Pomiary temperatury pirometrem Nieznany

background image

Raport Laboratorium z Fizyki 3

ĆWICZENIE NR 30

POMIAR TEMPERATURY PIROMETREM OPTYCZNYM

Imi i Nazwisko,

ę

Nr indeksu, Wydzia

ł

Termin zaj

ęć

Data oddania
sprawozdania

ocena ko cowa

ń

Zatwierdzam wyniki pomiarów.
Data i podpis prowadzącego kurs ............................................................

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego

sprawozdania

1. Zestaw przyrządów :

background image

- pirometr optyczny;
- zasilacz stabilizowany;
- amperomierz prądu stałego;
- woltomierz napięcia stałego;
- żarówka 50W/12V .

2. Cel ćwiczenia:

Określenie temperatury włókna żarówki w zależności od dostarczonej mocy.

3. Wiadomości wstępne:

Każde ciało znajdujące się w temperaturze wyższej niż 0 K jest źródłem promieniowania
termicznego, wywołanego ruchem cieplnym cząsteczek i atomów. W chwili, gdy ciało osiąga
temperaturę 950 K zaczyna emitować promieniowanie widzialne - początkowo tylko czerwoną
część widma, które następnie stopniowo się rozszerza, tak aby przy 1800 K objąć cały zakres
widzialny. Pirometrią nazywa się metody pomiaru temperatury ciał polegające na porównywaniu
ich całkowitej lub spektralnej zdolności emisyjnej. Urządzenia służące do pomiaru wysokich
temperatur i wykorzystujące powyższą własność noszą nazwę pirometrów optycznych .
W niniejszym ćwiczeniu do pomiaru temperatur został wykorzystany pirometr optyczny
monochromatyczny z zanikającym włóknem. Obserwator patrzący przez okular (w którym znajduje
się filtr przepuszczający tylko promieniowanie o barwie czerwonej (

λ

=650 nm)) widzi włókno

żarówki (znajdującej się wewnątrz pirometru) na tle obrazu badanego ciała:

U

U

a b c

Zachodzą trzy możliwe przypadki:
a) włókno jaśniejsze od badanego ciała,
b) włókno znika w tle,
c) włókno ciemniejsze od badanego ciała;
W chwili, gdy włókno żarówki znika na tle badanego ciała ze skali galwanometru
G (wyskalowanego w jednostkach temperatury [

°

C]) odczytuje się wartość temperatury czarnej

TCZ badanego ciała, czyli temperatury ciała doskonale czarnego (ciała o 100-procentowej
zdolności emisji i absorpcji w każdej temperaturze), które w pewnym małym umownym przedziale
długości fal

∆λ

promieniuje z takim samym natężeniem jak badany obiekt:

E(

λ

,T

CZ

)

∆λ

=A(T

RZ

)E(

λ

,T

RZ

)

∆λ

Żarówka jest włączona w jedno z ramion mostka Wheatstone'a, a galwanometr G w jego przekątną.
Metoda pomiarowa wykorzystuje własność włókna żarówki polegającą na wzroście jego rezystancji
wraz ze wzrostem temperatury. Zmniejszając wartość rezystancji R powoduje się wzrost
temperatury włókna, a tym samym wychylenie wskazówki galwanometru (który do temperatury
około 800

°

C pozostaje niewzbudzony, gdyz mostek jest zrównoważony) proporcjonalne do

temperatury badanego ciała.

Związek pomiędzy temperaturą czarną i temperaturą rzeczywistą można wyznaczyć z

background image

następującej równości:

C

C

T

A

T C

C

T

CZ

CZ

RZ

1

5

2

1

1

5

2

1

1

1

λ

λ

λ

λ

λ

=

[(exp

)

]

( ,

)

[(exp

)

]

z której po uproszczeniu otrzymuje się:

1

1

2

T

T

C

A

T

RZ

CZ

CZ

=

+ λ

λ

ln ( ,

)

C

2

=0.0144 mK

λ

=650 nm

Α(λ, Τ

ΧΖ

)=0.476

4.

Wyniki:

Tabela z wynikami pomiarów przy U=5 [V], I=2,4 [A]

Tabela z wynikami pomiarów przy U=7 [V], I=2,9 [A]

Zakres pomiarowy nr 2

Nomogram

Lp. U [V]

I [A]

P [W]

1

1530

11

1803,15 1931,99

1540

1813,15

2

1550

-9

1823,15 1955,41

1562

1835,15

3

1540

1

1813,15 1944,00

1550

1823,15

4

1530

11

1803,15 1931,99

1540

1813,15

5

7

0,15

2,9 0,04 20,3

0,71

3,5

1530

1541

11

1803,15 1931,99 1944,91 12,79

1540

1813,15

6

1540

1

1813,15 1944,00

1550

1823,15

7

1530

11

1803,15 1931,99

1540

1813,15

8

1560

-19

1833,15 1966,95

1570

1843,15

9

1550

-9

1823,15 1955,41

1562

1835,15

10

1550

-9

1823,15 1955,41

1562

1835,15

∆U [V]

∆I [A]

∆P [W] E

p

[%] T

cz

[ºC] Tcz

śr

[ºC] ∆T

cz

[ºC] T

cz

[K]

T

rz

[K]

Trz

śr

[K] ∆T

rz

T

rz

[ºC]

T

rz

[K]

Zakres pomiarowy nr 1

Nomogram

Lp. U [V]

I [A]

P [W]

1

1380

-24

1653,15 1759,00

1430

1703,15

2

1350

6

1623,15 1717,32

1390

1663,15

3

1340

16

1613,15 1714,67

1385

1658,15

4

1360

-4

1633,15 1737,31

1400

1673,15

5

5

0,15 2,4 0,04 12,0

0,6

5,0

1340

1356

16

1613,15 1714,67 1729,98 9,04

1385

1658,15

6

1370

-14

1643,15 1748,55

1420

1693,15

7

1350

6

1623,15 1717,32

1390

1663,15

8

1380

-24

1653,15 1759,00

1430

1703,15

9

1350

6

1623,15 1717,32

1390

1663,15

10

1340

16

1613,15 1714,67

1385

1658,15

∆U [V]

∆I [A]

∆P [W] E

p

[%] Tcz [ºC] Tcz

śr

[ºC] ∆T

cz

[ºC]

T

cz

[K]

T

rz

[K]

Trz

śr

[K] ∆T

rz

T

cz

[ºC]

T

rz

[K]

background image

Tabela z wynikami pomiarów przy U=10 [V], I=3,65 [A]

5. Obliczenia:

Dane:

T 273,15=T

cz

[

K ]

1

T

rz

=

1

T

cz

C

2

lnA

- monochromatyczny współczynnik widmowy, dla wolframu:

A=0,476−2∗10

5

T

cz

- długość fali:

=

650∗10

9

[

m]

C

2

=

1,44∗10

2

[

mK ]

kl

V

= 1,5 [%]

klasa woltomierza,

U

Z

= 10 V

zakres woltomierza,

kl

A

= 0,5 [%]

klasa amperomierza,

I

Z

= 7,5 A

zakres amperomierza

Zakres I:

1.

T

cz

=

1653,15[ K ]

- obliczanie wartości temperatury rzeczywistej :

Zakres pomiarowy nr 3

Nomogram

Lp. U [V]

I [A]

P [W]

1

1850

19

2123,15 2308,40

1772

2045,15

2

1840

29

2113,15 2296,21

1760

2033,15

3

1870

-1

2143,15 2331,76

1790

2063,15

4

1850

19

2123,15 2308,40

1772

2045,15

5

10

0,15 3,65 0,04 36,5

0,9

2,5

1880

1869

-11

2153,15 2344,11 2330,97 21,81

1800

2073,15

6

1870

-1

2143,15 2331,76

1790

2063,15

7

1860

-9

2133,15 2319,64

1782

2055,15

8

1890

-21

2163,15 2357,37

1820

2093,15

9

1880

-11

2153,15 2344,11

1800

2073,15

10

1900

-31

2173,15 2367,98

1830

2103,15

∆U [V]

∆I [A]

∆P [W] E

p

[%] T [ºC] Tcz

śr

[ºC] ∆T

cz

[ºC]

T

cz

[K]

T

rz

[K]

Trz

śr

[K] ∆T

rz

T

rz

[ºC]

T

rz

[K]

Tabela z wynikami pomiarów dla U=3 [V] do U=10 [V]

Nomogram

Lp. U [V]

I [A]

P [W]

1

3

1,9

5,7

0,4

7,01

1270

1543,15 1636,7

1338

1611,15

2

4

2,2

8,8

0,5

5,7

1380

1653,15

1759

1430

1703,15

3

5

2,4

12

0,6

5

1370

1643,15 1748,55

1420

1693,15

4

6

2,7

16,2

0,64

3,9

1440

1713,15 1834,86

1478

1751,15

5

7

0,15

2,9 0,04 20,3

0,71

3,5

1540

1813,15

1944

1976,07

1550

1823,15

6

8

3,2

25,6

0,8

3,1

1630

1903,15 2053,39

1622

1895,15

7

8,5

3,3

28,05

0,83

2,9

1660

1933,15 2118,64

1643

1916,15

8

9

3,4

30,6

0,87

2,8

1700

1973,15 2132,20

1680

1953,15

9

9,5

3,5

33,25

0,9

2,7

1790

2063,15 2237,14

1740

2013,15

10

10

3,6

36

0,94

2,6

1840

2113,15 2296,21

1760

2033,15

∆U [V]

∆I [A]

∆P [W] E

p

[%] T [ºC]

T

cz

[K]

T

rz

[K]

Trz

śr

[K]

T

cz

[ºC]

T

rz

[K]

background image

1

T

rz

=

1

1653,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1653,15

1

T

rz

=

6,05∗10

4

4,51∗10

5

ln 0,476−0,033

1

T

rz

=

6,05∗10

4

−

3,65∗10

5

T

rz

=

1759[ K ]=1485,86[◦C ]

2. T

cz

=

1623,15[ K ]

1

T

rz

=

1

1623,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1623,15

1

T

rz

=

6,16∗10

4

−

3,37∗10

5

T

rz

=

1717,32[ K ]=1444,17[◦C ]

3.

T

cz

=

1613,15[ K ]

1

T

rz

=

1

1613,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1613,15

1

T

rz

=

6,199∗10

4

−

3,664∗10

5

T

rz

=

1714,67[ K ]=1441,52[◦C ]

4. T

cz

=

1633,15[ K ]

1

T

rz

=

1

1633,15

650∗10

9

1,44

10

2

ln 0,4676−2∗10

5

1633,15

1

T

rz

=

6,123∗10

4

−

3,67∗10

5

T

rz

=

1737,31[ K ]=1464,16[◦C ]

5.

T

cz

=

1613,15[ K ]

T

rz

=

1714,67[ K ]=1441,52[◦C ]

6.

T

cz

=

1643,15[ K ]

1

T

rz

=

1

1643,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1643,15

1

T

rz

=

6,086∗10

4

−

3,67∗10

5

T

rz

=

1748,55[ K ]=1475,40[◦C ]

7. T

cz

=

1623,15[ K ]

T

rz

=

1717,32[ K ]=1444,17[◦C ]

8. T

cz

=

1653,15[ K ]

T

rz

=

1759[ K ]=1485,86[◦C ]

9. T

cz

=

1623,15[ K ]

T

rz

=

1717,32[ K ]=1444,17[◦C ]

10. T

cz

=

1613,15[ K ]

T

rz

=

1714,67[ K ]=1441,52[◦C ]

- obliczanie średniej wartości temperatury rzeczywistej:

background image

Trz

śr

=

i=1

n

Trz

i

n

=

17591717,321714,671737,311714,671748,551717,3217591717,321714,67

10

=

1729,98[ K ]

- obliczanie wartości bezwzględnego błędu pomiaru prądu:

[ ]

A

A

A

I

kl

I

z

A

04

,

0

0375

,

0

%

100

5

,

7

%

5

,

0

%

100

=

=

=

- obliczanie wartości bezwzględnego błędu pomiaru napięcia:

V

V

U

kl

U

Z

U

15

,

0

%

100

10

%

5

,

1

%

100

%

=

=

=

- obliczanie wartości pobieranej mocy:

P=UI=5∗2,4=12[W ]

- obliczanie wartości błędu bezwzględnego pobieranej mocy:

P=I∗U U ∗ I=2,4∗0,15−5∗0,04=0,6[W ]

- wyznaczenie błędu względnego pomiaru mocy:

E

p

=

P

i

P

i

100 %=0,2−12∗100 %=5 %

- wyznaczenie błędu bezwzględnego poszczególnych pomiarów temperatuty:

T =T

śr

T

i

=

1356−1380=−24

- wyznaczenie średniego błędu kwadratowego:

T

cz

=

i=1

n



T

i

2

n−1

=

2240

9

=

15,18

- wyznaczanie błędu bezwzględnego temperatury rzeczywistej:

K =

1

T

cz

C

2

ln A

A=2∗10

5

T

cz

K =

T

cz

T

cz

2

C

2

A

A

T

rz

=

K

K

2

=

T

cz

T

cz

2

C

2

A

A

T

rz

2

T

rz

=

15,18

1626,15

2

650∗10

5

1,44∗10

2

2∗10

5

1626,15

0,476−2∗10

5

∗

1729,98

2

5,74∗10

6

4,51∗10

5

0,032

0,48

∗

2330,97

2

=

5,74∗10

6



4,51∗10

5

∗

0,067∗2992830,8

5,74∗10

6

9,04=9,04

Zakres II:

1.

T

cz

=

1803,15[ K ]

1

T

rz

=

1

1803,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1803,15

1

T

rz

=

5,546∗10

4

−

3,7∗10

5

T

rz

=

1931,99[ K ]=1658,84[◦C ]

background image

2. T

cz

=

1823,15[ K ]

1

T

rz

=

1

1823,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1823,15

1

T

rz

=

5,485∗10

4

−

3,71∗10

5

T

rz

=

1955,41[ K ]=16582,26[◦C ]

3.

T

cz

=

1813,15[ K ]

1

T

rz

=

1

1813,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1813,15

1

T

rz

=

5,515∗10

4

−

3,705∗10

5

T

rz

=

1944[ K ]=1670,86[◦C ]

4. T

cz

=

1803,15[ K ]

T

rz

=

1931,99[ K ]=1658,84[◦C ]

5. T

cz

=

1803,15[ K ]

T

rz

=

1931,99[ K ]=1658,84[◦C ]

6. T

cz

=

1813,15[ K ]

T

rz

=

1944[ K ]=1670,86[◦C ]

7. T

cz

=

1803,15[ K ]

T

rz

=

1931,99[ K ]=1658,84[◦C ]

8. T

cz

=

1833,15[ K ]

1

T

rz

=

1

1833,15

650∗10

9

1,44∗10

2

ln 0,4676− 2∗10

5

1833,15

1

T

rz

=

5,455∗10

4

−

3,709∗10

5

T

rz

=

1966,95[ K ]=1693,80[◦C ]

9.

T

cz

=

1823,15[ K ]

T

rz

=

1955,41[ K ]=1682,26[◦C ]

10.

T

cz

=

1823,15[ K ]

T

rz

=

1955,41[ K ]=1682,26[◦C ]

- obliczanie średniej wartości temperatury czarnej:

Trz

śr

=

i=1

n

Trz

i

n

=

1931,991955,4119441931,991931,9919441931,991966,951955,411955,41

10

=

1944,91[ K ]

- obliczanie wartości bezwzględnego błędu pomiaru prądu:

[ ]

A

A

A

I

kl

I

z

A

04

,

0

0375

,

0

%

100

5

,

7

%

5

,

0

%

100

=

=

=

- obliczanie wartości bezwzględnego błędu pomiaru napięcia:

background image

V

V

U

kl

U

Z

U

15

,

0

%

100

10

%

5

,

1

%

100

%

=

=

=

- obliczanie wartości pobieranej mocy:

P=UI=7∗2,9=20,3[W ]

- obliczanie wartości błędu bezwzględnego pobieranej mocy:

P=I∗ U U ∗ I=2,9∗0,157∗0,04=0,71[W ]

- wyznaczenie błędu względnego pomiaru mocy:

E

p

=

P

i

P

i

100 %=

0,16
20,3

100 %=3,5 %

- wyznaczenie błędu bezwzględnego poszczególnych pomiarów temperatuty:

T =T

śr

T

i

=

1541−1530=11

- wyznaczenie średniego błędu kwadratowego:

T

cz

=

i=1

n



T

i

2

n−1

=

1090

9

=

11

- wyznaczanie błędu bezwzględnego temperatury rzeczywistej:

K =

1

T

cz

C

2

ln A

A=2∗10

5

T

cz

K =

T

cz

T

cz

2

C

2

A

A

T

rz

=

K

K

2

=

T

cz

T

cz

2

C

2

A

A

T

rz

2

T

rz

=

11

1817,15

2

650∗10

5

1,44∗10

2

2∗10

5

1814,15

0,476−2∗10

5

∗

1944,91

2

3,33∗10

6

4,51∗10

5

0,036

0,48

∗

2330,97

2

=

3,33∗10

6



4,51∗10

5

∗

0,075∗3782674,91

4,17∗10

6

12,79=12,79

Zakres III:

1. T

cz

=

2123,15[ K ]

1

T

rz

=

1

2123,15

650∗10

9

1,44∗10

2

ln 0,4676−2∗10

5

2123,15

1

T

rz

=

4,332∗10

4

−

3,77∗10

5

T

rz

=

2308,40 [K ]=2035,25[◦C ]

2.

T

cz

=

2113,15[ K ]

1

T

rz

=

1

2113,15

650∗10

9

1,44∗10

2

ln 0,4676−2∗10

5

2113,15

1

T

rz

=

4,732∗10

4

−

3,77∗10

5

T

rz

=

2296,21[ K ]=2023,06 [◦C ]

background image

3. T

cz

=

2143,15[ K ]

1

T

rz

=

1

2143,15

650∗10

9

1,44∗10

2

ln 0,4676−2∗10

5

2143,15

1

T

rz

=

4,666∗10

4

−

3,773∗10

5

T

rz

=

2331,76[ K ]=2058,61[◦C ]

4.

T

cz

=

2123,15[ K ]

T

rz

=

2308,40 [K ]=2035,25[◦C ]

5.

T

cz

=

2153,15[ K ]

1

T

rz

=

1

2153,15

650∗10

9

1,44∗10

2

ln 0,4676−2∗10

5

2153,15

1

T

rz

=

4,644∗10

4

−

3,776∗10

5

T

rz

=

2344,11[ K ]=20370,96 [◦C ]

6. T

cz

=

2143,15[ K ]

T

rz

=

2331,76[ K ]=2058,61[◦C ]

7. T

cz

=

2133,15[ K ]

1

T

rz

=

1

2133,15

650∗10

9

1,44∗10

2

ln 0,4676−2∗10

5

2133,15

1

T

rz

=

4,688∗10

4

−

3,77∗10

5

T

rz

=

2319,64 [K ]=2046,49[◦C ]

8.

T

cz

=

2163,15[ K ]

1

T

rz

=

1

2163,15

650∗10

9

1,44∗10

2

ln 0,4676−2∗10

5

2163,15

1

T

rz

=

4,623∗10

4

−

3,81∗10

5

T

rz

=

2357,37[ K ]=2084,22[◦C ]

9. T

cz

=

2153,15[ K ]

T

rz

=

2344,11[ K ]=2070,96 [◦C ]

10. T

cz

=

2173,15[ K ]

1

T

rz

=

1

2173,15

650∗10

9

1,44∗10

2

ln 0,4676−2∗10

5

2173,15

1

T

rz

=

4,601∗10

4

−

3,779∗10

5

T

rz

=

2367,98[ K ]=2094,83 [◦C ]

- obliczanie średniej wartości temperatury czarnej:

Trz

śr

=

i=1

n

Trz

i

n

=

2308,402296,212331,762308,402344,112331,76 2319,642357,372344,112367,98

10

=

2330,97[ K ]

- obliczanie wartości bezwzględnego błędu pomiaru prądu:

[ ]

A

A

A

I

kl

I

z

A

04

,

0

0375

,

0

%

100

5

,

7

%

5

,

0

%

100

=

=

=

background image

- obliczanie wartości bezwzględnego błędu pomiaru napięcia:

V

V

U

kl

U

Z

U

15

,

0

%

100

10

%

5

,

1

%

100

%

=

=

=

- obliczanie wartości pobieranej mocy:

P=UI=10∗3,65=36,5[W ]

- obliczanie wartości błędu bezwzględnego pobieranej mocy:

P=I∗ U U ∗ I=3,65∗0,15−10∗0,04=0,9 [W ]

- wyznaczenie błędu względnego pomiaru mocy:

E

p

=

P

i

P

i

100 %=

0,2

36,5

100 %=2,5 %

- wyznaczenie błędu bezwzględnego poszczególnych pomiarów temperatuty:

T

i

=

T

śr

T

i

=

1869−1850=19

- wyznaczenie średniego błędu kwadratowego temperatury czarnej:

T

cz

=

i=1

n



T

i

2

n−1

=

3290

9

=

19,12

- wyznaczanie błędu bezwzględnego temperatury rzeczywistej:

K =

1

T

cz

C

2

ln A

A=2∗10

5

T

cz

K =

T

cz

T

cz

2

C

2

A

A

T

rz

=

K

K

2

=

T

cz

T

cz

2

C

2

A

A

T

rz

2

T

rz

=

19,12

2142,15

2

650∗10

5

1,44∗10

2

2∗10

5

2142,15

0,476−2∗10

5

∗

2330,97

2

4,17∗10

6

4,51∗10

5

0,043

0,48

∗

2330,97

2

=

4,17∗10

6



4,51∗10

5

∗

0,089∗5433421,14

4,17∗10

6

21,81=21,81

background image

4

7

10

13

16

19

22

25

28

31

34

37

40

1600

1700

1800

1900

2000

2100

2200

2300

2400

Zależność Trz od mocy P

Moc P[W]

Te

m

pe

ra

tu

ra

T

rz

[

K

]

background image

6. Wnioski:

Błędy wyliczone w trakcie wykonywania ćwiczenia powstały w wyniku następujących przyczyn:
- niedoskonałości ludzkiego oka, które nie pozwala na dokładne wyznaczenie momentu
kiedy barwa badanego ciała jest identyczna z barwy włókna żarówki pirometru. Dlatego
wystąpiły duże rozbieżności w odczycie T

CZ

.

- niezbyt dobra stabilizacja napięcia zasilającego żarówkę, a tym samym mocy wydzielanej na

żarówce.

- mierniki używane w ćwiczeniu miały określoną klasę dokładności (amperomierz-0.5,
woltomierz-1,5) co wpłyneło bezpośrednio na błędy wyznaczenia napięcia i prądu i pośrednio na
błąd dotyczący mocy wydzielonej na badanej żarówce.

Pirometr optyczny monochromatyczny z zanikającym włóknem służy do pomiaru

temperatur w zakresie około 800 - 2300

°

C. W przypadku temperatur z górnej części zakresu stosuje

się osłabiacz zmniejszający w określony sposób natężenie promieniowania . Po zastosowaniu
większej ilości osłabiaczy możliwy jest pomiar wyższych temperatur jednak jego dokładność
będzie zdecydowanie niższa. Pirometry wykorzystywane się m. in.
w metalurgii do pomiarów temperatur wewnątrz pieców.

Wielkość błędów średnich kwadratowych wyznaczonych przy seriach 10-pomiarów okazała

sie niewielka , najwykszy z nich nie przekroczył 3.8% wielkości mierzonej . Wydaje się więc, że
dokładność pomiarów jest dość dobra.


Wyszukiwarka

Podobne podstrony:

więcej podobnych podstron