1

Granica ciągu

1. Oblicz granice następujących ciągów: (a) an = −2 − 3

b

c

d

n

n = n − 1

n

n = n+1

n2

n = n

2n

(b) an = ( 3n2+n−2 )2

b

− 3n

c

d

4n2+2n+7

n = cos n3

2n

6n+1

n = n2+sin n+3

4n2−n3

n = 3n+n2

2n2+1

√

√

√

(c) an =

n2 + n + 1 −

n2 − n + 1

bn = n2(n −

n2 + 1)

2. Oblicz granice wwykorzystując liczbę Eulera: (a) an = ( n+10 )n

b

)n2+3

c

)15n

2n−1

n = (1 + 3

n2

n = ( 5n+2

5n+1

(b) an = ( n2 )n2

b

)5−2n

c

)3n−2

n2+1

n = ( n+4

n+3

n = (1 + 1

n

(c) an = [( 3n+2 )n · ( 5n+3 )n]

5n+2

3n+1

3. Oblicz granice wykorzystując twierdzenie o trzech ciągach:

√

√

√

(a) an = n n2 + 2n

bn = n n10 + n!

cn = n+2 3n + 4n+1

√

(b) an = n 3 + sin n bn = 2n2+sin n1

c

4n2−3 cos n2

n = 2n sin n

3n+1

q

√

(c) a

1

n = n

+ 2 + 3 + 4

b

1 + 5n2 + 3n5

n

n2

n3

n4

n = n

(d) an =

1

+

1

+ . . . +

1

n2+1

n2+2

n2+n

1

2

Funkcje

2.1

Granica funkcji

Oblicz granice następujących funkcji 1. lim

x2−4

x→2 x−2

2. lim

x3−8

x→2 x−2

3. lim

x2−4x+3

x→3

2x−6

4. lim

2x

x→0 3 sin x

5. lim

1−cos x

x→0 3 cos2 x2

√

6. lim

x−5

x→25 x−25

7. lim

sin x−tg x

x→0

4 sin2 x

2

√

8. limx→+∞ ( x2 + 10x − x)

√

9. limx→−∞ ( x2 + 10x − x) 10. lim

x2+x−2

x→1 x3−x2−x+1

11. lim

x4−5x

x→+∞ x2−3x+1

12. lim

1

x→1

1

1+2 x−1

13. lim

x x

x→∞

1+x

14. lim

x+1 2x−1

x→∞

x−2

x

15. lim

x2+1

x→∞

x2−1

16. lim

x+1 x

x→∞

2x−1

17. lim

sin αx

x→0 sin βx

18. lim

tg x+sin x

x→0

x3

19. lim

ln (x+a)−ln a

x→0

x

2

20. limx→∞ x(ln (x + a) − ln x) 21. lim

esin 2x−esin x

x→0

x

3