background image

 

Page 1 / 7 

 

 

V. 

Physical and Chemical Testing 

 

 

According to the harmonized standard EN ISO 10993-1 "Biological evaluation of medical devices - 
Part 1: Evaluation and testing" the evaluation of the biological risk of medical devices must also take 
into account the non-biological attributes and properties of any materials used in a particular medical 
device. This includes chemical, physical, electrical, morphological and mechanical properties.  

For the material characterization of new medical devices EN ISO 10993-18 "Biological evaluation of 
medical devices - Part 18: Chemical characterization of materials " was issued as a guideline. The 
material characterization supports the manufacturer at an early stage to evaluate the critical proper-
ties or chemical substances. Furthermore, during the development of new products an identification 
and quantification of possible degradation products has to be performed in accordance with EN ISO 
10993-9, EN ISO 10993-13 (polymers), EN ISO 10993-14 (ceramics) and EN ISO 10993-15 (metals 
and alloys). 

After launching new devices accompanying inspections are necessary. This may include inspections 
of raw materials, in-process controls, final inspections of the product (e.g., residual monomer content, 
'fingerprint' of extractable substances, sterilization residues) as well as tests of packaging materials. 

Subsequently we have provided an overview for several physico-chemical tests which are stipulated in 
the aforementioned standards. The main focus of this overview is the material characterization ac-
cording to EN ISO 10993-18. 

1. Material Characterization of Medical Devices 

'mdt' developed a matrix (see table below) which helps to determine a suitable series of tests which 
need to be performed in order to appropriately characterize newly developed materials. This matrix 
shows similarities with the matrix for the biological evaluation of medical devices according to EN ISO 
10993-1 (see Chapter I). The matrix for the material characterization is intended as a guide. However, 
the actual tests to be performed have to be identified with the medical device and its intended use. 

According to EN ISO 10993-18 the material characterization helps the manufacturer to collect impor-
tant information with the following goal: 
•  Assessment of the overall biological safety of the medical device 

•  Identification and, if applicable, quantification of all extractable substances in order to allow a toxi-

cological risk assessment 

•  Judging equivalence of a proposed material to a clinically established material 

•  Judging equivalence of the final device to the already tested prototypes 

•  Screening and selection of potential new materials with special technical or clinical properties 

•  Identification of batch-to-batch material variations and comparison of raw material of different sup-

pliers 

 
In principal, material characterization may include investigations of the raw materials and the final 
products. Physical and mechanical tests as well as surface analyses are carried out directly on the 
product. The chemical composition analysis and the determination of the molecular weight parame-
ters are performed after dissolving the material in a suitable solvent. In order to determine the extract-
able substances the product must be extracted with suitable solvents (e.g., according to EN ISO 
10993-12 or USP) and these extracts are finally analyzed. 
 

background image

 

Page 2 / 7 

Medical Device Category 

Material Characterization Test Procedure 

Analysis of 

O

rganic 

Substances 

Analysis of 

Inorganic 

Substances  

Physical/ 

Mechanical 

Tests 

Molecular

 

Weight 

Distributions 

Morphological 

Thermal 

Ana

ly

s

is

 

Nature of Body Contact

 

Physicochemical Tests 

FT-IR 

GC/

M

HPLC/DAD 

FT-IR 

ICP 

XPS / AES 

Mechanical Tests 

Specific G

ravity 

H

a

rdness 

GPC 

Viscosity 

SEM

 or SEM

-EDX 

DSC 

E

 1 

E

 1

 

E

 1

 

E

 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 1

 

 

 

 

 

 

 

 

 

Skin 

 

 

 

 

 

E

 1

 

 

 

 

 

 

 

 

 

E

 1 

E

 1

 

E

 1

 

E

 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 1

 

 

 

 

 

 

 

 

 

Mucosal Mem-

brane 

 

 

 

 

 

E

 1

 

 

 

 

 

 

 

 

 

E

 1 

E

 1

 

E

 1

 

E

 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 1

 

 

 

 

 

 

 

 

 

Surface Device 

Breached or 

Compromised 

Surfaces 

 

 

 

 

 

E

 1

 

 

 

 

 

 

 

 

 

E/M E/M E/M E/M

 

 

 

 

 

 

 

 

 

 

 

E/M

2

 

 

 

 

 

 

Blood Path Indi-

rect 

 

 

 

 

 

E/M

 

 

 

 

 

 

 

E/M E/M E/M E/M

 

 

 

 

 

 

 

 

 

 

 

E/M

2

 

 

 

 

 

 

Tissue, Bone, 

Dentin 

 

 

 

 

 

E/M

 

 

 

 

 

 

 

E/M E/M E/M E/M

 

 

 

 

 

 

E/M

2

 

 

 

 

 

External 

Communicating 

Device 

Circulating Blood 

 

 

 

 

 

E/M

 

 

 

 

 

 

E/M E/M E/M E/M

 

 

 

 

 

 

E/M

2

 

 

 

 

 

Tissue, Bone 

 

 

 

 

 

E/M

 

 

 

 

 

 

E/M E/M E/M E/M

 

 

 

 

 

 

E/M

2

 

 

 

 

 

Implant Device 

Blood 

 

 

 

 

 

E/M

 

 

 

 

 

 

 

Polymeric Material 

Metal 

Ceramic 

 

Extractables, quantitative determination 

E

 1

  Extractables, qualitative 'Fingerprint' 

M Material 

M

 2

  Material, only present as coating  

background image

 

Page 3 / 7 

The aforementioned material characterization test procedures include the following tests: 

Physicochemical Tests: 

These tests, which are performed according to USP and Pharmcopeial Forum, supply first non-
specific information with regard to the amount of water-soluble substances (extraction with water) and 
solvent-soluble substances (extraction with isopropanol). These tests are also suitable to compare 
materials of different manufacturers or different production lots.  

 

FT-IR (Fourier-Transformed Infrared Spectroscopy): 

This technique is useful to identify organic substances or to prepare a product fingerprint. 

 

Analysis of Organic Substances: 

Non-extractable organic substances can be identified and, if applicable, quantified after dissolving the 
polymer in a suitable solvent using the following analysis techniques: 

Gas chromatography equipped with a mass selective detector (GC/MS): separation technique 
for volatile and semi-volatile organic substances 

High performance liquid chromatography equipped with a diode array detector (HPLC/DAD): 
separation technique for non-volatile and thermally fragile organic substances 

Fourier-transformed infrared spectroscopy (FT-IR) 

Extractable organic substances are analyzable after a suitable extraction with one of the aforemen-
tioned analysis techniques. 

 

Analysis of Inorganic Substances: 

The composition of metals and ceramic materials can be determined using an ICP spectrometer (in-
ductive coupled plasma). With this spectroscopic analysis technique it is also possible to determine 
even small amounts of inorganic substances (like metal ions) present in polymers or their extracts. 
The surface analysis of metal-coated materials can supply useful information when this surface is 
analyzed using X-ray photoelectron spectroscopy (XPS) or Auger-electron spectroscopy (AES). 

 

Physical Respectively Mechanical Analysis: 

Mechanical investigations of materials are necessary in order to evaluate these materials under a va-
riety of loading conditions (stresses and strains). Hardness test are performed with metals and poly-
meric materials in order to determine the indentation resistance, scratch resistance, or rebound resil-
ience. These investigations are useful in order to identify insufficient material properties or to compare 
different production lots. Specific gravity determinations are applied for the characterization of identity, 
purity and concentration of materials. 

 

Molecular Weight Distribution: 

For the characterization of polymeric materials the determination of the molecular weight distribution 
using gel permeation chromatography (GPC) or the determination of the solution viscosity using an 
Ubbelohde viscosimeter are important analytical tools. 

 

Morphological Characterization: 

Scanning electron microscopy can be used to obtain important information with regard to the surface 
integrity of materials. The smoothness or roughness of a surface has strong influence upon the inter-
action between the medical device and the contacting tissues or body fluids, depending on the in-
tended application of the device. Valuable information concerning the qualitative and semi-quantitative 

background image

 

Page 4 / 7 

composition of a material surface is obtained when using SEM-EDX (scanning electron microscopy in 
combination with energy dispersive x-ray).  

 

Thermal Analysis 

Thermal analyses, which can be performed using a differential scanning calorimeter (DSC), indicate 
critical thermal properties of the respective material, e.g. polymer melting point and glass-transition 
temperature. Furthermore, it is possible to obtain information regarding the thermal history and purity 
of the polymer. 

 

2. Physicochemical Analyses of Polymeric Materials 

2.1. Physicochemical Tests - Plastics 

Water Extraction 

Procedure according to USP, <661>  

Preparation of a sample extract with purified water 

Test of nonvolatile residues 

Test of residues on ignition 

Test of heavy metals 

Test of buffering capacity 

 

Isopropanol Extraction 

Procedure according to Pharmacopeial Forum, Nov-Dec 1992 

Preparation of a sample extract with isopropanol 

Test of nonvolatile residues 

Test of residues on ignition 

Test of turbidity 

Test of UV absorption 

 

2.2. Extractable Organic Substances in Polymeric Materials (‘GC/MS Fingerprint’) 

Procedure using gas chromatography with mass selective detector 

Extraction with 3 aqueous and/or organic solvents in accordance with EN ISO 10993-
12 

Optional: gas extraction at elevated temperatures 

System standardization with external reference compound 

Identification of typical extracted substances using a mass selective detector 

 

Note: 

The test may be applied as a routine quality control measure to compare different 
material batches or stability samples. Identification of extracted substances further al-
lows preparation of a toxicological profile. 

 

background image

 

Page 5 / 7 

2.3. Determination of Methyl Methacrylate (MMA) in Polymethyl Methacrylate (PMMA) 

Procedure according to mdt-SOP PM 01-016 or PM 01-031 

- Gas 

chromatography 

System calibration with MMA, 5 concentrations 

2 independent determinations 

 

2.4. Residual Monomers of Complex Polymeric Materials 

Procedure using gas chromatography with mass selective detector 

Gas or liquid injection 

System calibration with the respective monomers, 5 concentrations 

2 independent determinations 

Note: 

Materials-related validation work is necessary in most cases 

 

2.5. Molecular Mass Distribution of Polymers (e.g., PMMA, PC, Poly-L-Lactid, etc.) 

Procedure according to mdt-SOP PM 01-015 

Gel permeation chromatography (GPC) 

System calibration with 6 reference substances 

2 independent determinations 

 

2.6. Determination of Degradation Products in Polymeric Materials 

Procedure according to EN ISO 10993-13 

Testing of hydrolytic and/or oxidative degradation 

Determination of mass reduction and molar mass distribution or density after acceler-
ated ageing (70 

± 1 °C, exposure time depending of the intended application period 

between 2 and 60 days) 

Depending on the determined changes of the investigational material: identification 
and quantification of the compounds available in the degradation medium or the 
treated polymer 

If necessary: repetition of the experiment with test items after real-time ageing (37 

± 1 

°C, exposure for 1, 3, 6 and 12 months) 

 

Note: 

The applicable analytical methods strongly depend on the test material and will be 
selected individually. Analytical validation work may also be required. 

 

2.7. Tests of Denture Based Polymers According to EN ISO 1567 

'mdt' offers several physicochemical and mechanical tests for denture based polymers, as listed in EN 
ISO 1567: 

- Color 
- Color 

stability 

Bending strength and bending modulus 

Bonding to synthetic polymer teeth 

Residual monomer content 

Water absorption and solubility 

 

background image

 

Page 6 / 7 

3. Metal and Ceramic Analyses 

3.1. Quantitative Determination of Extractable Metallic Ions 

Procedure using ICP analysis (inductively coupled plasma) 

Extraction with 3 different aqueous solvents in accordance with EN ISO 10993-12 and 
EN ISO 10993-14 

Screening for identification of the extracted metallic ions 

System calibration for each identified metallic ion 

Quantification of the metallic ions 

Non-exposed extraction medium as negative control 

 

Note: 

In the course of a cytotoxicity tests it may be beneficial to determine metallic ions in 
the extraction medium in order to find potential reasons for an observed toxic reac-
tions of the investigated material. 

 

3.2. Corrosion Test 

Procedure according to EN ISO 10271 as a static corrosion test 

Cleansing with ethanol 

Corrosion medium: lactic acid and NaCl in water 

Exposure to corrosive medium for 7 days at 37 °C 

Calibration of each element with 4 concentrations 

 

3.3. Mechanical Tests of Metals and Ceramics 

Tensile strength / elasticity modulus 

Strain at failure 

Flexural strength  

 

background image

 

Page 7 / 7 

4. Residue Analyses 

4.1. Residues after Sterilization with Ethylene Oxide 

According to EN ISO 10993-7, medical devices are classified into three categories: Devices with lim-
ited exposure (≤ 24 h), prolonged exposure (24 h until 30 days) and permanent contact (> 30 days). 
Depending on the device category exhaustive extractions and/or in-use simulations have to be per-
formed in order to minimize the toxicological risk of sterilization residues. Materials containing chlorine 
have to be tested for both ethylene oxide (EO) and ethylene chlorohydrin (ECH). The determination of 
ethylene glycol (EG) in aqueous systems is possible, however, not compulsively requested in EN ISO 
10993-7. 
For the validation of a degassing process both, positive and negative product controls, have to be 
investigated. The positive product control proves that EO has been applied, the negative product con-
trol (no EO contact) proves that no other substances elute with the same retention time as EO, re-
spectively ECH. Typically, 3 sterilization batches are investigated and products from various places of 
the degassing chamber are tested. For routine controls of EO, respectively ECH residues, testing of 
positive and negative controls is not compulsory. 
Products consisting of various components and materials have to be tested in a way that all materials 
are tested individually, because EO/ECH adhesion to polymeric materials may differ significantly. 

Medical Devices with Limited Exposure (≤ 24 h) 

In-use simulation (aqueous extraction for 24 h at 37 °C) 

Determination of residual EO; if applicable, determination of ECH and EG 

System calibration with 5 different concentrations 

Negative control: test items not exposed to ethylene oxide 

Positive control: EO treated but not subjected to degassing 

 

Acceptance limits: 20 mg EO and 12 mg ECH 

Medical Devices with Prolonged Exposure (between 24 h and 30 days) 

Exhaustive extraction (extraction using suitable solvent) 

In-use simulation (aqueous extraction if limits for 24 h are exceeded) 

Further procedure as for medical devices with limited exposure. 

 

Acceptance limits:First 24 h: 20 mg EO and 12 mg ECH 

Total amount after 30 days: 60 mg EO and 60 mg ECH 

Medical Devices with Permanent Exposure (> 30 days) 

Procedure as for medical devices with prolonged exposure 

 

Acceptance limits:First 24 h: 20 mg EO and 12 mg ECH 

Total amount after 30 days: 60 mg EO and 60 mg ECH 
Total amount for a lifetime: 2.5 g EO and 50 g ECH 
Special limits for intraocular lenses, blood oxygenators and dialyser membranes 

 

4.2. Surface Analyses for Identification of Possible Residues 

Procedure using X-ray photoelectron spectroscopy (XPS) or Auger-electron spectroscopy (AES) 

Determination of the surface composition of the test item 

Penetration depth of 3 nm 

Presentation of the surface composition in atomic percentages