Dark
Energy
and
struture
formation
Lua
Amendola,
INAF/O
AR
amendolamp
orzio.astro.it.
7th
Otob
er
2005
0-0
•
Gra
vit
y
,
expansion
and
aeleration
•
Cosmologial
observ
ations
•
Dark
energy:
linear
and
non-linear
prop
erties
0-1
Historial
p
ersp
etiv
e,
ira
350
b..e.
•
Gra
vit
y
is
alw
a
ys
attrativ
e.
•
Aristotle
's
problem:
ho
w
to
a
v
oid
that
the
sky
falls
on
our
head?
0-2
Historial
p
ersp
etiv
e,
ira
1900
.e.
•
Gra
vit
y
is
alw
a
ys
attrativ
e.
•
Einstein
's
answ
er:
to
a
v
oid
ollapse
(to
mak
e
the
univ
erse
stable)
it
is
neessary
to
in
tro-
due
a
form
of
repulsiv
e
gra
vit
y
,
b
y
mo
difying
the
equations
of
General
Relativit
y
.
0-3
Original
GR
equations
R
µν
−
1
2
Rg
µν
= 8πGT
µν
gravity
matter
T
ν
µ
=
ρ
0
0
0
0
−p
0
0
0
0
−p
0
0
0
0
−p
•
These
are
the
most
general
equations
that
are
1.
o
v
arian
t
2.
o
v
arian
tly
onserv
ed
3.
seond
order
in
the
metri
4.
reduing
to
Newton
at
lo
w
energy
0-4
Bo
x
on
T
µν
Basi
h
ydro
dynami
equations
for
a
NR
uid
at
rest:
˙ρ
= 0
(1)
∇p = 0
where
the
energy
densit
y
ρ = nmc
2
and
the
pres-
sure
is
p
i
= nmv
2
i
.
If
w
e
dene
the
matrix
T
µν
= diag(ρ, p, p, p)
then,
more
simply
T
µν
,µ
= 0
0-5
The
relativisti
v
ersion
is
the
only
tensor
that
de-
p
ends
on
ρ, p, u
µ
= dx
µ
/ds, g
µν
and
redues
to
this
limit
in
the
Mink
o
wski
spae
T
µν
= (ρ + p)u
µ
u
ν
− pg
µν
(2)
Einstein's
equations
are
omplete
only
when
a
re-
lation
b
et
w
een
p
and
ρ
is
giv
en:
the
equation
of
state.
0-6
Ba
k
to
R
µν
−
1
2
Rg
µν
= 8πGT
µν
•
F
or
instane,
negleting
the
third
ondition,
w
e
ould
add
whatev
er
rank-2
tensor
o
v
ari-
an
tly
onserv
ed,
e.g.
an
y
E
ν
µ
su
h
that
E
ν
µ;ν
= 0
•
lik
e
e.g.
a
linear
om
bination
of
RR
µν
, R
;µν
, R
2
g
µν
, ...
as
for
instane
[
F = F (R)
℄
E
µν
≡ F
′
R
µν
−
1
2
F g
µν
+ g
µν
F
′
− F
′
;µ;ν
obtaining
a
higher-order
gra
vit
y
.
0-7
•
Negleting
instead
the
fourth
ondition,
w
e
an
add
a
(smal
l
)
term
Λg
µν
and
rewrite
the
equations
as
R
µν
−
1
2
Rg
µν
− Λg
µν
= 8πGT
µν
•
The
new
term
is
the
osmologial
onstan
t
.
0-8
•
The
big
idea
of
the
latter
y
ears
has
b
een
to
mo
v
e
the
new
term
from
righ
t
to
left
R
µν
−
1
2
Rg
µν
= 8πGT
µν
+ Λg
µν
thereb
y
in
tro
duing
a
new
form
of
matter
T
µν(Λ)
=
Λ
8π
g
µν
•
This
matter
has
a
fundamen
tal
prop
ert
y
.
W
rit-
ing
T
ν
µ(Λ)
=
Λ
8π
δ
ν
µ
or
ρ
0
0
0
0
−p
0
0
0
0
−p
0
0
0
0
−p
=
Λ
8π
0
0
0
0
Λ
8π
0
0
0
0
Λ
8π
0
0
0
0
Λ
8π
0-9
one
gets
immediately
p
Λ
= −
Λ
8π
,
ρ
Λ
=
Λ
8π
that
is,
the
osmologial
onstan
t
has
nega-
tiv
e
pressure
(if
Λ > 0
).
•
In
tro
duing
the
equation
of
state
p = wρ
one
has
that
the
osmologial
onstan
t
has
a
negativ
e
eq.
of
state
w = −1
As
a
omparison,
the
eq.
of
state
of
matter
(dust
or
old
dark
matter)
is
p = mv
2
≈ 0 → w = 0
0-10
while
for
radiation
p = ρ/3 → w = 1/3
0-11
Bo
x
on
g
µν
What
is
the
metri
of
a
homo
gene
ous
and
isotr
opi
spae
?
Most
general
metri:
ds
2
= g
00
dt
2
+ 2g
0i
dx
i
dt − σ
ij
dx
i
dx
j
1)
isotrop
y
g
0i
= 0
2)
ridenition
of
time
dτ =
√
g
00
dt → g
00
= 1
so
that
ds
2
= dt
2
− σ
ij
dx
i
dx
j
0-12
Beause
of
isotrop
y
,
the
spatial
metri
ds
2
3
= σ
ij
dx
i
dx
j
an
dep
end
only
on
|r|
and
on
dx
2
+ dy
2
+ dz
2
=
dr
2
+ r
2
(dθ
2
+ sin
2
θdφ)
Then
ds
2
3
= a
2
(t)λ
2
(r)[dr
2
+ r
2
(dθ
2
+ sin
2
θdφ)]
or,
redening
r
,
ds
2
3
= a
2
(t)[λ
′2
(r
′
)dr
′2
+ r
′2
(dθ
2
+ sin
2
θdφ)]
(3)
so
w
e
are
left
with
a
single
unkno
wn
funtion
λ(r)
.
But
w
e
ha
v
e
still
to
imp
ose
homo
geneity
.
Ho
w?
Em
b
edding
a
3D
homogeneous
h
yp
ersphere
in
a
eulidean
4D
spae:
a
2
= x
2
1
+ x
2
2
+ x
2
3
+ x
2
4
(4)
4D
spherial
o
ordinates
x
1
= a cos χ sin θ sin φ
0-13
x
2
= a cos χ cos θ
x
3
= a cos χ sin θ cos φ
x
4
= a sin χ
Dieren
tiating
x
4
dx
4
= −(x
1
dx
1
+ x
2
dx
2
+ x
3
dx
3
)
w
e
get
ds
2
= dx
2
1
+ dx
2
2
+ dx
2
3
+ dx
2
4
= dx
2
1
+ dx
2
2
+ dx
2
3
+
(x
1
dx
1
+ x
2
dx
2
+ x
3
dx
3
)
2
x
2
4
= a
2
(dχ
2
+ sin
2
χ(dθ
2
+ sin
2
θdφ
2
))
whi
h
ho
w
that
sin χ = r
and
dχ = λdr
,
and
there-
fore
λ =
1
√
1 − r
2
0-14
There
is
another
p
ossibilit
y:
em
b
edding
a
3D
h
y-
p
erb
oli
spae
in
a
4D
eulidean
spae:
a
2
= x
2
1
+ x
2
2
+ x
2
3
+ kx
2
4
(5)
from
whi
h
ds
2
3
= a
2
(dχ
2
+ F (χ)(dθ
2
+ sin
2
θdφ
2
))
where
F (χ) =
sin χ
k = 1
χ
k = 0
sinh χ
k = −1
and
λ =
1
√
1 − kr
2
So
anlly
w
e
obtain
the
most
general
homo
genous
and
isotr
opi
metri
,
the
metri
of
F
riedmann-Rob
ertson-
0-15
W
alk
er
ds
2
= dt
2
−a
2
(t)[
dr
2
1 − kr
2
+r
2
(dθ
2
+sin
2
θdφ
2
)]
(6)
0-16
A
repulsiv
e
gra
vit
y
•
What
has
to
do
a
negativ
e
pressure
with
a
repulsiv
e
gra
vit
y
?
•
Homogeneous
and
isotropi
F
riedmann
met-
ri
ds
2
= dt
2
−a
2
dr
2
1 − kr
2
+ r
2
sin θdφ
2
+ r
2
dθ
2
F
or
a
single
p
erfet
uid,
the
ten
Einstein
equations
redue
to
t
w
o
equations
for
the
sale
fator
and
the
energy
densit
y
(here
w
e
put
for
simpliit
y
k = 0
and
alw
a
ys
assume
a
0
= 1
)
H
2
≡
˙a
a
2
=
8π
3
ρ
(7)
¨
a
a
= −
4π
3
(ρ + 3p) = −
4π
3
ρ(1 + 3w)
(8)
0-17
F
rom
the
seond
one
it
app
ears
that
if
w < −1/3
then
w
e
get
aelerated
expansion.
There-
fore
the
osmologial
onstan
t
(or
an
y
uid
with
w < −1/3
)
aelerates
the
expansion
→
repulsiv
e
gra
vit
y
.
W
e
all
this
h
yp
o-
thetial
uid
Dark
Ener
gy.
•
Consider
no
w
only
the
osm.
onstan
t
H
2
≡
˙a
a
2
=
8π
3
ρ
Λ
=
Λ
3
from
whi
h
a = a
0
e
√
Λ
3
t
This
aelerated
expansion
is
a
protot
yp
e
of
primordial
ination
(de
Sitter
metri).
0-18
•
Generally
sp
eaking,
there
are
at
least
three
omp
onen
ts
(plus
urv
ature)
so
that
dynam-
is
is
more
ompliate:
H
2
≡
˙a
a
2
=
8π
3
(ρ
γ
+ ρ
M
+ ρ
Λ
) −
k
a
2
˙ρ
i
+ 3H(ρ
i
+ p
i
) = 0
Ordinary
matter
(bary
ons
plus
dark
matter)
onserv
es
energy
during
expansion,
so
that
w
e
ha
v
e
three
dieren
t
b
eha
viors
ρ
γ
∼ a
−4
ρ
M
∼ a
−3
ρ
k
≡
k
a
2
∼ a
−2
ρ
Λ
∼ a
0
0-19
•
In
general,
therefore,
w
e
ha
v
e
rad. → matter → curvature → cosm.const.
10
0
10
1
10
2
10
3
10
4
1+z
0
0.2
0.4
0.6
0.8
1
W
Mat
Rad
L
0-20
Quan
tisti
in
terpretation
•
Think
of
a
eld,
eg
a
salar
eld,
as
a
series
of
lassial
osillators.
Then,
ev
ery
osillator
on
tributes
an
energy
due
to
the
sum
of
its
p
oten
tial
and
kineti
energy
.
•
When
at
rest,
ev
ery
osillator
has
only
its
p
oten
tial
energy
of
the
lo
w
est
lev
el,
that
w
e
an
alw
a
ys
put
to
zero.
•
Quan
tistially
,
ho
w
ev
er,
the
state
of
mini-
m
um
is
not
at
zero
energy
but
rather
E
0
=
1
2
~
ω
•
Therefore,
for
a
eld,
the
total
zero-p
oin
t
en-
0-21
ergy
is
E
0
=
X
i
1
2
~
ω
i
summing
o
v
er
all
p
ossible
mo
des.
Summing
o
v
er
k
i
= 2π/λ
i
where
λ
i
= L/n
i
are
all
the
w
a
v
elengths
of
the
mo
des
on
tained
in
a
b
o
x
of
size
L
,
w
e
obtain
dn
i
= dk
i
L/2π
mo
des
in
the
range
dk
i
,
so
that
E
0
=
1
2
~
L
3
Z
d
3
k
(2π)
3
ω
k
where
the
osillation
frequeny
is
in
relation
to
the
partile's
mass:
ω
2
= k
2
+ m
2
/~
2
The
total
energy
densit
y
in
tegrating
up
to
a
0-22
ut-o
frequeny
k
max
is
then
ρ
vacuum
= lim
E
L
3
= ~
k
4
max
16π
2
•
The
energy
div
erges
at
the
high
frequenies
(ultra
violet
div
ergene).
W
e
m
ust
supp
ose
then
that
there
is
k
max
b
ey
ond
whi
h
a
new
in
teration
mo
dies
the
system.
•
The
problem
is,
whi
h
k
max
?.
If
w
e
assume
as
limit
the
Plan
k
energy
E
P lanck
= 10
19
GeV
w
e
get
ρ
vacuum
= 10
92
g/cm
3
No
w,
the
exp
erimen
tal
limit
is
ρ = 3H
2
/8πG ≃ 10
−29
g/cm
3
0-23
then,
the
theoretial
estimate
is
o
b
y
120
orders
of
magnitude!
•
This
fundamen
tal
theoretial
problem
is
still
op
en
.
0-24
Astronom
y
of
Dark
Energy
•
W
e
ha
v
e
seen
that
the
F
riedmann
equation
has
the
form
H
2
=
8π
3
(ρ
M
+ ρ
Λ
+ ρ
k
+ ...?)
•
Supp
ose
w
e
kno
w
nothing
of
the
matter
on-
ten
t
of
the
univ
erse.
Ho
w
to
study
the
stru-
ture
of
the
osmos
?
0-25
•
Thr
e
e
levels
:
1.
ba
kground
eets
(age,
distanes)
2.
linear
p
erturbations
(gro
wth
of
lustering,
CMB)
3.
non-linear
p
erturbations
(formation
of
ol-
lapsed
ob
jets,
halo
proles).
0-26
Notie
that
a
smo
oth
omp
onen
t,
as
the
Λ
,
has
no
lo
al
observ
ational
eets:
The
P
oisson
equa-
tion
remains
in
v
aried,
b
eause
in
linear
GR
the
P
oisson
equation
△Ψ = −4πGρ
b
eomes
△Ψ = −4πGδρ
That's
wh
y
w
e
need
osmology
!
0-27
F
rom
observ
ations
to
theory
•
What
w
e
really
observ
e
in
osmology
is
ligh
t
from
soures
and
from
ba
kgrounds
.
•
Ho
w
do
w
e
onnet
these
observ
ables
to
os-
mologial
quan
tities
lik
e
ρ
m
, ρ
γ
, k, a(t), H
0
et?
•
First,
dene
Ω
M
=
8πρ
0
3H
2
0
,
Ω
Λ
=
8πρ
Λ
3H
2
0
,
Ω
k
=
8πk
3H
2
0
and
note
that
1 = Ω
M
+ Ω
Λ
+ Ω
k
so
rewrite
F
riedman
equation
as
(
a
0
= 1
)
H
2
= H
2
0
(Ω
m
a
−3
+ Ω
Λ
a
0
+ Ω
k
a
−2
)
0-28
•
Then,
generalize
it
to
sev
eral
omp
onen
ts:
H
2
= H
2
0
(Ω
m
a
−3(1+w
m
)
+ Ω
Λ
a
−3(1+w
Λ
)
+ ...)
= H
2
0
X
i
Ω
i
a
−3(1+w
i
)
= H
2
0
E(a)
2
•
F
or
instane...
name
densit
y
Ω
i
state
w
i
bary
ons
0.05
0
CDM
0.3
0
radiation
0.0001
1/3
osm.
onst.
0.7
-1
urv
ature
<0.03
-1/3
other
?
?
?
0-29
•
Unkno
wn
quan
tities:
H
0
, Ω
i
, w
i
to
b
e
deter-
mined
using:
1.
Angular
p
ositions
of
soures,
e.g.
galaxies:
θ
i
, ϕ
i
2.
Redshifts:
z
i
3.
Apparen
t
magnitudes:
m
i
4.
Ages
of
stars
5.
Ba
kground
radiation
e.g.
CMB:
∆T /T
•
BASIC
RELA
TION
redshift/sale
fator:
a =
1
1+z
0-30
First
basi
observ
able:
Age
of
the
Univ
erse
•
The
age
of
the
univ
erse
an
b
e
dedued
from
the
F
riedmann
equation:
da
dt
2
= H
2
0
a
2
E(a)
2
w
e
get
dz
H
0
dt
= (1 + z)E(z)
and
nally
t
0
− t
1
= H
−1
0
Z
z
1
0
dz
(1 + z)E(z)
0-31
Notie
that
the
Hubble
onstan
t
is
H
−1
0
=
1
100hkm/sec/M pc
= 9.76h
−1
Gyr
F
or
z
1
→ ∞
w
e
get
then
the
age
of
the
uni-
v
erse.
•
The
eet
of
the
osmologial
onstan
t
,
when
Ω
tot
= Ω
M
+ Ω
Λ
is
xed,
is
to
inrease
the
osmologial
age.
0-32
Ω
Μ
1
2
0
1
2
3
Ω
Λ
-1
0
1
2
3
2
3
Supernova Cosmology Project
Perlmutter et al. (1998)
Best fit age of universe:
t
o
= 14.5
±
1 (0.63/h) Gyr
Best fit in flat universe:
t
o
= 14.9
±
1 (0.63/h) Gyr
19 Gyr
14.3 Gyr
accelerating
decelerating
11.9 Gyr
9.5 Gyr
7.6 Gyr
H
0
t
0
63 km s
-1
Mpc
-1
=
0-33
Seond
basi
observ
able:
Luminosit
y
distane
•
F
rom
at
F
riedmann's
metri
ds
2
= c
2
dt
2
− a
2
dr
2
and
in
tegrating
along
the
n
ull
geo
desis,
w
e
get
the
prop
er
distane
whi
h
is
what
y
ou
w
ould
measure
with
xed
ro
ds
r =
Z
cdt
a(t)
= c
Z
da
˙aa
= c
Z
dz
H(z)
→
generalized
Hubble
la
w
:
measuring
dis-
tanes
means
measuring
osmology.
•
If
w
e
ompare
the
energy
L
emitted
b
y
a
soure
at
prop
er
distane
r
with
ux
f
arriv-
ing
at
the
observ
er,
w
e
dene
the
luminosit
y
0-34
distane
d(z)
su
h
that
f =
L
4πr
2
(1 + z)
2
=
L
4πd
2
•
The
t
w
o
extra
fators
of
1 + z
tak
e
in
to
a-
oun
t
the
loss
of
energy
due
to
redshift
and
the
spread
of
energy
due
to
the
relativ
e
di-
latation
of
the
emission
time
v
ersus
observ
er's
time.
W
e
get
d(z) = r(1 + z) = cH
−1
0
(1 + z)
Z
z
1
0
dz
E(z)
where
cH
−1
0
=
300.000km/sec
100hkm/sec/M pc
= 3000h
−1
M pc
.
•
Remem
b
er
our
referene
osmology
E
2
(z) = Ω
M
(1 + z)
3
+ Ω
Λ
+ Ω
K
(1 + z)
2
0-35
•
The
luminosit
y
distane
therefore
dep
ends
up
on
the
osmologial
onstan
t
and,
lik
e
for
the
age,
inreases
for
Ω
Λ
inreasing.
Therefore,
a
larger
osm.
onst.
indues
a
smaller
lu-
minosit
y
of
the
standard
andles.
•
Supp
ose
w
e
ha
v
e
a
soure
of
kno
wn
absolute
luminosit
y
M = −2.5 log L + const
.
Then
one
denes
instead
of
the
ux
f
an
apparen
t
magnitude
m = −2.5 log f + const
as
m − M = 25 + 5 log d(z; Ω
M
, Ω
Λ
)
If
M
is
the
same
for
ev
ery
ob
jet,
then
the
apparen
t
magnitude
giv
es
diretly
d(z)
and
is
then
p
ossible
to
test
for
the
presene
of
a
osmologial
onstan
t.
0-36
0.2
0.4
0.6
0.8
W
M
0.2
0.4
0.6
0.8
W
L
z=10
0.2
0.4
0.6
0.8
W
M
0.2
0.4
0.6
0.8
W
L
z=1000
0.2
0.4
0.6
0.8
W
M
0.2
0.4
0.6
0.8
W
L
z=0.7
0.2
0.4
0.6
0.8
W
M
0.2
0.4
0.6
0.8
W
L
z=4
Figure
1:
Curv
es
of
onstan
t
d(z; Ω
M
, Ω
Λ
)
.
0-37
Standard
andles
•
There
exist
standard
andles
in
nature
?
•
The
b
est
su
h
thing
so
far
are
sup
erno
v
ae
Ia
.
0-38
0-39
•
This
h
yp
othesis
an
b
e
tested
and
alibrated
through
a
lo
al
sample
whose
distane
w
e
kno
w
b
y
other
means.
0-40
0-41
•
Then,
w
e
ompare
m
obs
(z)
with
m
theor
(z) = M + 25 + log d(z; Ω
M
, Ω
Λ
, ..)
•
F
or
instane
z = 1,
M = −19.5
Ω
M
= 0,
Ω
Λ
= 1
Ω
M
= 1,
Ω
Λ
= 0
,
m
theor
= 24.4
m
theor
= 23.2
More
than
t
wie
as
brigh
ter
!
0-42