background image

Fundamentals of Magnetism

Lecture 1

background image
background image
background image

Magnetic domain image of iron from 

Principia Rerum Naturalium (1734) given by 

E.Swedenborg

Magnetized state of Fe

Demagnetized state of Fe

background image
background image
background image

Definitions of magnetic fields

Induction:

(

)

M

H

B

r

r

r

+

=

0

μ

External magnetic field:

H

M

χ

H

Magnetization 

average magnetic moment of 

magnetic material 

Susceptibility

tensor representing anisotropic material

M

χ

(

)

=

+

=

H

H

B

μ

χ

μ

1

0

where:

(

)

χ

μ

μ

+

=

1

0

permability of the material

background image
background image

Maxwell’s equations

0

=

=

B

div

B

r

r

o

r

j

H

rot

H

r

r

r

r

=

=

×

=

l

i

l

d

H

r

o

r

t

B

E

rot

E

=

=

×

r

r

r

r

U

t

s

d

B

t

l

d

E

S

=

=

=

φ

r

o

r

r

o

r

r

i

H

π

2

=

[oe]

[oe]

l

iN

H

=

[A/m]

[A/m]

background image

Demagnetization field

2

4

r

dV

dH

πρ

=

r

s

H

/

2

.

0

=

⎟⎟

⎜⎜

+

+

=

=

dz

dM

dy

dM

dx

dM

M

z

y

x

m

r

o

r

ρ

To compute the demagnetization field, the magnetization at all points must 

be known.

M

N

H

d

r

r

=

when magnetic materials becomes magnetized by application of 

external magnetic field, it reacts by generating an opposing field. 

[emu/cm

4

]

The magnetic field caused by magnetic poles can be obtained 

from:

The fields points radially out from the positive or 

north poles of long line. The 

s

is the pole strength 

per unit length [emu/cm

2

]

[oe= 

emu/cm

3

]

background image
background image

Demagnetization field

poles density, magnetic „charge” density

m

M

M

B

ρ

μ

μ

=

=

⎟⎟

⎜⎜

⎛ −

o

r

r

o

0

0

background image

Demagnetization tensor N

zz

zy

zx

yz

yy

yx

xz

xy

xx

π

4

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

2

π

π

3

/

4

0

0

0

3

/

4

0

0

0

3

/

4

π

π

π

D

S

total

H

H

H

=

For ellipsoids, the demagnetization tensor is the same at all the points within the 
given body. The demagnetizing tensors for three cases are shown below:

The flat plate has no demagnetization within its x-y plane but shows a 4

π

demagnetizing factor on magnetization components out of plane. A sphere shows
a 4/3 

π factor in all directions. A long cylinder has no demagnetization along its 

axis, but shows 2

π in the and directions of its cross sections. 

H

S

- the solenoid field

background image

(4

π)

background image
background image
background image

Electron spin

Orbital momentum

p

r

L

r

r

r

×

=

ω

m

r

rmv

L

2

=

=

2

r

T

e

S

i

L

π

μ

=

=

Magnetic moment of electron

T

π

ω

2

=

π

ω

π

μ

2

2

r

e

L

=

m

e

L

L

2

=

μ

)

1

(

2

+

=

l

l

h

L

π

)

1

(

4

+

=

l

l

m

eh

L

π

μ

L

r

 

 
 
 

         r

 

 

L

μ

   

 

     p


 

 

background image
background image

Electron Spin

emu

m

eh

B

20

10

93

.

0

4

×

=

=

π

μ

The magnetic moment of spining electron is called the 

Bohr magneton

3d shells of Fe are unfilled and have uncompensated electron spin magnetic 

moments

when Fe atoms condense to form a solid-state metallic crystal, the electronic 

distribution 

(density of states)

, changes

Whereas the isolated atom has 

3d: 

5+, 1-; 4s:1+, 1-,

in the solid state the distribution becomes 

3d: 4.8+, 2.6-; 4s: 

0.3+,0.3-. 

Uncompensated spin magnetic moment of Fe is 

2.2 

μ

B

.

background image

Electron spin

background image

Exchange coupling

3

3

8

2

/

1700

)

10

86

.

2

(

2

.

2

)

0

(

cm

emu

T

M

B

S

=

×

=

=

μ

The saturation of magnetization 

M

S

for body-centered cubic Fe crystal can 

be calculated if lattice constant 

a=2.86 Å

and two iron atoms per unit cell.

background image
background image
background image

Magnetyczny (analogowy) zapis dźwięku

1877

-

T. Edison

– nagranie i odtworzenie dźwięku z woskowego

cylindra zapis niemagnetyczny.

1898

-

V. Poulsen

– telegrafon – zapis na drucie stalowym 

(

Φ = 1mm) prędkość zapisu 2m/s. 

1900

-Prezentacja telegrafonu na Światowej Wystawie w Paryżu.

Lata dwudzieste XX wieku

-

L. Blattner

– Blattnerphone - zapis 

na taśmie stalowej (grubość 0.05mm, szer. 3mm) 
prędkość zapisu 1m/s.

1927

-

F. Pflumer

– zapis na taśmie papierowej pokrytej klejem z

opiłkami żelaza.

Lata trzydzieste XX wieku

-

BASF

– pierwsze taśmy z tworzyw 

sztucznych pokryte tlenkami żelaza.

background image

Historia – pierwszy zapis dźwięku

1898 – Valdemar Poulsen 

2 m/s

Elektro-
magnes

Mikrofon

bl

a

bl

a.

la

..

Fala dźwiękowa

Sygnał elektryczny

Zapis magnetyczny

Głowica zapisu

Nośnik informacji –

struna fortepianowa

(drut stalowy).

background image

Elektro-
magnes

Głośnik

Bla bla...

2 m/s

Głowica odczytu

Odczyt informacji (głowica indukcyjna) : 

Do odczytu informacji wykorzystywane jest zjawisko indukcji magnetycznej – generowanie 
siły elektromotorycznej w obwodzie prądu pod wpływem zmian strumienia magnetycznego –
przecinania linii sił rozproszonego pola magnetycznego pochodzącego od różnie 
zorientowanych magnetycznie obszarów

background image
background image
background image

Jak zwiększyć gęstość zapisu informacji?

Zastąpić materiał lity (stalowy drut lub taśmę) drobinami materiału 
ferromagnetycznego naniesionymi na niemagnetyczne podłoże (wpierw 
papier później tworzywa sztuczne – taśmy magnetofonowe).

background image

In the early 1930s researchers at the Ludwigshafen works created a sensation with 
another pioneering invention: the Magnetophon, which had been developed in 
cooperation with AEG. It was presented at the Berlin Radio Exhibition in 1935

Pierwsze magnetofony firmy AEG prezentowane na światowej 
wystawie sprzętu radiowego (Berlin 1935).

background image

zapis

odczyt

350 nm 
szer.

45 nm
długość

dysk

20 nm

Magnetyczny zapis w informatyce

Zapis binarny (0, 1) 

→ kierunek namagnesowania 

/

Warunek stabilności – pole koercji (pole potrzebne do 
przemagnesowania) materiału ferromagnetycznego H

C

musi być 

dostatecznie duże – im węższe bity tym większe musi być pole H

C

Im większe pole H

C

tym trudniej zapisać informację – wymagane są 

bardzo małe odległości pomiędzy głowicą zapisu i dyskiem (obecnie 
0.1

μm, większe wartości prądu płynące przez elektromagnes.....

Gęstość zapisu 
przy podanych 
rozmiarach bitów 
wynosi około 
30Gbit/inch

2

1nm = 10

-9

m

1nm = 10

-6

mm

1nm = 0.000001mm
1Å = 10

-7

mm

1

0

M

H

H

C

-H

C

background image

Dążymy do uzyskania maksymalnej 

gęstości zapisu !!!!!!!

Co oznacza gęsty zapis?
Bity – obszary o namagnesowaniu

/

powinny mieć jak 

najmniejszą długość i szerokość.

Szerokość bitu

Długość bitu

Co ogranicza gęstość zapisu?
•Nośnik informacji – materiał magnetyczny
•Zapis informacji – głowica zapisu
•Odczyt informacji – głowica odczytu

background image

History of HDD

• 1956 – HDD of IBM, random access method of 

accounting and control (RAMAC)

• 1980 – induction thin film head
• 1990 – write induction coil, read AMR sensor
• 1996 – GMR sensor 

background image

HDD for 50 years and now

First Hard Disk Drive with 24" Diameter Disks Compared with Modern 2.5" HDD. The first HDD was 

introduced in 1956 with 

50 disks of 24" diameter holding a total of 4.4 Mbytes

of data. The purchase price of 

this HDD was 

$10,000,000 per Gbyte

. For comparison in the foreground a modern HDD is shown holding 

160 

Gbyte of data on two 2.5" diameter disks 

at a purchase price of 

less than $1 per Gbyte

.

background image

Dimensions scaling

background image
background image

Areal data storage density vs. time for inductive and 

MR read heads

background image

Disc drive

The slider carrying the magnetic 

write/read head. The slider is 

mounted on the end of head 

gimbal assembly (HGA)

The air-bearing surface (ABS) 

allowing the head to fly at a distance 

above the medium about 10 nm

The magnetic disks (up to 10) in 

diameter 1 – 5.25 inches. 5.400 –

15.000 RPM it is related to about 

100 km/h

background image

Thin film disks

Substrate – Al Mg (or glass) + electroplated Ni

80

P

20

(T

c

<T

room

). NiP undercoat layer make disk hard and smooth. 

Cr underlayer is used to control microstructure and magnetic 

properties the main magnetic recording layer of CoPtCr 

doped with B. The magnetic layer is covered by a carbon 

overcoat layer and lubricant. The last two layers are 

necessary for the tribological performance of the head-disk 

interface and for the protection of the magnetic layer.

background image

Disk layer structure

background image

Evolution of bit size

background image

Macroscopic properties of the disk

For high density recording the macroscopic properties such as 

coercivity 

(H

c

), 

remanence

(M

r

)

, coercive squerness 

(S

*

)

and 

remanence squerness 

(S) 

determine read-back signal variables such 

as pulse shape, amplitude and resolution arising from magnetic 

transitions.

⎟⎟

⎜⎜

=

f

x

M

x

M

r

arctan

2

)

(

π

The parameter 

(f ) 

is called as 

transition slope parameter. 

In an ideal 

situation, in the absence of demagnetizing fields (arising from 

adjacent bit cells), the transition would be abrupt. 
Assuming that the contributions to the transition parameter from 

characteristics of the write head are negligible and that the recording 

medium has a coercive squerness

S

*

= 1 

a simplified relation can be 

derived from the Williams Comstock model:

(

)

c

r

H

d

M

f

π

δ

δ

2

+

=

(4)

(5)

To minimize 

the transition slope f

, Eq.5 indicates that this can be achieved by:

•decreasing the magnetic spacing 

and thickness of recording medium 

δ,

•increasing the 

H

of the medium,

•smaller 

M

r

reduce the read signal detected by AMR or GMR.

background image

Tradycyjne media jeden bit z

łożony z 1000 ziaren

background image

Grains in bit cell

background image

Microscopic properties

Coercivity 

H

-

control and modification:

• magnetocrystalline anisotropy (grain shape anisotropy),

•selection of alloying elements (Al, Cr, Pt, Ta, B,...)

•determination of influence: 

•deposition conditions and parameters: substrate temperature, bias

voltage, sputtering power (deposition rate), sputtering gas pressure

(Ar)

•microstructure: film stresses, grain size, texture (grain orientation), 

grain boundaries, crystal defects. 

If the grain structure is noticably voided, leading to reduced magnetic intractions and 

lower transition noise

.

background image

Superparamagnetic effect

The superparamagnetic effect originates from the shrinking volume of magnetic grains that compose the storage properties of hard disk 
media. The magnetic grains represent the data bits that are stored as alternating magnetic orientations. To increase data-storage densities 
while maintaining acceptable performance, designers have shrunk the media's grain diameters and decreased the thickness of the media. 
The resulting smaller grain volume makes them increasingly susceptible to thermal fluctuations, which decreases the signal sensed by the 
drive's read/write head. If the signal reduction is great enough, data could be lost over time to this superparamagnetic effect.

TEM of the grain structures in magnetic media. (magnification = 1 million)

The pictures are transmission electron micrographs (TEM) of two different disk media which illustrates how the grain structure has 
evolved over time. 

The TEM on the left is a magnetic media that supports a data density of about 10 gigabits/inch2 with an average grain 

diameter of about 13 nanometers

The magnetic media on the right supports a data density of 25 gigabit/inch2 with an average grain 

diameter of about 8.5 nanometers.

Historically, disk drive designers have had only two ways to maintain thermal stability as the media's 

grain volume decreases with increasing areal density: 1) Improve the signal processing and error-correction codes (ECC) so fewer grains 
are needed per data bit, and 2) develop new magnetic materials that resist more strongly any change to their magnetization, known 
technically as higher coercivity. The later is complicated by the laws of physics, as higher coercivity alloys are more difficult to write on. 
While improvements in coding and ECC are ongoing, Hitachi GST's discovery of AFC media is a major advancement because it allows
disk-drive designers to write at very high areal densities on a surface that offers greater stability than conventional media.

background image

Nośnik informacji – ferromagnetyczna cienka warstwa (z 
anizotropią w płaszczyźnie warstwy) o granularnej (ziarnistej) 
strukturze. Takie dyski są obecnie powszechnie stosowane.

1 bit (obszar, w którym ziarna mają 
określony kierunek magnetyzacji) 
składa się z około 10

3

ziaren. 

Rozmycie granicy pomiędzy bitami 
nie może być duże. Tak więc wzrost 
gęstości zapisu można uzyskać 
poprzez zmniejszenie rozmiaru 
ziaren.

Czy można bezkarnie zmniejszać rozmiar cząstek?
Dla małych cząstek (d<3nm w temperaturze pokojowej) kierunek 
namagnesowania cząstki ferromagnetycznej w wyniku wzbudzeń 
termicznych fluktuuje (zmienia kierunek) – cząstka 
superparamagnetyczna. Oznacza to utratę zapisanej informacji 
(limit superparamagnetyczny).

background image

Signal to noise (S/N) ratio

Highly intergranular coupled magnetic thin films with long correlation lengths 

tends to form zizag domain walls in recorded transitions (bits) which results in 

noises. Threrefore the reduction of intergranular exchange coupling becomes 

important. 

There are three major approaches to noise reduction:

•physical grain segregation, 

•compositional segregation,

•Small grains with very narrow size distributions.

For example – higher Cr content and higher sputter temperatures leads to Cr 

segregation to grain boundaries, forming non-magnetic phases in CoPtCrTa and 

CoPtCrTB. The low solubility of B in the cobalt alloys leads to compositional 

segregation.

The ideal  thin-recording-magnetic layer should be composed of grains with 

high-anisotropy, which are smaller than the recording bit cell, uniform in size 

and magnetically isolated.

background image

Thermal stability

For high density recording the grains are small in comaprison to the bit cell. In a simplified model, 

assuming isolated grains, the thermally induced switching of magnetization has to overcome an 

energy barier. The switching probability 

is given by an Arrhenius equation:

Δ

=

W

f

f

exp

0

kT

ΔW 

is energy barier, 

K

u

is the uniaxial anisotropy constant, V is grain volume. If the grains 

become very small, the magnetization switch very easily which leads to 

superparamagnetic 

efect.

Estimation of minimum grain size (example):

K

u

=2

×10

J/m

3

Bit stored 10 years at room temperature 

(f<3.33

×10

-9

Hz at T=300 K),

than diameter of spherical grain is 

9 nm.

where

ΔW =  K

u

V     (6)

background image

Granular media vs. patterned media

background image

Self organized particle media

Chemical method for preparation FePt 

nanoparticles

TEM micrograph of self-assembled 

FePt nanoparticles (size 3 to 10nm)

background image

Write/read head of HDD

background image

Inductive write head

The yoke consists of structured Ni

81

Fe

19 

(permalloy) films P

1

and P

2

.These films are all 

deposited on the top of substrate which 

consists of  insulators (Al

2

O

and TiC). The gap

width is defined by the thickness of Al

2

O

insulation layer between  P

1

and P

hich is 

below 100 nm

.

Micrograph of the write/read head 

taken by SEM from the ABS side.

background image
background image
background image

Aim for application

Magnetic properties optimization of 

ML (Fe

97

Al

3

)

85

N

15

/Al

2

O

3

for shields and poles of HDD heads

background image

SEM cross section of the head

background image

Schematic representation of a longitudinal recording 

process

Magnetic force micrograph (MFM)of 

recorded bit patterns. Track width is 

350 nm recorded in 

antiferromagnetic coupled layers 

(AFC media)

background image
background image
background image
background image
background image
background image
background image
background image

Document Outline