa

1

;a

2

;a

3

;a

0

;b

1

;b

2

;b

3

and ¸ are

a

1

=

3(¾

2

v

+ ¾

2

"

)

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

a

2

=

¡

¾

2

v

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

a

3

=

¡

¾

2

B

3

¡

¾

2

B

+ ¾

2

´

¢;

a

0

=

2 ¾

2

v

+ 3¾

2

"

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

b

1

=

¡

1
2

;

b

2

=

¾

2

B

6

¡

¾

2

B

+ ¾

2

´

¢;

b

3

=

2 ¾

2

v

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

1 3

M oreprecisely,weconsidertheP erfectB ayesian Equilibriaofthe tradinggame.

8

background image

and

¸ (¾

2

"

2

´

) =

6

q

¾

2

v

¡

¾

2

B

+ ¾

2

´

¢

(4 (N + 1)¾

4

v

+ (12 N + 5)¾

2

v

¾

2

"

+ 9 N ¾

4

"

)

(2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

q

¾

2

B

¡

4 ¾

2

B

+ 9¾

2

´

¢

+ 36¾

2

0

¡

¾

2

B

+ ¾

2

´

¢:

T rad erspurc hase (sell) the sec urity w hentheir estimationofthe asset value isab ove

(b elow ) the unconditionalexpec ted value.Hence,the c oe± c ientsa

1

,a

0

and b

3

are positive.

Nonf

undam entalinf

ormationisalso a sourc e ofpro¯t.Intuitively liquid itytrad ers'ord ers

c reate tem porary pric e pressures. B rokersw ith non-f

undam entalinf

orm ationare aw are

ofthese pric e pressures. T hey c anpro¯t f

rom thisknow led ge b y selling (b uying) high

(low ) w henliquid ity trad ers b uy (sell). M ore f

orm ally suppose that the f

undamental

spec ulators(b ut not the market m aker) d o not expec t c hangesinthe sec urity value (i.

e.

~

v = ¹).Suppose also that B and S perf

ec tly share inf

orm ationand that liquid ity trad ers

sub m it b uyord ers.T hese ord erspush the pric e upw ard b ec ause the m arket m aker c annot

d istinguish liquid ity ord ersf

rom inf

orm ed ord ers.Spec ulatorsB and Show ever know that

the c orrec t value ofthe sec urityis¹ .Inantic ipationofthe upw ard pressure onthe c learing

pric e,theysub m it sellord ers.B ysym metry,theysub m it b uyord ersw henliquid itytrad ers

sub m it sellord ers.T hisexplainsw hy c oe± c ientsb

1

and a

3

are negative.T hism eansthat

°oor b rokersB and S partly ac c om m od ate liquid ity trad ers' ord ersand red uc e the ord er

°ow imb alance that must b e exec uted b y the m arket-maker.A similar e®ec t isob tained

inR Äoell(1990 ) and Sarkar (19 95).

T he previousd iscussionshow show spec ulatorsc anpro¯t b oth f

rom f

und am entaland

nonf

undam entalinf

ormation. Hence there isa b ene¯t to exc hange f

undam ental(non-

f

undam ental) inf

orm ationf

or non-f

undam ental(f

und am ental) inf

ormation. Inf

orm ation

sharing isc ostly, how ever. Ac tually spec ulatorsS and B d eprec iate the value oftheir

private inf

orm ationw henthey share it.Consid er spec ulator B f

or instance.Ifshe d oes

not share inf

orm ation(¾

2

´

= +

1 ), she ac c om mod ateshalfofthe ord er °ow she rec eives

(since b

1

=

¡1=2 ).Ifshe sharesinformationthenb rokersB and S (instead ofb roker B

alone) provid e liquid ityto the ord ersc hanneled b yb roker B .For instance ifthere isperf

ec t

inf

orm ationsharing theneac h b roker ac c om mod atesone third ofthe ord ersrec eived b y

b roker B (since b

1

+ b

2

=

¡1=3 and a

3

=

¡1=3 w hen¾

2

´

= 0 ).T hisc ompetitionf

or the

provisionofliquid ity hastw o e®ec ts. F irst, b roker B trad essm aller quantities.Sec ond,

the ord er imb alance that must b e exec uted b y the m arket-m aker issm aller.Hence, f

or a

9

background image

givenpric e sched ule (a ¯xed ¸ ), pric esreac t lessto the ord er °ow .

14

Inf

ac t spec ulator

B red uc esher trad e size w henshe sharesinf

orm ation(b

2

hasa signopposite the signof

b

1

) prec isely to m itigate thise®ec t.T hese tw o e®ec ts(sm aller trad e siz e/sm aller ab solute

pric e m ovem ents) red uc e spec ulator'sB pro¯tsonnon-f

undamentalinf

orm ation.T hisis

the c ost ofsharingnon-f

undam entalinf

orm ation.

A sim ilar argum ent holdsf

or spec ulator S. He d eprec iatesthe value off

undam ental

inf

orm ationw henhe sharesit w ith spec ulator B .Inord er to m itigate thise®ec t,he ad justs

histrad ingstrategy to the message he send sto spec ulator B .T hisexplainsw hy a

2

hasa

signopposite a

1

.

T o sum up,inf

orm ationsharinghasb ene¯tsand c osts.Inf

ormationsharingisa sourc e

ofpro¯tssince it allow seac h b roker to trad e ona new type ofprivate inf

orm ation.B ut the

b rokersob tainnew inf

orm ationonly ifthey d isclose allor part oftheir inf

orm ation.T his

isc ostlysince it red uc esthe trad ingpro¯tsthat c anb e mad e onthe inf

orm ationoriginally

possessed b y a b roker.Inthe next sec tionw e show that the b ene¯t ofinf

orm ationsharing

c anoutw eight itsc ost.

3 IsInf

orm ationSharingP ossib l

e?

Inthissec tion, w e id entif

y c asesinw hic h spec ulatorsB and S are b etter o® w henthey

share inf

orm ation. W e start b y c onsid ering the e®ec t ofthe prec isionsw ith w hic h the

spec ulatorsB and S share their inf

orm ationonthe m arket d epth (m easured b y ¸

¡1

).

15

It

turnsout that thise®ec t isim portant to interpret the results.

Lem m a 2 : T he d epth ofthe m arket (i.e. ¸

¡1

) isa® ec ted by the prec isionsw ith w hic h

the f

undamentaland the nonf

undam entalspec ulatorsshare their inf

ormation.

1.T he m arket d epth increasesw ith the prec isionofthe signalsent bybroker S(

2

"

> 0 ),

2 .T he market d epth d ec reasesw ith the prec isionofthe signalsent by broker B (

2

´

<

0 ).

1 4

Inordertoconveytheintuitionwetake¸ as given.H owevertheslopeofthepricescheduleis a®ected

by information sharing. A s shown below (L emma 2)sharing non-fundamentalinformation enlarges ¸.
T his mitigates theloss in pro¯tduetotheseconde®ect(smallerpricechanges).

1 5

T hemarketdepth is theorder° ownecessarytochangetheprice by1 unit.T helargeris the market

depth,the greateris the liquidityofthe market.A ctually,when ¸ is small,the market-makeraccommo-
dates largeorderimbalances withoutsubstantialchanges in prices.

10

background image

Notic e that anincrease inthe quality ofthe inf

orm ationprovid ed b y B to S enlarges¸,

that isit d ec reasesthe d epth ofthe m arket. T he intuitionf

or thisresult isasf

ollow s.

E xc hange ofnon-f

und am entalinf

orm ationincreasesthe role of°oor b rokers(B and S) in

the provisionofliquid ity.T o see thispoint, let Q

T

= Q

B

+ Q

S

b e the totaltrad e siz e of

spec ulatorsB and S and c onsid er their expec ted totaltrad e siz e c ontingent on~

x

B

= x

B

.

W e ob tain

E(Q

T

j~x

B

= x

B

) = (b

1

+ b

2

+ a

3

)(x

B

) =

¡(

1
2

+

¾

2

B

6(¾

2

B

+ ¾

2

´

)

)(x

B

):

(6)

T he sm aller is¾

2

´

,the larger isthe f

rac tion(

jb

1

+ b

2

+ a

3

j) ofthe ord ersrec eived byb roker B

w hich isac c omm od ated b y spec ulatorsSand B .Asa c onsequence the d ealer partic ipates

lessto liquid itytrad es.Inthissense the exc hange ofnon-f

und am entalinf

orm ation`

siphons'

uninf

orm ed ord er °ow aw ay f

rom the m arket-m aker.T husthissiphone® ec t increaseshis

exposure to inf

orm ed trad ingand the pric e sched ule b ec om essteeper.

16

Interestingly anincrease inthe quality ofthe inf

orm ationprovid ed b y S to B has

exac tly the opposite e®ec t: it im provesthe d epth ofthe m arket.Inthisc ase, the e®ec t

ofinf

orm ationsharingisto increase c ompetitionam ongf

undam entaltrad ers.Hence they

scale b ack their ord er siz e (a

1

and a

0

d ec rease w hen¾

2

"

d ec reases).T hise®ec t red uc esthe

m arket-m aker'sexposure to inf

orm ed trad ing and thereb y m akesthe pric e sched ule less

steep.

W e d enote spec ulator j'sex-ante expec ted pro¯t (i.

e.b ef

ore ob servinginf

orm ation) b y

¦

j

2

´

2

"

;N ) .U singLem m a 1,w e ob tainthe f

ollow ingresult.

Lem m a 3 : F or givenvaluesof¾

2

"

and ¾

2

´

, the expec ted trad ingpro¯ tsfor spec ulatorsB

1 6

In equilibrium informed traders scale backtheirordersize when ¸ increases.B utthis is insu±cient

tocompensatethereduction in uninformed tradingdue tothe siphone®ect.

11

background image

and S are

¦

S

2

´

2

²

;N ) =

Ã

¾

2

v

2

v

+ ¾

2

"

)(4 ¾

2

v

+ 9 ¾

2

"

)

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

2

+

¸¾

4

B

9

¡

¾

2

B

+ ¾

2

´

¢

!

d ef

=

¦

S
f

2

´

2

"

;N ) + ¦

S
n f

2

´

2

"

;N );

an d ;

¦

B

2
´

2
"

;N ) =

Ã

4 ¾

4

v

2

v

+ ¾

2

"

)

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

2

+

¸¾

2

B

¡

4 ¾

2

B

+ 9 ¾

2

´

¢

36

¡

¾

2

B

+ ¾

2

´

¢

!

d ef

=

¦

B

f

2

´

2

"

;N ) + ¦

B

n f

2

´

2

"

;N ):

E ach spec ulator'sexpec ted pro¯tshastw o c om ponents: (i) the expec ted pro¯t she or he

ob tainsb y trad ing onf

undam entalinf

orm ation(¦

j
f

) and (ii) the expec ted pro¯t she or

he ob tainsb y trad ing onnon-f

undam entalinf

orm ation(¦

j
nf

). Aninf

orm ationsharing

agreem ent isviab le ifand only ifb oth spec ulatorsB and Sare b etter o® w henthey share

inf

orm ation.Hence aninf

orm ationsharingagreem ent ispossib le ifand only ifthere exists

a pair (¾

2

´

2

"

) such that

¡

B

¡

¾

2

´

2

"

;N

¢

d ef

= ¦

B

2

´

2

"

;N )

¡¦

B

(

1 ;1 ;N ) > 0 ;

(7)

and

¡

S

¡

¾

2

´

2

"

;N

¢

d e f

= ¦

S

2

´

2

"

;N )

¡¦

S

(

1 ;1 ;N ) > 0 :

(8)

T he ¡s' m easure the expec ted surplusassoc iated w ith the inf

orm ationsharingagreem ent

f

or spec ulatorsB and S.

P roposition1 : T he set ofparametersf

or w hic h spec ulatorsB and S share information

isnon-empty.

W e estab lish the result b y provid ing 3 num eric alexam ples. For eac h exam ple, w e

report inT ab les1, 2 and 3 b elow the b reak-d ow nofthe trad ing pro¯tsf

or the d i®erent

partic ipantsw ith and w ithout inf

orm ationsharing. W e also c ompare the m arket d epth

w ith and w ithout inf

orm ationsharing. T he exam ples have b eenc hosenb ec ause they

illustrate d i®erent phenom ena that w e w illd iscussinthe rest ofthe paper.T he trad ing

pro¯tsare scaled b y ¾

2

v

and ¾

2

x

that w e norm aliz e to 1 throughout the paper.

12

background image

P roof

:

E xam pl

e 1: ¾

2

0

= 0 ,¾

2

"

= 0 ,¾

2

´

= 2 =3,N = 2 .

P ro¯tsand d epth

Inf

orm ationSharing No In

f

orm ationSharin

g

(N

¡1)£¦

i

f

i

6

= S;B

0 :0 589

0 :1178

¦

S

f

0 :0 589

0 :1178

¦

S

nf

0 :0 70 7

0

¦

B

f

0 .0589

0

¦

B

nf

0 :1767

0 :2 357

T otalE xpec ted P ro¯ts 0 :4 2 4 2

0 :4 714

M arket Depth (¸ )

1:0 60 7

0 :94 2 8

T ab l

e 1

Inthisc ase w e ob tainthat

¡

S

= ¦

S
f

+ ¦

S
nf

¡¦

S

(

1 ;1 ) = 0 :0 589 + 0 :0 70 7¡0 :1178 = 0 :0 118;

and

¡

B

= ¦

B
f

+ ¦

B
nf

¡¦

B

(

1 ;1 ) = 0 :0 589 + 0 :1767¡0 :2 357= 0 :

O b serve that the totalsurplusf

or spec ulatorsB and S ispositive and equalto

¡

S

+ ¡

B

= 0 :0 118;

b ut that the totalsurplusf

or allspec ulatorsisnegative and equalto

(N

¡1)¡

i

+ ¡

S

+ ¡

B

= (0 :0 589

¡0 :1178)+ 0 :0 118 = ¡0 :0 4 71:

i

d enotesthe d i®erence inthe expec ted pro¯t w ith and w ithout inf

orm ationf

or a spec -

ulator d i®erent f

rom S or B .

)

E xam pl

e 2 : ¾

2

0

= 0 :6,¾

2

"

= 0 ,¾

2

´

= 0 ,N = 10 .

13

background image

P ro¯tsand Depth

Inf

orm ationSharing No In

f

orm ationSharin

g

(N

¡1)£¦

i

f

i

6

= S;B

0 :1815

0 :2 165

¦

S

f

0 :0 2 0 2

0 :0 2 4 1

¦

S

nf

0 :0 153

0

¦

B

f

0 .02 0 2

0

¦

B

nf

0 :0 153

0 :0 34 4

T otalE xpec ted P ro¯ts 0 :2 52 5

0 .274 9

M arket Depth (¸)

0 .34 4 3

0 .34 36

T ab l

e 2

Inthisc ase w e ob tainthat

¡

S

= ¦

S
f

+ ¦

S
n f

¡¦

S

(

1 ;1 ) = 0 :0 114 ;

and

¡

B

= ¦

B
f

+ ¦

B
nf

¡¦

B

(

1 ;1 ) = 0 :0 0 11

O b serve that the totalsurplusf

or spec ulatorsB and S ispositive (0 :0 12 5) b ut that the

totalsurplusf

or allspec ulatorsisnegative (

¡0 :0 2 2 4 :)

E xam pl

e 3: ¾

2

0

= 0 :6,¾

2

"

= 0 ,¾

2

´

= 1:3,N = 10 .

P ro¯tsand Depth

Inf

orm ationSharing No In

f

orm ationSharin

g

(N

¡1)£¦

i

f

i

6

= s;B

0 :1874

0 :2 165

¦

S

f

0 :0 2 0 8

0 :0 2 4 1

¦

S

nf

0 :0 0 35

0

¦

B

f

0 .02 9 8

0

¦

B

nf

0 :0 2 9 0

0 :0 34 4

T otalE xpec ted P ro¯ts 0 :2 615

0 :2 74 9

M arket Depth (¸)

0 .033

0 .034

T ab l

e 3

Inthisc ase w e ob tainthat

¡

S

= ¦

S
f

+ ¦

S
n f

¡¦

S

(

1 ;1 ) = 0 :0 0 0 3;

14

background image

and

¡

B

= ¦

B
f

+ ¦

B
nf

¡¦

B

(

1 ;1 ) = 0 :0 155

O b serve that the totalsurplusf

or spec ulatorsB and Sispositive and equalto ¡

S

+ ¡

B

=

0 :0 158.T he totalsurplusf

or allspec ulatorsisnegative and equalto

¡0 :0 134 :

Inallthe exam ples, the joint expec ted pro¯tsofspec ulatorsB and S increase w hen

they share inf

orm ation.Notic e that thisisa nec essary c onditionf

or inf

orm ationsharing.

Ac tually E quations(7) and (8) im ply that

¦

B

2

´

2

"

;N ) + ¦

S

2

´

2

"

;N ) > ¦

S

(

1 ;1 ;N )+ ¦

B

(

1 ;1 ;N ):

At the sam e tim e, there isa d ec line inthe joint expec ted pro¯tsofthe spec ulatorsw ho

d o not share inf

ormation.E ventually the totalexpec ted pro¯tsf

or allthe spec ulatorsare

low er inallthe exam ples(thisisalw aysthe c ase; see P roposition5 inSec tion4 ).Insum

inf

orm ationsharingisa w ay f

or spec ulatorsB and S to sec ure a larger part ofa sm aller

`cake'.T he f

allintotalpro¯tsisnot surprising: inf

orm ationsharingincreasesc om petition

b etw een°oor b rokers.T he surprisingpart isthat the joint expec ted pro¯tsofspec ulators

B and S c anincrease d espite the d ec line inthe totaltrad ing pro¯tsf

or the spec ulators.

T hisiskey since thisisa nec essary c onditionf

or inf

ormationsharing.W e now provid e an

explanationf

or thisob servation.T he explanationisquite c om plexb ec ause severale®ec ts

interplay.

Consid er the f

ollow ingratio

r

1

2

"

2

´

)

d ef

=

E(Q

T

j~v = v)

E(Q

T

j~v = v;¾

2

"

=

1 ;¾

2

´

=

1 )

:

T hisratio c om paresthe expec ted totaltrad e size (Q

T

) ofthe c lique f

orm ed b y spec ulators

B and Sc ond itionalonf

undamentalinf

orm ationw ith and w ithout aninf

orm ationsharing

agreem ent.U singLem m a 1,w e c anw rite thisratio as

r

1

2
"

2
´

) =

a

1

2

"

2

´

) + a

2

2

"

2

´

) + b

3

2

"

2

´

)

a

1

(

1 ;1 )

:

Hence r

1

> 1 m eans that the c lique f

orm ed b y B and S trad es m ore aggressively on

f

undam entalinf

orm ationw henthere isinf

orm ationsharingthanw henthere isnot.U sing

15

background image

the expressionsf

or a

1

,a

2

and b

3

giveninLem m a 1,w e eventually ob tain

r

1

2

"

2
´

) = (

¸(

1 ;1 )

¸ (¾

2

²

2

´

)

)(

(4 ¾

2

v

+ 3¾

2

²

)(N + 1)

2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

²

):

As¸(

1 ;1 ) > ¸(0 ;1 ) (Lemm a 2 ),it isim m ed iate that r

1

(0 ;

1 ) > 1.B y c ontinuity,this

inequality also holdstrue f

or other valuesof¾

2

²

and ¾

2

´

. Hence there exist inf

orm ation

sharingagreementsw hic h ind uc e the c lique f

orm ed b y B and Sto trad e m ore aggressively.

Inturnthisf

orc esspec ulatorsw ho are not part ofthe c lique to shad e their totaltrad e

size.T o see thispoint c onsid er the f

ollow ingratio

r

2

2

²

2

´

)

d ef

=

E((N

¡1)Q

i

j~v = v)

E((N

¡1)Q

i

j~v = v;¾

2

"

=

1 ;¾

2

´

=

1 )

= (

¸ (

1 ;1 )

¸(¾

2

²

2

´

)

)(

(2 ¾

2

v

+ 3¾

2

²

)(N + 1)

2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

²

);

w here (N

¡1)Q

i

isthe totaltrad e siz e ofspec ulatorsd i®erent f

rom B and S.U singLem m a

2 ,w e d ed uc e that r

2

increasesw ith ¾

2

´

.T hisim pliesthat

r

2

2

²

2

´

)

·r

2

2

²

;

1 ):

U singthe expressionsf

or ¸(

1 ;1 )and ¸(¾

2

²

;

1 ) giveninthe proofofLem m a 2 ,w e ob tain

17

r

2

2
²

;

1 ) < 1 8¾

2

²

<

1 :

W e c onclud e that r

2

2

²

2

´

) < 1.T hism eansthat inf

orm ationsharingagreem entsf

orc e the

spec ulatorsw ho are not part ofthe c lique to trad e lessaggressively ontheir inf

orm ation.

Hence the spec ulatorsw ho share inf

orm ationappropriate a larger share ofthe totalpro¯ts

w hich d erive f

rom trad ing onf

undam entalinf

orm ation.

18

For thisreason, inf

orm ation

sharing enlargestheir joint expec ted pro¯t onf

undam entalinf

orm ation.T hisisthe c ase

f

or instance inE xamples2 and 3.

Now c onsid er the e®ec t ofinf

orm ationsharing onthe pro¯tsw hich d erive f

rom non-

f

undam entalinf

ormation.O nthe one hand,there are m ore spec ulatorsw ho ac c om m od ate

the ord er °ow b rokered b y B . T hise®ec t d ec reasesthe levelofexpec ted pro¯t onnon-

f

undam entalinf

ormation.O nthe other hand the exc hange ofnonf

undam entalinf

orm ation

1 7

T heproofrequires straightforward manipulations and is availableupon request.

1 8

N oticethatspeculators inourmodelarelikeCournotcompetitors.InCournotcompetition,each¯rm

would like to committo trade a largersize than itdoes in equilibrium. T his commitmentwould force
other¯rms totradeinsmallersizes.Inthis waythecommitted¯rm cancapturealargershareofthetotal
pro¯ts. Intuitively sharing fundamentalinformation is a way to make this commitmentcredible. T his
e®ecthas been pointedoutbyFishman and H agerty(1 995)in amodelofinformation sale.

16

background image

d ec reasesthe market d epth and thise®ec t increasespro¯tsf

rom non-f

undam entalspec -

ulationasc anb e seenf

rom Lem m a 3. It turnsout that there are c ases(f

or instance

E xam ple 1) inw hic h the sec ond e®ec t d ominatesand the joint expec ted trad ingpro¯tsof

spec ulatorsS and B onnon-f

und am entalinf

orm ationare larger w henthere isinf

orm ation

sharingor

¦

B
n f

2

´

2

"

;N ) + ¦

S
n f

2

´

2

"

;N )

¡¦

B
nf

(

1 ;1 ;N ) ¸0 ; for ¾

2

´

<

1

and

¾

2

"

<

1

O b serve that thisc anoc c ur onlyw heninf

orm ationsharingim pairsm arket d epth (increases

¸).InE xam ple 3,inf

orm ationsharingim provesm arket d epth and the joint expec ted pro¯t

onnon-f

undam entalinf

orm ationd ec reases.

T o sum up, there are tw o reasonsw hy inf

orm ationsharing c anincrease the joint ex-

pec ted pro¯tsofspec ulatorsB and S:

²Sharingfundamentalinformationallow sthe c oalitionform ed b y b rokersSand B to

trad e m ore aggressively onf

undam entalinf

ormationand to c apture thereb y a larger

share ofthe totalpro¯tsf

rom spec ulationonf

undam entalinf

ormation.

²Sharingnon-fundam entalinform ationc anred uc e the m arket d epth.T hisim pliesthat

pric esreac t m ore to ord er imb alances.Larger totalexpec ted pro¯tsf

rom spec ulation

onnon-f

undam entalinf

orm ationf

ollow s.

T he prec isionsw ith w hic h the spec ulatorsshare their inf

orm ationd etermine how the

surplus (¡

S

+ ¡

B

) c reated b y inf

orm ationsharing is split b etw eenb rokers B and S.

For instance, c onsid er E xam ples2 and 3. T he value of¾

2

´

islarger inE xam ple 3, b ut

otherw ise the valuesofthe param etersare id entic alinthe tw o exam ples.T he surplusf

or

spec ulator B (S) islarger (low er) inE xam ple 3 thaninE xam ple 2 .Inline w ith intuition,

f

or a ¯xed value of¾

2

"

,spec ulator B (S) pref

ersto provid e (rec eive) aninf

orm ationoflow

(high) quality. Hence spec ulatorsB and S have c on°ic ting view sover the inf

orm ation

sharingagreem entsw hic h should b e c hosen.It isalso w orth stressingthat the siz e ofthe

surplusc reated b y inf

orm ationsharingd epend sonthe prec isionsw ith w hic h trad ersshare

inf

orm ation. For instance the joint surplusissm aller inE xam ple 2 thaninE xam ple 3.

Inthispaper, w e d o not stud y how trad ersselec t the c harac teristic softheir inf

orm ation

sharing agreem ent (¾

2

²

and ¾

2

´

). T hisisnot nec essary b ec ause our statem entsregard ing

m arket perf

orm ance (next sec tion) only d epend sonthe existence ofinf

orm ationsharing

agreem ents,not onthe spec i¯c valuesc hosenf

or ¾

2

"

and ¾

2

´

.

17

background image

W e now c onsid er inm ore d etailsinf

orm ationsharingagreementsinw hich spec ulatorsB

and Sperf

ec tly share inf

ormation(¾

2

"

= ¾

2

´

= 0 ).P erf

ec t inf

orm ationsharingisofinterest

b ec ause it isrelatively easy to im plement.Ac tually,ifthere isperf

ec t inf

orm ationsharing,

B know s w hich quantity S should trad e and vic e versa (inour m od elthey optimally

trad e the sam e quantity).Consequently, one spec ulator c and etec t cheating b y the other

spec ulator b y ob servinghisor her trad e size.

P roposition2 : For N

¸ 2 , there exist tw o c ut-o® values (i) ¾

2

0

(N ) and (ii) ¾

¤2

0

(N )

suc h that perf

ec t inf

ormationsharingispossible ifand only if¾

2

0

2 [¾

2

0

(N );¾

¤2

0

(N )].Fur-

therm ore the c uto® valuesincrease w ith N and are suc h that 0 < ¾

2

0

(N ) < ¾

¤2

0

(N ) < 1.

T he propositionshow s that perf

ec t inf

orm ationsharing ispossib le ifb roker B d oes

not c hannela too large or a too sm allf

rac tionofthe ord er °ow f

rom liquid ity trad ers.

O b serve that pro¯tsm ad e onnon-f

und am entalinf

orm ation(¦

j
n f

) are proportionalto the

am ount ofliquid itytrad ingb rokered b yB (¾

2

B

= 1

¡¾

2

0

).Hence ¾

2

0

d eterm inesthe value of

non-f

undam entalinf

orm ation.P erf

ec t inf

orm ationsharingc antake plac e w henthisvalue

isneither too large, nor too sm all. Ifthe value ofnon-f

undamentalinf

orm ationislarge

2

0

< ¾

2

0

(N )),the c ost ofd isclosingher inf

orm ationperf

ec tlyf

or B (sm aller pro¯tsonnon-

f

undam entalinf

orm ation) islarge c om pared to the b ene¯t (the possib ility to pro¯t f

rom

f

undam entalinf

orm ation).Inord er to attenuate thisc ost,B must theref

ore send a noisy

signalto S.W henthe value ofnon-f

und am entalinf

orm ationissm all(¾

2

0

> ¾

¤2

0

(N )), the

b ene¯t ofperf

ec t inf

ormationsharing issm allf

or the f

und am entalspec ulator.T heref

ore

he ref

usesto perf

ec tly d isclose hisinf

orm ation.

T he larger isthe numb er off

undam entalspec ulators, the sm aller must b e the f

rac tion

ofliquid ity trad ers' ord er °ow b rokered b y B to sustaina perf

ec t inf

orm ationsharing

agreem ent (¾

2

0

(N ) increasesw ith N ).Ac tually the pro¯tsf

rom f

und am entalinf

orm ation

d ec rease w ith the numb er off

undamentalspec ulators.T he value off

und am entalinf

orm a-

tionistheref

ore sm allw henN islarge.Hence b roker B ac c eptsto perf

ec tly d isclose her

inf

orm ationonly ifthe value ofnon-f

undam entalinf

orm ationisitselfsm all.T he last part

ofthe propositionim pliesthat f

or allvaluesofN ,there exist valuesof¾

2

0

< 1 such that a

perf

ec t inf

orm ationsharingagreem ent c anb e sustained .F igure 1 plots¾

2

0

(N ) and ¾

¤2

0

(N )

f

or d i®erent valuesofN

¸2 and show sw henperfec t informationsharingispossib le.

19

1 9

T hecuto®values ¾

2

0

(N )and ¾

¤2

0

(N )areimplicitlyde¯nedin theproofofP roposition 2.

18

background image

R em ark.Inthe mod elw e assum e that b rokers' rolesare ¯xed : one hasf

undamental

inf

orm ationand the other hasnon-f

undam entalinf

orm ation.Another possib ility isthat

the rolesare random ly alloc ated b ef

ore trad ingand unkw now nat the tim e b rokersd ec id e

to share inf

orm ation.For sim plic ity, assum e that eac h b roker inthe c lique hasanequal

prob ab ility to b e the b roker endow ed w ith non-f

undamentalinf

orm ation. Inthisc ase,

b rokersagree to share inf

orm ationi®

¦

B

2

´

2

"

;N ) + ¦

S

2

´

2

"

;N ) > ¦

S

(

1 ;1 ;N )+ ¦

B

(

1 ;1 ;N ):

T hisc ond itionisalw ayssatis¯ed w hen(¾

2

"

2

´

) are suc h that Conditions(7) and (8) are

satis¯ed . Hence ifaninf

orm ationsharing agreem ent ispossib le w henb rokers' rolesare

¯xed ,it isstillpossib le w henb rokers' role are randomly c hosen.

4

Inf

orm ationSharin

g and M arket P erf

orm ance

Inthissec tion, w e analyze the e®ec tsofinf

orm ationsharing ontrad itionalm easuresof

m arket quality: (1) the inf

orm ationale± c iency ofpric es(m easured b y V ar(~

v

jp)), (2 )

pric e volatility (measured b y V ar(~

v

¡p)),(3) m arket d epth (m easured by ¸) and (4 ) the

expec ted trad ingc ostsb orne b y liquid ity trad ers(i.e.their expec ted losses,E(~

x(p

¡~v))).

T hese aspec tsofm arket perf

ormance play a prom inent role inthe d eb atesregard ing the

d esignoftrad ingsystem sand have attrac ted c onsid erab le attentioninthe literature (see

M ad havan(19 96) or Vives(19 95) f

or instance).

P rop osition3 : P rices are more inf

orm ative (V ar(~

v

j p) smaller) and less volatile

(V ar(~

v

¡p) smaller) w henthere isinformationsharing.

T he intuitionb ehind thisresult issim ple.W henspec ulatorsSand B share inf

orm ation,

the numb er ofspec ulatorstrad ing onf

undam entalinf

orm ationincreases.It f

ollow sthat

the aggregate ord er °ow ism ore inf

ormative. For thisreason, pric esare m ore ac c urate

pred ic torsofthe ¯nalvalue ofthe sec urity and pric e d iscovery isim proved .

W e now examine the im pac t ofinf

orm ationsharing onthe d epth ofthe m arket. As

show nb y Lem m a 2 , anincrease inthe prec isionw ith w hic h spec ulator S transm itshis

inf

orm ationim proves market d epth. How ever, anincrease inthe prec isionw ith w hich

spec ulator B transm itsher inf

orm ationim pairsm arket d epth (b ec ause ofthe siphone®ec t).

19

background image

Hence the im pac t ofinf

ormationsharing onm arket d epth c anb e positive or negative.

O fc ourse, f

or the param eterssuc h that inf

orm ationsharing oc c urs, one e®ec t c ould b e

d om inant. How ever E xam ples2 and 3 inthe previoussec tionshow that thisisnot the

c ase.Inthese exam ples, ¾

2

²

and ¾

2

´

are suc h that (i) inf

orm ationsharing isoptim aland

(b ) inf

ormationsharing im pairs m arket d epth (E xam ple 2 ) or im proves market d epth

(E xam ple 3).T he next propositionc onsid ersthe e®ec t ofperf

ec t inf

orm ationsharing on

m arket d epth.T o thisend,w e d e¯ne

¹

¾

2

0

(N ) =

1

¡h

2

(N )

8h

2

(N )

¡3

< 1;

w here h (N ) =

2 (N + 2 )

p

N

3(N + 1)

p

N + 1)

< 1:

P roposition4 : P erf

ec t informationsharingim provesm arket d epth ifand only if¾

2

0

¸

¹

¾

2

0

(N ).

Hence perf

ec t inf

ormationsharing im provesm arket d epth w henb roker B rec eivesa suf

-

¯c iently sm allf

rac tionofthe totalord er °ow (¾

0

¸ ¹¾

2

(N )). R ec allthat w henthere is

perf

ec t inf

ormationsharing,¾

2

0

must b e larger thana threshold (¾

2

0

(N )).F igure 2 d epic ts

¹

¾

2

(N ) (d otted line) w henN increases. Asit c anb e seen, there are valuesof¾

2

0

and N

suc h that perf

ec t inf

ormationsharing oc c ursand im pairsmarket liquid ity (allthe values

b elow the d otted line and ab ove the plainline).

2 0

Notic e that the market d epth isrelated to the b id -ask spread .Ac tually a b uy ord er of

size q pushesthe pric e upw ard b y ¸ q w hereasa sellord er ofthe sam e siz e pushesthe pric e

d ow nw ard b y ¸ q.Hence

s(q) = p(q)

¡p(¡q) = 2 ¸q;

c anb e interpreted asthe b id -askspread f

or anord er ofsiz e q inour m od el(see M ad havan

(19 96)). T he spread increases w ith ¸. Ac c ord ingly the im pac t ofinf

orm ationsharing

onb id -ask spread sisamb iguous. Interestingly em piric alstud iesw hic h c om pare b id -ask

spread s in°oor-b ased trad ing system s and autom ated trad ing system shave not f

ound

that spread sw ere system atic ally low er inone trad ingvenue.For instance,severalstud ies

(K of

m anand M oser (199 7), P irrong (199 6) and Shyy and Lee (19 95)) have c om pared

the b id -ask spread s onLIF F E (w henit w as a °oor market) and DT B (anautom ated

20

Forlargevalues ofN ,thedi®erence(¹

¾

2

0

(N )

¡¾

¤2

0

(N ))becomes smallerandsmallerbutis neverzero.

T hatis even forN large, there are values for¾

2

0

such thatperfectinformation sharingtakes place and

impairs marketdepth.

2 0

background image

trad ingsystem ) f

or the sam e sec urity(nam elythe G erm anB und f

uturesc ontrac t).K of

m an

and M oser (19 97) ¯nd that spread sare equalinthe tw o m arkets; P irrong (199 6) reports

narrow er spread sonDT B w hereasShyy and Lee (19 95) ¯nd sm aller spread sonLIF F E .

InApril1997, the T oronto Stoc k E xc hange c losed its trad ing °oor and introd uc ed an

elec tronic trad ingsystem .G ri± thset al.(19 98) c om pare b id -askspread sf

or stockslisted

onthe T oronto Stoc k E xc hange b ef

ore and af

ter the sw itc h to the autom ated trad ing

system .T hey d o not ¯nd signi¯c ant c hangesinquoted spread s.

F inally w e c onsid er the e®ec tsofinf

orm ationsharingonthe aggregate expec ted trad ing

c ostsf

or the liquid ity trad ers.T hese expec ted trad ingc ostsare

E(TC ) = E(~

x(p

¡~v)) =

E(~

x

B

(p

¡~v))

|

{

z

}

O rd e rs c

h an ne le d by B

+

E(~

x

0

(p

¡~v))

| {

z

}

O rd ers notc

h anne led by B

:

Inthe last expression,w e d istinguish b etw eenthe expec ted trad ingc ostsf

or the liquid ity

trad ersw ho send their ord ersto b roker B and the expec ted trad ing c ostsf

or those w ho

d o not.U singLemm a 1,w e ob tainthat

E(~

x

B

(p

¡~v)) = E(~x

B

E(p

¡~v j~x

B

= x

B

)) = ¸E(~

x

2
B

(1+ b

1

+ b

2

+ a

3

)) = ¸

Ã

2 ¾

2

B

+ 3¾

2

´

6

¡

¾

2

B

+ ¾

2

´

¢

!

¾

2
B

;

and

E(~

x

0

(p

¡~v)) = ¸¾

2
0

:

Hence w e rew rite the expec ted trad ingc ostsas

E(TC ) =

¸g(¾

2

´

2

B

| {

z }

O rd ers c

h an nele d by B

+ ¸¾

2
0

;

w ith g(¾

2

´

) =

µ

2 ¾

2

B

+ 3¾

2

´

6

(

¾

2

B

+ ¾

2

´

)

. T he ratio g(¾

2

´

) increasesw ith ¾

2

´

. Hence w heninf

orm ation

sharingim provesmarket d epth,it also d ec reasesthe expec ted trad ingc ostsf

or al

lliquid ity

trad ers: (1) the liquid itytrad ersw hose ord ersare c hanneled through b roker B and (2 ) the

other liquid ity trad ers. For instance, w ith perf

ec t inf

orm ationsharing thisoc c ursw hen

¾

2

0

2 [¹¾

2

0

(N );¾

¤2

0

(N )].

W heninf

orm ationsharing im pairsm arket d epth (increases¸), the expec ted trad ing

c ostsofthe liquid ity trad ersw ho d o not send their ord er to b roker B increase.How ever

the expec ted trad ing c ostsf

or the liquid ity trad ersw ho use B 'sservic esd ec line d espite

2 1

background image

the d ec rease inm arket d epth.Ac tually inf

orm ationsharingincreasesc ompetitionam ong

trad ersprovid ingc ounter-partiesto B 'sc lients.T heref

ore a sm aller f

rac tionofthe ord ers

sub m itted b y B 'sc lientsmust b e exec uted against the m arket-m aker w henspec ulators

S and B share nonf

undam entalinf

orm ation(see E quation(6)). T he next proposition

show sthat the red uc tioninthe expec ted trad ing c ostsf

or B 'sc lientsalw aysd om inates

the increase inexpec ted trad ingc ostsf

or the other liquid ity trad ers.

P roposition5 : T he expec ted trad ing costs borne by the liquid ity trad ers are alw ays

sm aller w henthere isinf

ormationsharing.

T he trad inggam e isa zero-sum gam e inthism od el.T hisim pliesthat the expec ted trad ing

c ostsb orne b y liquid ity trad ersare equalto the spec ulatorsaggregate expec ted pro¯ts.

Let ¦

a

2

´

2

"

;N ) b e spec ulators' aggregate expec ted pro¯ts.W e have

E(T C ) = ¦

a

2

´

2
"

;N )

d ef

= ¦

S

+ ¦

B

+ (N

¡1)¦

i

;

w here ¦

i

2

´

2

"

;N ) isthe expec ted pro¯t ofa spec ulator w ho isnot part to the inf

orm ation

sharing agreem ent. R ec allthat a nec essary c onditionf

or inf

orm ationsharing isthat it

increasesthe joint expec ted pro¯tsofspec ulatorsB and S,i.e.¦

S

+ ¦

B

.Since inf

orm ation

sharingd ec reasesthe aggregate expec ted pro¯tsofallspec ulators,it f

ollow sthat the joint

expec ted pro¯t ofspec ulatorsi

2 f2 ;:::;N g d ec reases.T herefore,the c oncom itant d ec rease

intrad ingc ostsf

or liquid ity trad ersand increase intotalexpec ted pro¯tsf

or spec ulators

S and B oc c ur at the expense ofthe spec ulatorsw ho d o not share inf

orm ation.O b serve

that thisc annot happenw henthere isa single f

undamentalspec ulator (N = 1).Inf

ac t

inthisc ase, it ispossib le to show that there are no valuesf

or the param etersf

or w hich

inf

orm ationsharingisoptim alf

or B and S.

O verallthe resultsofthissec tionshow how inf

orm ationsharingonthe °oor c anim prove

the quality of°oor-b ased m arketsalong severald im ensions. Inf

orm ationsharing m akes

pric e more inf

orm ative,lessvolatile and f

ostersc om petitionb etw een°oor b rokers,so that

ultim ately the aggregate trad ingc ostsb orne b y the trad ersw ithout anac c essto the °oor

are low er.

2 2

background image

5 Concl

usion

Inthispaper w e have analyz ed pre-trad e inf

orm ationsharing b etw eentw o tw o trad ers

endow ed w ith d i®erent types ofinf

orm ation, nam ely f

undam entalor non-f

undam ental

inf

orm ation.W e ¯nd that there are c asesinw hic h the tw o trad ersare b etter o® sharing

their inf

orm ation.Inf

orm ationsharing im provespric e d iscovery and d ec reasesvolatility.

W e also show that inf

ormationsharing d ec reases the aggregate expec ted trad ing c osts

b orne b y liquid ity trad ers.F inally the e®ec t ofinf

orm ationsharingonm arket d epth and

b id -ask spread sisamb iguous.

F loor-b ased trad ing systems are d esigned insuc h a w ay that they greatly f

ac ilitate

inf

orm ationsharing am ong °oor b rokers. O verallour resultsshow how thisf

eature c an

im prove their perf

ormance.Aninterestingquestionisw hether the b ene¯tsb rought up b y

inf

orm ationsharingare outw eighted b yinherent d isad vantagesof°oor-b ased system s(such

aslac k oftransparency or larger operatingc osts).T hisissue islef

t f

or f

uture researc h.

2 3

background image

R ef

erences

[1] Ad m atiA.,and P °eid erer P .(1986),\A M onopolistic M arket f

or Inf

orm ation",J our-

nalofE conom ic T heory,39,4 0 0 {4 38.

[2 ] Ad m atiA.,and P °eid erer P .(1988),\Sellingand T rad ingonInf

orm ationinF inancial

M arkets",Am ericanE conomic R eview ,78(2 ),9 6{10 3.

[3] AllenF .(19 90 ),\T he M arket f

or Inf

orm ationand the O riginofF inancialInterm ed i-

ation",J ournalofF inancialInterm ed iation,1,3{30 .

[4 ] B enab ou, R .and Laroque, M .(1992 ), \U sing privileged inf

orm ationto m anipulate

m arkets: insid ers,gurusand c red ib ility",Quarterly J ournalofE conomic s,92 1{9 58.

[5] B enveniste L.M .,M arc usA.

J .,and W ilhelm W .

J .(19 92 ), \W hat'sspec ialab out the

spec ialist ?",J ournalofF inancialE conom ic s,32 ,61{86.

[6] B hattacharya and P °eid erer (19 85), \Delegated portf

olio m anagement", J ournalof

E conom ic T heory,36,1{2 5.

[7] Chakravarty,S.and Sarkar,A.(2 0 0 0 ),\A M od elofB roker'strad ingw ith Applic ations

T o O rd er F low Internaliz ation",f

orthc om inginR eview ofF inancialE conomic s.

[8] Coval, J .and Shumw ay, T .(199 8), \Issound just noise", W orking paper, U niversity

ofM ichigan.

[9] Dom ow itz , Iand Steil, B .(1999 ), \Autom ation, trad ing c ostsand the struc ture of

the Sec uritiesT rad ing Industry", B rookings-W hartonP apersonF inancialServices,

2 ,33-9 2 .

[10 ] F ishm anM .and Hagerty K .(19 95), \T he Incentive to SellF inancialM arket Inf

or-

m ation",J ournalofF inancialInterm ed iation,4 ,95{115.

[11] F ishm an,M .and F .Longsta® (19 92 ),\DualT rad inginFuturesm arkets",J ournalof

F inance,4 7,64 3{669.

[12 ] G ri± ths, M .

, Smith, B .

, T urnbull, A.and R .W hite (1998), \Inf

orm ationF low sand

O penO utc ry: E vid ence ofIm itationT rad ing", J ournalofInternationalF innac ial

M arkets, Institutionsand M oney,8,10 1{116.

2 4

background image

[13] Harris(2 0 0 0 ), L., \F loor versusautom ated trad ing systems: a survey ofthe issues",

LHarris.U SC.

ed u/Ac rob at/°oor.

[14 ] Hasb rouc k, J ., So¯anos, G .and Soseb ee, D.(199 3), \NY SE System sand T rad ing

P roc ed ures",NY SE W orkingP aper,93-0 1.

[15] K of

m an,P .and M oser,J .(19 97),\Spread s,inf

orm ation°ow sand transparencyac ross

trad ingsystems",Applied F inancialE conom ic s,7,2 81{2 94 .

[16] K yle A.S.(1985), \Continuous Auc tions and Insid er T rad ing", E conom etrica, 6,

1315{1335.

[17] M ad havan,A.(1996),\Sec urity pric esand m arket transparency",J ournalofF inan-

c ialInterm ed iation,5,2 55{2 83.

[18] M ad rigalV.(199 6),\Non-Fundam entalSpec ulation",J ournalofF inance,51(2 ),553{

576.

[19] P irrong, C.(199 6), \M arket liquid ity and d epth onc om puteriz ed and openoutc ry

trad ing system s: a c omparisonofDT B and LIF F E B und c ontrac ts", J ournalofFu-

turesM arkets,16,519{54 3.

[2 0 ] R ÄoellA.(19 90 ),\Dual-Capac ity T rad ingand the Quality ofthe M arket",J ournalof

F inancialInterm ed iation,1,10 5{12 4 .

[2 1] Sarkar, A.(199 5) \Dualtrad ing: w inners, losers and m arket impac t", J ournalof

F inancialIntermed iation,4 ,77-93.

[2 2 ] Sarkar, A.and W u, L.(199 9) \Con°ic t ofinterestsand exec utionquality off

utures

°oor trad ers",W orkingP aper,New -Y ork F E D.

[2 3] Shyy, G .and Lee, J .H., (19 95) \P ric e transmissionand inf

orm ationasym m etry in

B und f

uturesm arkets: LIF F E vs.DT B ",J ournalofFuturesM arkets,15,87-99 .

[2 4 ] So¯anos G .

, and W erner I.(19 97), \T he trad es ofNY SE F loor B rokers", NY SE

W orkingP aper 9 7-0 4 .

[2 5] T heissen,E .(19 99 ),\F loor versusSc reenT rad ing: E vid ence f

rom the G erm anStoc k

M arket",W orkingP aper CR 69 0 ,G roupe HE C.

2 5

background image

[2 6] VivesX.(199 5),\T he Speed ofInf

orm ationR evelationina F inancialM arket M ec ha-

nism ",J ournalofE conomic T heory,67,178{2 0 4 .

[2 7] Venkataraman,K .(2 0 0 0 ) \Autom ated versusF loor T rad ing: AnAnalysisofexec ution

Costsonthe P arisand New -Y ork E xc hanges," W orking P aper, SouthernM ethod ist

U niversity.

2 6

background image

6 Append ix

P roofofLem m a 1

Step1: T he optim altrad in

g strategy f

or sp ec ul

ator S.Let y

S

= (~

v;^

v; ^

x) b e the

inf

orm ationset ofspec ulator S.T he latter c hooseshism arket ord er,Q

S

,so asto m axim iz e

hisexpec ted pro¯t

¼

S

(y

S

) = E(Q

S

(~

v

¡p(~

O ))

jy

S

):

T he ¯rst ord er c onditionyields

Q

S

(y

S

) =

(~

v

¡¹)¡¸ £E

h

Q

B

(y

B

) +

P

j= N
j= 2

Q

i

(~

v) + ~

x

0

+ ~

x

B

jy

S

i

2 ¸

:

(9 )

Notic e that

E

¡

Q

i

(~

v)

jy

S

¢

= a

0

(~

v

¡¹);

and

E

¡

Q

B

(y

B

)

jy

S

¢

= b

1

E (~

x

B

j^

x) + b

2

^

x + b

3

(^

v

¡¹ );

and

E (~

x

B

j^

x) =

¾

2

B

^

x

¾

2

B

+ ¾

2

´

:

Sub stitutingthese expressionsinE quation(9) yields

Q

S

(y

S

) =

(~

v

¡¹ )

2 ¸

¡

1
2

£

·

(N

¡1)a

0

(~

v

¡¹) + b

3

(^

v

¡¹ )+ (b

1

+ 1)

¾

2

B

¾

2

B

+ ¾

2

´

^

x + b

2

^

x

¸

=

µ

1

2 ¸

¡

(N

¡1)a

0

2

(~

v

¡¹)¡

b

3

2

(^

v

¡¹ )¡

1
2

µ

(b

1

+ 1)

¾

2

B

¾

2

B

+ ¾

2

´

+ b

2

^

x:

Hence,

a

1

=

µ

1

2 ¸

¡

(N

¡1)a

0

2

a

2

=

¡

b

3

2

a

3

=

¡

1
2

µ

(b

1

+ 1)

¾

2

B

¾

2

B

+ ¾

2

´

+ b

2

Step 2 : T he optim altrad ingstrategy f

or spec ul

ator i,i

6

= S.

2 7

background image

Spec ulator ic hooseshismarket ord er,Q

i

,so asto m axim iz e hisexpec ted pro¯t

¼

i

(v) = E(Q

i

(~

v

¡p(~

O ))

j~v = v):

T he ¯rst ord er c onditionyields

Q

i

(~

v) =

(~

v

¡¹)¡¸ £E

h

Q

S

(y

S

) +

P

j= N
j= 2

Q

j

(~

v) + Q

B

(y

B

) + ~

x

j~v = v

i

¸

(10 )

W e f

oc usonsymm etric trad ing strategiesf

or allthe spec ulatorsi

6

= S. T hisim poses

Q

j

(~

v) = Q

i

(~

v);

8j6

= i.Sub stitutingQ

j

b y Q

i

inE quation(10 ) yields

Q

i

(~

v) =

(~

v

¡¹)

N ¸

¡

1

N

£

¡

E

£

Q

S

(y

S

)

j~v

¤

+ E

£

Q

B

(y

B

)

j~v = v

¤¢

:

(11)

Furthermore

E

¡

Q

S

(y

S

)

j~v = v

¢

= (a

1

+ a

2

)(~

v

¡¹);

and

E

¡

Q

B

(y

B

)

j~v = v

¢

= b

3

(~

v

¡¹ ):

Consequently

Q

i

(~

v) =

µ

1

N ¸

¡

(a

1

+ a

2

+ b

3

)

N

(~

v

¡¹ ):

(12 )

W e d ed uc e that

a

0

=

1

N ¸

¡

(a

1

+ a

2

+ b

3

)

N

:

(13)

Step 3: T he optim altrad ingstrategy f

or sp ec ul

ator B .W e d enote y

B

= (~

x

B

;^

v; ^

x),

the inf

ormationset ofspec ulator B .She c hoosesher market ord er,Q

B

,so asto m axim iz e

¼

B

(y

B

) = E(Q

B

(~

v

¡p(~

O ))

jy

B

):

2 8

background image

T he ¯rst ord er c onditionyields

Q

B

(y

B

) =

E (~

v

j^

v)

¡¹ ¡¸ £E

·

Q

S

(y

S

) +

N

P

i= 2

Q

i

(~

v) +

P

x

i

jy

B

¸

2 ¸

=

E (~

v

j^

v)

¡¹ ¡¸ £E

£

Q

S

(y

S

) + (N

¡1)Q

i

(~

v) + ~

x

jy

B

¤

2 ¸

:

W e notic e that

E

¡

Q

S

(y

S

)

jy

B

¢

= a

1

E (~

v

¡¹ j^

v) + a

2

(^

v

¡¹)+ a

3

^

x;

and

E

¡

Q

i

(~

v)

jy

B

¢

= a

0

E (~

v

¡¹ j^

v);

and that

E (~

v

¡¹ j^

v) =

¾

2

v

¾

2

v

+ ¾

2

"

(^

v

¡¹ ):

Sub stituting these expressionsinthe ¯rst ord er c onditionf

or Spec ulator B yields(af

ter

som e algeb ra)

Q

B

(y

B

) =

¡

~

x

B

2

¡

a

3

2

^

x +

1

2 ¸

µ

¾

2

v

¾

2

v

+ ¾

2

"

¡¸a

2

¡¸ (a

1

+ (N

¡1)a

0

)

¾

2

v

¾

2

v

+ ¾

2

"

(^

v

¡¹ ):

(14 )

Hence,

b

1

=

¡

1
2

;

b

2

=

¡

a

3

2

;

b

3

=

1

2 ¸

µ

¾

2

v

¾

2

v

+ ¾

2

"

¡¸a

2

¡¸ (a

1

+ (N

¡1)a

0

)

¾

2

v

¾

2

v

+ ¾

2

"

:

Steps1 to 3 give us9 equationsw ith 9 unknow ns(a

1

, a

2

etc ..

.). Solving thissystem of

2 9

background image

equationsyield

a

1

=

3(¾

2

v

+ ¾

2

"

)

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

a

2

=

¡

¾

2

v

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

a

3

=

¡

¾

2

B

3

¡

¾

2

B

+ ¾

2

´

¢;

a

0

=

2 ¾

2

v

+ 3¾

2

"

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

b

1

=

¡

1
2

;

b

2

=

¾

2

B

6

¡

¾

2

B

+ ¾

2

´

¢;

b

3

=

2 ¾

2

v

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

Step 4 .Com putationof¸ .R ec allthat

p(O ) = E(~

v

j~

O = O ):

G ivenspec ulators' trad ingrules,

O = Q

S

(y

S

) + (N

¡1)Q

i

(~

v) + Q

B

(y

B

) + ~

x

= (a

1

+ (N

¡1)a

0

)(~

v

¡¹ )+ (a

2

+ b

3

)(^

v

¡¹ )+ (a

3

+ b

2

) ^

x + (b

1

+ 1) ~

x

B

+ ~

x

0

:

Hence ~

O isnorm ally d istrib uted ,w ith m eanzero.Consequently

p(O ) = ¹ + ¸ O ;

w ith

¸ =

C ov(~

v; ~

O )

V ar( ~

O )

:

(15)

Now

c

ov

³

~

v; ~

O

´

= (a

1

+ (N

¡1)a

0

+ a

2

+ b

3

2

v

=

(2 ¾

2

v

(N + 1) + 3N ¾

2

"

2

v

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

;

(16)

30

background image

and

V ar (O ) =

(a

1

+ (N

¡1)a

0

)

2

¾

2

v

+ (a

2

+ b

3

)

2

¡

¾

2

v

+ ¾

2

"

¢

+ 2 (a

1

+ (N

¡1)a

0

)(a

2

+ b

3

2

v

+ (a

3

+ b

2

)

2

¡

¾

2
B

+ ¾

2

´

¢

+ (b

1

+ 1)

2

¾

2

B

+ 2 (a

3

+ b

2

)(b

1

+ 1)¾

2

B

+ ¾

2

0

=

(a

1

+ (N

¡1)a

0

+ a

2

+ b

3

)

2

¾

2

v

+

µ

b

3

2

2

¾

2

"

+

µ

a

3

2

+

1
2

2

¾

2
B

+

³a

3

2

´

2

¾

2

´

+ ¾

2

0

=

¾

2

v

(2 ¾

2

v

(N + 1) + 3N ¾

2

"

)

2

+ ¾

2

v

¾

2

"

(¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

))

2

¡

4

B

36

¡

¾

2

B

+ ¾

2

´

¢+

¾

2

B

4

+ ¾

2

0

:

W e d ed uc e that

¸ =

6

q

¾

2

v

¡

¾

2

B

+ ¾

2

´

¢

(4 (N + 1)¾

4

v

+ (12 N + 5)¾

2

v

¾

2

"

+ 9N ¾

4

"

)

(2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

¾

2

B

¡

4 ¾

2

B

+ 9¾

2

´

¢

+ 36¾

2

0

¡

¾

2

B

+ ¾

2

´

¢¢:

(17)

P roofofLem m a 2

W e w rite the equilib rium value of¸ inthe f

ollow ingw ay:

¸

¡

¾

2

"

2

´

¢

=

6

p

¾

2

v

(4 (N + 1)¾

4

v

+ (12 N + 5)¾

2

v

¾

2

"

+ 9N ¾

4

"

)

(2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

£

q

¾

2

B

+ ¾

2

´

q

¾

2

B

¡

4 ¾

2

B

+ 9¾

2

´

¢

+ 36¾

2

0

¡

¾

2

B

+ ¾

2

´

=

6

£¸

1

¡

¾

2

"

¢

£¸

2

¡

¾

2

´

¢

:

It f

ollow sthat

¡

¾

2

"

2

´

¢

2

´

=

6

£¸

1

¡

¾

2

"

¢

£

2

¡

¾

2

´

¢

2

´

=

¡

15

£¸

1

2

"

)

£(¾

2

B

)

2

q

¾

2

B

+ ¾

2

´

¡

¾

2

B

¡

4 ¾

2

B

+ 9¾

2

´

¢

+ 36¾

2

0

¡

¾

2

B

+ ¾

2

´

¢¢

3
2

< 0 ;

¡

¾

2

"

2

´

¢

2

"

=

6

£¸

2

¡

¾

2

´

¢

£

1

2

"

)

2

"

=

6

£¸

2

¡

¾

2

´

¢

£¾

4

v

(3(7N

¡5)¾

2

"

+ 2 (5N

¡2 )¾

2

v

)

2 (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

2

p

¾

2

v

(4 (N + 1)¾

4

v

+ (12 N + 5)¾

2

v

¾

2

"

+ 9N ¾

4

"

)

> 0 :

31

background image

W e also ob serve that

lim

¾

2

"

! 1

¸

¡

¾

2

"

2

´

¢

=

6

£¸

2

¡

¾

2

´

¢

£

p

N ¾

2

v

(N + 1)

;

lim

¾

2

´

! 1

¸

¡

¾

2

"

2

´

¢

=

2

£¸

1

¡

¾

2

"

¢

£

1

p

¾

2

B

+ 4 ¾

2

0

:

Consequently,

¸(

1 ;1 ) = lim

¾

2

´

! 1

¾

2

"

! 1

¸

¡

¾

2

"

2

´

¢

= 6

£

1

p

2

B

+ 36¾

2

0

£ lim

¾

2

"

! 1

¸

1

¡

¾

2
"

¢

=

2

p

N ¾

2

v

(N + 1)

p

¾

2

B

+ 4 ¾

2

0

:

(18)

P roofofLem m a 3

W e d enote b y ¼

j

(y

j

), spec ulator j'sexpec ted pro¯t givenhisinf

orm ationset y

j

prior to

trad ingat d ate 1 and b y¦

j

2

´

2

"

;N ),hisex-ante expec ted pro¯t,that isb ef

ore ob serving

inf

orm ation.Notic e that

¼

j

(y

j

) = Q

j

£E(~v ¡¹ ¡¸ ~x ¡¸Q

¡j

¡¸Q

j

jy

j

):

(19 )

T he ¯rst ord er c onditionf

or spec ulator jim poses(see the proofofLem m a 1) that

2 ¸ Q

j

= E(~

v

¡¹ ¡¸ ~x ¡¸Q

¡j

jy

j

):

(2 0 )

Hence,w e d ed uc e f

rom E quations(19 ) and (2 0 ) that ¼

j

(y

i

) = ¸(Q

j

)

2

.It f

ollow sthat

¦

j

= E(¼

j

(y

j

)) = ¸

£V ar(Q

j

):

T hisim pliesthat

¦

S

2

´

2

"

;N ) = ¸

¡

a

2

1

V ar~

v + a

2

3

V ar^

x

1

+ a

2

2

V ar^

v + 2 a

1

a

2

c

ov (~

v;^

v)

¢

;

w hich yield (usingthe expressionsf

or a

1

,a

2

and a

3

)

¦

S

2

´

2

"

;N ) =

Ã

¾

2

v

2

v

+ ¾

2

"

)(4 ¾

2

v

+ 9¾

2

"

)

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

2

+

¸¾

4

B

9

¡

¾

2

B

+ ¾

2

´

¢

!

:

32

background image

W e d e¯ne

¦

S
nf

d ef

=

¸ ¾

4

B

9

¡

¾

2

B

+ ¾

2

´

¢;

and

¦

S
f

d ef

=

µ

¾

2

v

2

v

+ ¾

2

"

)(4 ¾

2

v

+ 9 ¾

2

"

)

¸ (2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

2

:

W e proc eed exac tly inthe same w ay f

or spec ulator B .

P roofofP roposition2

T he f

ollow inglem m a isusef

ulf

or the proof

.

Lem m a 4 : Inabsence ofinformationsharing, spec ulator S hasa larger expec ted pro¯ t

thanspec ulator B (¦

B

(

1 ;1 ;N ) ·¦

S

(

1 ;1 ;N )) i®

¾

2

0

¸

(N

¡1)

4 + (N

¡1)

:

P roof

: W e have

¦

B

(

1 ;1 ;N ) =

¸(

1 ;1 )¾

2

B

4

;

(2 1)

and

¦

S

(

1 ;1 ;N ) =

1

¸ (

1 ;1 )(N + 1)

2

:

(2 2 )

U singE quation(18) (proofofLem ma 2 ) w e ob tainthat ¦

B

(

1 ;1 ;N ) ·¦

S

(

1 ;1 ;N ) i®

¾

2

0

>

(N

¡1)¾

2

B

4

:

T henthe result f

ollow sf

rom the f

ac t that ¾

2

B

= 1

¡¾

2

0

.

W henthere isperf

ec t inf

orm ationsharing,spec ulatorsB and Shave the sam e expec ted

33

background image

pro¯tsgivenb y

¦

S

(0 ;0 ;N ) = ¦

B

(0 ;0 ;N ) =

1

¸ (0 ;0 )(N + 2 )

2

+

¸(0 ;0 )¾

2

B

9

:

(2 3)

It f

ollow sthat perf

ec t inf

orm ationsharingispossib le i®

1

¸(0 ;0 )(N + 2 )

2

+

¸ (0 ;0 )¾

2

B

9

¸M axf¦

B

(

1 ;1 ;N );¦

S

(

1 ;1 ;N )g:

(2 4 )

Case 1.¾

2

0

¸

(N

¡1)

4 + (N

¡1)

:Inthisc ase,usingLemm a 4 ,w e c anrew rite Condition(2 4 ) as

1

¸(0 ;0 )(N + 2 )

2

+

¸(0 ;0 )¾

2

B

9

¸¦

S

(

1 ;1 ;N );

w hich yields(usingE quation(2 2 )),

1

¸ (0 ;0 )(N + 2 )

2

+

¸(0 ;0 )¾

2

B

9

¸

1

¸(

1 ;1 )(N + 1)

2

(2 5)

It f

ollow sf

rom the expressionof¸ (inthe proofofLem m a 2 ) that

¸(0 ;0 ) =

3

p

N + 1

(N + 2 )

p

¾

2

B

+ 9¾

2

0

;

and ¸(

1 ;1 ) isgivenb y equation(18).U sing these expressionsand the fac t that ¾

2

B

=

1

¡¾

2

0

,w e rew rite (af

ter som e algeb ra) E quation(2 5) as

µ

(N + 1)
(N + 2 )

G (N ;¾

2

0

)

¸0 ;

w ith

G (N ;¾

2

0

) =

"

N + 1
N + 2

+

(N + 1)

2

(1

¡¾

2

0

)

(N + 2 )(1 + 8¾

2

0

)

¡

3

p

(N + 1)(1 + 3¾

2

0

)

2

p

N (1 + 8¾

2

0

)

#

:

Notic e that G (N ;:) d ec reasesw ith ¾

2

0

.Furtherm ore G isstric tly positive f

or ¾

2

0

=

(N

¡1)

4 + (N

¡1)

and negative f

or ¾

2

0

= 1.W e c onclud e that there existsa c uto® ¾

¤2

0

(N )

2 (

(N

¡1)

4 + (N

¡1)

;1) suc h

that Condition(2 5) issatis¯ed i® ¾

2

0

· ¾

¤2

0

(N ). T hisc uto® isim plic itly d e¯ned asthe

solutionof

G (N ;¾

2

0

) = 0 :

(2 6)

34

background image

AsG (:;:) increasesw ith N and d ec reasesw ith ¾

2

0

, w e d ed uc e that ¾

2

¤

0

(N ) increasesw ith

N .

Case 2 .¾

2

0

<

(N

¡1)

4 + (N

¡1)

:Inthisc ase,usingLemm a 4 ,w e c anrew rite Condition(2 4 ) as

1

¸ (0 ;0 )(N + 2 )

2

+

¸(0 ;0 )¾

2

B

9

¸¦

B

(

1 ;1 ;N );

w hich yields(usingE quation(2 1)),

1

¸ (0 ;0 )(N + 2 )

2

+

¸(0 ;0 )¾

2

B

9

¸

¸(

1 ;1 )¾

2

B

4

(2 7)

U sing the expressionsf

or ¸ (0 ;0 ) and ¸(

1 ;1 ), after som e m anipulations, w e rew rite the

previousc onditionas

F (N ;¾

2

0

)

d ef

=

Ã

3(N + 2 )

p

N (1 + 8¾

2

0

)

2

p

(N + 1)(1 + 3¾

2

0

)

¡(N + 1)

!

(1

¡¾

2

0

)

1 + 8¾

2

0

¡1 ·0 :

W e ob serve that F (N ;:) d ec reasesw ith ¾

2

0

. Furtherm ore F > 0 f

or ¾

2

0

= 0 and F < 0

f

or ¾

2

0

=

(N

¡1)

4 + (N

¡1)

.It f

ollow sthat there existsa c uto® ¾

2

0

(N )

2 (0 ;

(N

¡1)

4 + (N

¡1)

) suc h that f

or

¾

2

0

¸¾

2

0

(N ),Condition(2 4 ) issatis¯ed .T hisc uto® isim plic itly d e¯ned asthe solutionof

F (N ;¾

2

0

) = 0 :

AsF (:;:) increasesw ith N and d ec reasesw ith ¾

2

0

, w e d ed uc e that ¾

2

0

(N ) increasesw ith

N .Furtherm ore w e have

0 < ¾

2
0

(N ) <

(N

¡1)

4 + (N

¡1)

< ¾

2

¤

0

(N ) < 1:

P roofofP roposition3

Step 1: P ric esare m ore in

f

orm ative w henthere isinf

orm ationsharin

g.R ec all

that ~

v and ~

p are norm ally d istrib uted and that ~

p(O ) = ¹ + ¸O .T heref

ore

V ar(~

v

j~p(O ) = p) = ¾

2

v

¡

C ov

2

(~

v; ~

O )

V ar( ~

O )

:

U singE quations(15) and (16) w hic h appear inthe proofofLem m a 1,w e ob tainthat

35

background image

V ar(~

v

j~p(O ) = p) = ¾

2

v

¡¸C ov(~v; ~

O ) = ¾

2

v

¡

(2 ¾

2

v

(N + 1) + 3N ¾

2

"

2

v

(2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

:

It isim m ed iate that V ar(~

v

j~

p(O ) = p) increasesw ith ¾

2

"

and d oesnot d epend on¾

2

´

.T his

m eansthat inf

orm ationsharing (a d ec rease in¾

2

"

and ¾

2

´

) m akesequilib rium pric esm ore

inf

orm ative.

Step 2 : P ric esare l

essvol

atil

e w henthere isin

f

orm ationsharin

g.

O b serve that

V ar(~

v

¡p) = E(E((~v ¡p)

2

j~p = p)):

As~

p = E(~

v

j~p),the previousequality im pliesthat

V ar(~

v

¡p) = E(V ar(~v j~p = p)):

F inally since ~

v and ~

p are norm ally d istrib uted ,V ar(~

v

j~p = p) isc onstant so that

V ar(~

v

¡p) = V ar(~v j~

p = p):

Hence pric esare lessvolatile w henthere isinf

orm ationsharing since pric esare more in-

f

orm ative inthisc ase.

P roofofP roposition4

Consid er the f

ollow ingratio

H (N ;¾

2

0

) =

¸(0 ;0 )

¸ (

1 ;1 )

:

P erf

ec t inf

orm ationsharingimprovesm arket liquid ity ifand only if

H (N ;¾

2

0

) < 1:

U singthe expressionf

or ¸ giveninthe proofofLem m a 2 ,w e ob tain

H (N ;¾

2

0

) =

3(N + 1)

p

(N + 1)(1 + 3¾

2

0

)

2 (N + 2 )

p

N (1 + 8¾

2

0

)

:

36

background image

It isim m ed iate that H (N ;:) d ec reasesw ith ¾

2

0

.Furtherm ore H (N ;1) < 1 and H (N ;0 ) > 1.

T heref

ore there existsa threshold ¹

¾

2

0

(N ) suc h that H < 1 i® ¾

2

0

> ¹

¾

2

0

(N ).T histhreshold

solves

H (N ;¾

2

0

) = 1:

Solvingthisequation,w e d ed uc e that

¹

¾

2

0

(N ) =

1

¡h

2

(N )

8h

2

(N )

¡3

;

w here h (N ) =

2 (N + 2 )

p

N

3(N + 1)

p

N + 1)

< 1.Ash (N )

¸2 =3,w e have ¹¾

2

0

< 1.

P roofofP roposition5

T he expec ted trad ingc ostsf

or the liquid ity trad ersw henthere isinf

ormationsharingare

E (C T

e

) = ¸

Ã

2

0

¡

¾

2

B

+ ¾

2

´

¢

+

¡

2 ¾

2

B

+ 3¾

2

´

¢

¾

2

B

6

¡

¾

2

B

+ ¾

2

´

¢

!

:

U singthe expressionf

or ¸,w e rew rite thisequationas

E (C T

e

) =

p

¾

2

v

(4 (N + 1)¾

4

v

+ (12 N + 5)¾

2

v

¾

2

"

+ 9N ¾

4

"

)

¡

2

0

¡

¾

2

B

+ ¾

2

´

¢

+

¡

2 ¾

2

B

+ 3¾

2

´

¢

¾

2

B

¢

(2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

¾

2

B

+ ¾

2

´

¢£

¾

2

B

¡

4 ¾

2

B

+ 9 ¾

2

´

¢

+ 36¾

2

0

¡

¾

2

B

+ ¾

2

´

¢¤ :

W henthe b rokersd o not share their inf

orm ation,then

E (C T

ne

) =

E [(P(O )

¡~v)£~x]= ¸

n e

µ

¾

2
0

+

1
2

¾

2

B

=

p

¾

2

v

N

(N + 1)

£

(2 ¾

2

0

+ ¾

2

B

)

p

¾

2

B

+ 4 ¾

2

0

:

W e d enote © the d i®erence b etw eenthe expec ted trad ingc ostsw henthere isinf

orm ation

sharingand w henthere isno inf

orm ationsharing.Hence

©

¡

N ;¾

2

"

2

´

¢

= E (C T

e

)

¡E (C T

ne

)

37

background image

Straightf

orw ard m anipulationsshow that

p

¾

2

v

(4 (N + 1)¾

4

v

+ (12 N + 5)¾

2

v

¾

2

"

+ 9N ¾

4

"

)

(2 (N + 2 )¾

2

v

+ 3(N + 1)¾

2

"

)

<

p

¾

2

v

N

(N + 1)

(2 8)

Now c onsid er the f

ollow ingf

unction

Ã

¡

¾

2

´

¢

=

¡

2

0

¡

¾

2

B

+ ¾

2

´

¢

+

¡

2 ¾

2

B

+ 3¾

2

´

¢

¾

2

B

¢

2

¡

¾

2

B

+ ¾

2

´

¢£

¾

2

B

¡

4 ¾

2

B

+ 9¾

2

´

¢

+ 36¾

2

0

¡

¾

2

B

+ ¾

2

´

¢¤¡

(2 ¾

2

0

+ ¾

2

B

)

2

¾

2

B

+ 4 ¾

2

0

:

As¾

2

0

= 1

¡¾

2

B

,w e rew rite the previousequationas

Ã

¡

¾

2

´

¢

=

¡

6

¡

¾

2

B

+ ¾

2

´

¢

¡¾

2

B

¡

4 ¾

2

B

+ 3¾

2

´

¢¢

2

¡

¾

2

B

+ ¾

2

´

¢£

36

¡

¾

2

B

+ ¾

2

´

¢

¡¾

2

B

¡

32 ¾

2

B

+ 2 7¾

2

´

¢¤¡

(2

¡¾

2

B

)

2

4

¡3¾

2

B

:

O b serve that

à (0 ) =

¾

2

B

(

¡7+ 11¾

2

B

¡4 ¾

4

B

)

(9

¡8¾

2

B

)(4

¡3¾

2

B

)

< 0 ,since ¾

2

B

2 [0 ;1]

and

lim

¾

2

´

! 1

Ã

¡

¾

2

´

¢

= 0 :

and

Ã

0

¡

¾

2

´

¢

=

¾

4

B

¡

176¾

8

B

+ 14 4 ¾

6

B

¡

2 ¾

2

´

¡3

¢

¡72 ¾

2

B

¾

2

´

¡

2

´

¡7

¢

+ 9 ¾

4

B

¡

13¾

4

´

¡88¾

2

´

+ 2 8

¢

+ 2 52 ¾

4

´

¢

¡

¾

2

B

+ ¾

2

´

¢

2

£

36

¡

¾

2

B

+ ¾

2

´

¢

¡¾

2

B

¡

32 ¾

2

B

+ 2 7¾

2

´

¢¤

2

(2 9 )

Now w e rem ark that if¾

2

B

2

£

0 ;

2 1
2 2

¤

, thenÃ

0

¡

¾

2

´

¢

> 0 and theref

ore Ã

¡

¾

2

´

¢

< 0 . If

¾

2

B

2

£

2 1
2 2

;1

¤

,thenthere isa unique value of¾

2

´

suc h that Ã

0

= 0 .T hisvalue is

¹

¾

2

´

=

2 ¾

2

B

(2 2 ¾

2

B

¡2 1)

3(14

¡13¾

2

B

)

:

Hence à hasonly one extremum and thisextremum isa m inimum since

38

background image

Ã

00

¡

¹

¾

2

´

¢

=

2 7(14

¡13¾

2

B

)

4

62 5¾

8

B

(2 ¾

2

B

¡1)

> 0 ;

W e d ed uc e that

2

´

and

2

B

¡

¾

2

´

¢

< 0 .W e c onclud e that

¡

2

0

¡

¾

2

B

+ ¾

2

´

¢

+

¡

2 ¾

2

B

+ 3¾

2

´

¢

¾

2

B

¢

¾

2

B

+ ¾

2

´

¢£

¾

2

B

¡

4 ¾

2

B

+ 9¾

2

´

¢

+ 36¾

2

0

¡

¾

2

B

+ ¾

2

´

¢¤<

(2 ¾

2

0

+ ¾

2

B

)

p

¾

2

B

+ 4 ¾

2

0

:

(30 )

U singInequality(2 8) and Inequality(30 ),w e d ed uc e that ©

¡

N ;¾

2

"

2

´

¢

< 0 w hich m eans

that the expec ted trad ingc ostsare alw ayslow er w henthere isinf

orm ationsharing.

39

background image

FIGURE 1: Is Perfect Information Sharing Possible?

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2

5

10

15

20

25

30

35

40

45

50

Number of Fundamental Speculators

s

2 0

NO

YES

NO

σ

2

0

(N)

σ

2

0

*

(N)

background image

FIGURE 2: Does Perfect Information Sharing Improve Liquidity?

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2

5

10

15

20

25

30

35

40

45

50

Number of Fundamental Speculators

s

2

0

YES

NO

σ

2

0

(N)

σ

2

0

*

(N)


Wyszukiwarka

Podobne podstrony:
Ionic liquids as solvents for polymerization processes Progress and challenges Progress in Polymer
Foucault And Ethical Universality
Foucault and The Birth of Biopolitics
Foucault And Deleuze
social capital and knowledge sharing in knowledge based organizations an empirical study
Death and return of the author criticism and subjectivity in barthes foucault and derrida
Schuster; Death Reckoning in the Thinking of Heidegger, Foucault, and Derrida
[Demetra Smith Nightingale, Stephen A Wandner] Informal and Nonstandard Employment in US
Chordia, Roll And Subrahmanyam Commonality In Liquidity
Bove Foucault and the task of our times
Foucault And Marcuse
Goldstein Michel Foucault and Meta Narrative, 2003
Functional Origins of Religious Concepts Ontological and Strategic Selection in Evolved Minds
2008 4 JUL Emerging and Reemerging Viruses in Dogs and Cats

więcej podobnych podstron