SODIUM ETHOXIDE 1 Condensations of esters with the enolate of acetone can be Sodium Ethoxide1 effected using sodium ethoxide as a base to yield products such as acetylacetone.2a and the precursor to chelidonic acid depicted NaOEt in eq 22b The corresponding enolates of methyl aryl ketones can similarly be utilized.2c,1f [141-52-6] C2H5NaO (MW 68.06) O InChI = 1/C2H5O.Na/c1-2-3;/h2H2,1H3;/q-1;+1 O O H2O NaOEt InChIKey = QDRKDTQENPPHOJ-UHFFFAOYAQ EtO + OEt EtOH HCl O (used as a base for the Ä…-deprotonation of carbonyl- EtO2C O O CO2Et containing compounds for subsequent intermolecular2 or O intramolecular1f condensations, displacements,3 or skele- (2) tal rearrangements,1d,4 arylacetonitriles,5 nitro-containing aliphatic compounds,6 sulfonium salts,3j,7 for the dehydra- HO2C O CO2H tion of carbinolamines8 and for dehydrohalogenation,1b,9 76 79% for the N-deprotonation of amides,10a d tosylamines,10e amine hydrochlorides1c or toluenesulfonates,10f cyanamide,10g Condensation of the sodium ethoxide-generated enolate of and the S-deprotonations of sulfides,1c,11 often followed cyclohexanone with ethyl formate yields 2-hydroxymethylene- by cyclizations;1c,10b,10g,11 can be used as a nucleophile cyclohexanone which, upon treatment with hydrazine in ipso substitution reactions of vinyl sulfides,12a aromatic monohydrate, forms indazole in excellent yield (eq 3).2d halides,12b i sometimes catalyzed by copper12c or palladium,12h,i aryl sulfones,12j and aromatic nitro compounds,12k in the CHOH NaOEt, EtOH N2H4" H2O Williamson ether synthesis,13a c in displacements of halo,13d h + HCO2Et 0 °C to rt nitro,13e thiooxy,13g,h and phenoxy13g groups from dichloro- O O methane and chloroform analogs, in a novel transesterification conjugate addition protocol of acrylic esters,14 with Ä…-nitro N (3) epoxides to form Ä…-ethoxy ketones,15 in the nucleophilic attack N H on nitriles1e,16 and polyhaloalkenes,17 in reaction with chloro- 95 98% diphenylphosphine to form Arbuzov precursors,18 and with Grignard reagents to form organomagnesium ethoxides19) Sodium ethoxide is often the base of choice in the Ä…- ć% Physical Data: mp >300 C. acylation2e i and alkylation3h of esters. Interesting intramolec- Solubility: sol ethanol, diethyl ether. ular cyclizations sometimes follow in good yield (eq 4). Form Supplied in: white or yellowish powder or as 21 wt % O O solution in ethanol; widely available. NaOEt, EtOH EtO + Preparative Methods: it is often necessary to prepare sodium OEt OEt Et2O ethoxide immediately prior to its use. Preparation of a 6 10% Ph O solution in ethanol: to commercial absolute ethanol is added the O O required amount of Sodium in lumps or slices with or without stirring and with or without a nitrogen atmosphere and the solu- OEt (4) O tion is cooled or heated as required until the metal is dissolved. Ph OEt O The evolved hydrogen should be vented into a hood. Addition O O of ethanol to sodium is also reported. Alcohol-free reagent can 73 81% also be prepared.1a Handling, Storage, and Precautions: is a hygroscopic, flamma- Alkylation of malonate esters through the intermediacy of eno- ble, corrosive, and toxic solid which will decompose upon lates generated using sodium ethoxide is quite common.3 Sub- exposure to air. The solid or solution reagent should be tightly sequent decarboxylation to the carboxylic acid can then be sealed under an inert atmosphere in a dark bottle. induced, as depicted in eq 5.3d O General Discussion. Kinetic studies of the proton trans- Br Br O O 2 equiv NaOEt OEt fer reaction between bis(4-nitrophenyl)methane and alkoxide + EtO OEt EtOH OEt base systems reveal that sodium ethoxide is a kinetically faster (kH = 2.16 M-1 s-1) base than either sodium isopropoxide O (kH = 0.280 M-1 s-1) or sodium t-butoxide (kH = 1.05 M-1 s-1) O (5) (eq 1).20a Reaction between alkali alkoxides and p-nitrophenyl OH methanesulfonate have revealed the following order of reactivity: 18 21% LiOEt< NaOEt < CsOEt H" KOEt H" KOEt + 18-crown-6 < KOEt + [2.2.2]cryptand.20b Sodium ethoxide and Sodium Hydroxide have both proven Ar2CH2 + RONa Ar2CHNa + ROH (1) effective in the cyclopropanation of various Å‚,´-epoxy ketones, Avoid Skin Contact with All Reagents 2 SODIUM ETHOXIDE O as illustrated in eq 6. Adducts are generated in good to excellent yields.4 H2, Raney Ni NaOEt, EtOH O EtOH, rt reflux N O N OH H m-CPBA, CH2Cl2 R R 0 °C O 70% (10) O NaOEt, EtOH OH O reflux, 15 min R O O (6) >90% 65 67% NaOEt, DMSO 80 °C Ph3C Cl Ph3C (11) Deprotonation Ä… to nitriles has been found to be strongly 90% influenced by the purity of the sodium ethoxide used5a and can be done selectively over Ä…-deprotonation of an ester.5b Reactions Heteroatom deprotonations using sodium ethoxide as the base with aromatic aldehydes lead to condensation adducts (eq 7).5c are also quite common. Sodium ethoxide serves as an effective base when the nitrogen of cyanoacetamide must be condensed O on an ester. Subsequent intramolecular cyclization proceeding via CN NaOEt, EtOH + (7) Ä…-deprotonation to the nitrile leads to excellent yield of the di- PhCH Ph CN Ph H 83 91% Ph cyanoglutarimide shown in eq 12.10a Ph 1. NaOEt O NC CN Deprotonations Ä… to nitro functionalities have been found to Ph CN 2. HCl + NC (12) proceed with greater ease using sodium ethoxide rather than NH2 90 92% CO2Et O N O Sodium Methoxide.6 The in situ generated anion of 2-nitro- H propane transforms a benzylic bromide to its aromatic aldehyde derivative in good yield (eq 8).7a Other N-deprotonations include that of urea,10b thiourea,10c succinimide,10d tosylamines,10e cysteamine hydrochloride (eq 13),1c ribofuranosylamine toluenesulfonate,10f and cyana- Br NO2 NaOEt NO2 mide (eq 14).10g Similarly, S-deprotonations of sulfides Na+ (eq 13)1c,11 have been reported. Often, adducts can be used in EtOH rt, 4 h subsequent cyclizations.1c,10b,g, O NaOEt NH2" HCl NH2 xs. MeCN HS HS + + NaBr (8) reflux reflux NOH S 68 73% (13) N 67 73% Sodium ethoxide serves as a multipurpose base to generate both 1. HBr, H2O the ylide of dimethyl-2-propynylsulfonium bromide and the anion NC NaOEt 2. NaOEt, EtOH of acetylacetone in the synthesis of 3-acetyl-2,4-dimethylfuran NC OEt NH EtOH reflux + H2NCN NC CN illustrated in eq 9.3j The intermediacy of an allene has been 95% 65% NC Na+ suggested.7b NC N (14) O O + NaOEt, EtOH Me2S H2N N OEt + Br reflux, 6 h The synthesis of 6,6-dialkoxyfulvenes from 6,6-bis(methyl- O thio)fulvene has been reported in good yield via treatment with + Me2S (9) sodium ethoxide or related nucleophiles, followed by thermolysis (eq 15).12a O 81% C(OEt)3 C(OEt)3 10 equiv NaOEt MeS THF PhH + rt, 2.5 h reflux, 5 h MeS Sodium ethoxide both dehydrates and nucleophilically assists in the deacylation of the carbinolamine intermediate depicted EtO in eq 10.8 Furthermore, sodium ethoxide-mediated dehydrohalo- (15) EtO genation in DMSO solvent has been achieved in excellent yield 70% (eq 11).1b,9 A list of General Abbreviations appears on the front Endpapers SODIUM ETHOXIDE 3 Addition of a large excess of sodium ethoxide or methoxide to followed by chain transfer from the resulting p-ethoxybenzo- 11-chloro[5]metacyclophanes leads to good yields of ipso alkoxy- phenone radical, resulting in the adduct pictured in eq 20.12k substituted adducts.12b Sodium ethoxide proves to be the fastest of O O NaOEt, HMPA a series of nucleophiles in ipso substitution reactions of aromatic 60 h bromides employing a Copper(I) Bromide catalyst (eq 16). Once Ph (20) Ph 29% again, purity of alkoxide seems to be important.12c Substitution OEt NO2 of aryl iodides is also known.12d NaOEt, CuBr (cat) Sodium ethoxide is frequently employed as the nucleophile in EtOH the Williamson ether synthesis,.13a c as illustrated in eq 21 Br (16) OEt NMe Furthermore, polydisplacements of halo,13d h nitro,13e 93% thiooxy,13g,h and phenoxy13g groups of dichloromethane and O chloroform analogs have been realized by the use of sodium ethoxide as the nucleophile. This methodology has been used Ipso ethoxy substitutions of halo-pyrimidines,10g -purines in the syntheses of ethyl orthocarbonate (eq 22) and ethyl (eq 17),12e -thiophenes,12c,f -furans,12c and -triazines12g using diethoxyacetate (eq 23) in moderate to good yields. sodium ethoxide have also been reported in good yield. O O BzO N3 NaOEt, EtOH NaOEt, EtOH N rt, 5 h 60 °C, 5 h (21) N Cl 67% 84% Ph O Ph O O N N Br OEt HO N3 N 4 equiv NaOEt NaOEt N (17) EtO Cl3C S Cl (EtO)3C S OEt EtOH EtOH O N N C(OEt)4 (22) 78% Aryl iodides, vinyl bromides, and tricarbonyl(chloroarene)- chromium complexes have been found to react under mild con- 1. 3 equiv NaOEt ditions with sodium alkoxides in the presence of catalytic 2. HCl, EtOH Cl2HC CO2H (EtO)2HC CO2Et (23) dichlorobis(triphenylphosphine)palladium(II) (see Palladium(II) 45 50% Chloride) to afford the corresponding benzoate esters as the major products (eq 18).12h,i It has been rationalized that the higher base Sodium ethoxide has been employed for a transesterification strength of sodium ethoxide compared to that of sodium methox- conjugate addition protocol, which takes advantage of the syn- ide allows the former to successfully decarbonylate ethyl formate, selective addition of sodium alkoxides to acrylic esters such as whereas the latter proves more sluggish, yielding poorer results. the one depicted in eq 24.14 Cl OEt NaOEt, HCO2Et NaOEt, EtOH O O 50 °C 0.55% PdCl2(PPh3)2 (24) O CO2Me O CO2Et >85% Cr(CO)3 CO2Et CO2Et syn:anti = 86:14 + + (18) An interesting synthesis of Ä…-ethoxy ketones employs nucle- Cr(CO)3 Cr(CO)3 Cr(CO)3 ophilic reaction of sodium ethoxide with Ä…-nitro epoxides. The 20% 2% 66% reaction appears to be quite general and a variety of nucleophiles may be employed (eq 25).15 Ipso substitution of 2- and 4-pyridyl sulfones is also possi- EtO ble using a variety of nucleophiles, including sodium ethoxide. NaOEt, EtOH O rt, 2 min The sulfone moiety is preferentially displaced over a chlorine O (25) O2N 64% substituent also present on the aromatic ring (eq 19). The same reaction utilizing sulfoxides gives mixed results, while sulfides fail to react.12j Nucleophilic attack of sodium ethoxide on 3,4- or 2,3- cyanomethyl cyanopyridines followed by cyclization provides NaOEt, EtOH access to amino alkoxy naphthyridines (eq 26).1e,16 The reaction SO2Me (19) OEt 50 °C, 1 h N is believed to proceed through an imidate intermediate.16a Unfor- N 84% Cl Cl tunately, treatment of the analogous carbocyclic 2-cyanobenzyl cyanides under similar conditions leads to dimerization of start- It has been suggested that displacement of the nitro group of ing material, and cyclization must be achieved under acidic the radical anion of p-nitrobenzophenone by sodium ethoxide is conditions.16b Avoid Skin Contact with All Reagents 4 SODIUM ETHOXIDE NH2 4. (a) Gaoni, J., Tetrahedron 1972, 28, 5525. (b) Gaoni, J., Tetrahedron NaOEt, EtOH CN 1972, 28, 5533. reflux to rt N (26) 5. (a) Horning, E. C.; Finell, A. F., Org. Synth., Coll. Vol. 1963, 4, 461. N N CN 72% OEt (b) Coan, S. B.; Becker, E. I., Org. Synth., Coll. Vol. 1963, 4, 174. (c) Womack, E. B.; McWhirter, J., Org. Synth., Coll. Vol. 1955, 3, 714. Sodium ethoxide is also known to nucleophilically add to 6. Dauben, Jr., H. J.; Ringold, H. J.; Wade, R. H.; Pearson, D. L.; Anderson, polyhaloalkenes with preferential attack on the methylene with Jr.; A. G., Org. Synth., Coll. Vol. 1963, 4, 221. the highest degree of fluorine substitution (eqs 27 and 28).17 7. (a) Hass, W. B.; Bender, M. L., Org. Synth., Coll. Vol. 1963, 4, 932. Excess nucleophile unveils an ethyl ester (eq 28). (b) Batty, J. W.; Howes, P. D.; Stirling, C. J. M., J. Chem. Soc., Perkin F F F F Trans. 1 1973, 65. NaOEt, EtOH Cl F (27) 8. McMurry, J. E., Org. Synth., Coll. Vol. 1988, 6, 781. 92 97% Cl F H OEt 9. Norman, R. O. C.; Thomas, C. B., J. Chem. Soc. (C) 1967, 1115. 1 equiv NaOEt 10. (a) McElvain, S. M.; Clemens, D. H., Org. Synth., Coll. Vol. 1963, 4, Br Br Br OEt 3 equiv NaOEt EtOH 662. (b) Sherman, W. R.; Taylor, Jr., E. C., Org. Synth., Coll. Vol. 1963, 80 °C, 40 h 4, 247. (c) Ulbricht, T. L. V.; Okuda, J.; Price, C. C., Org. Synth., Coll. Br F Br F Vol. 1963, 4, 566. (d) Crockett, G. C.; Koch, T. D., Org. Synth., Coll. Br O Vol. 1988, 6, 226. (e) Atkins, T. J.; Richman, J. E.; Oettle, W. F., Org. Br (28) Synth., Coll. Vol. 1988, 6, 652. (f) Espie, J. C.; Lhomme, M. F.; Morat, H OEt J.; Lhomme, J., Tetrahedron Lett. 1990, 31, 1423. (g) Schmidt, J.-W.; 80 85% Koitz, J.; Junek, J., J. Heterocycl. Chem. 1987, 24, 1305. 11. Gillis, R. G.; Lacey, A. B., Org. Synth., Coll. Vol. 1963, 4, 396. Reaction of sodium ethoxide with chlorodiphenylphosphine 12. (a) Gupta, J.; Yates, J., Synth. Commun. 1982, 12, 1007. (b) Kraakman, P. provides access to Arbuzov precursors, which can be further A.; Valk, J.-M.; Niederländer, H. A. G.; Brouwer, D. B. E.; Bickelhaupt, reacted with suitable electrophiles to form phosphine oxides F. M.; de Wolf, W. H.; Bickelhaupt, J.; Stam, C. H., J. Am. Chem. (eq 29).18 Soc. 1990, 112, 6638. (c) Keegstra, M. A.; Peters, T. H. A.; Brandsma, NaOEt J., Tetrahedron 1992, 48, 3633. (d) Somei, J.; Yamada, J.; Kunimoto, Cl EtOH, Et2O J.; Kaneko, J., Heterocycles 1984, 22, 797. (e) Carret, J.; Grouiller, 0 °C, 0.5 h Cl J.; Chabannes, J.; Pacheco, J., Nucleosides Nucleotides 1986, 3, 331. Ph2P Cl Ph2P OEt 96% DMF, reflux, 15 h (f) Puschmann, J.; Erker, J., Heterocycles 1993, 36, 1323. (g) Konno, J.; 82% Ohba, J.; Agata, J.; Aizawa, J.; Sagi, J.; Yamanaka, J., Heterocycles 1987, 26, 3259. (h) Carpentier, J.-F.; Castanet, J.; Brocard, J.; Mortreux, J.; O Petit, J., Tetrahedron Lett. 1991, 32, 4705. (i) Carpentier, J.-F.; Castanet, P Ph2 J.; Brocard, J.; Mortreux, J.; Petit, J., Tetrahedron Lett. 1992, 33, 2001. (29) (j) Furukawa, J.; Ogawa, J.; Kawai, J., J. Chem. Soc., Perkin Trans. 1 Ph2 P 1984, 1839. (k) Denney, D. B.; Denney, D. Z.; Perez, A. J., Tetrahedron O 1993, 49, 4463. Treatment of Grignard reagents (RMgBr) with sodium 13. (a) Slomkowski, J.; Winnik, M. A.; Furlong, J.; Reynolds, W. F., ethoxide offers a synthetic route to organomagnesium ethoxides Macromolecules 1989, 22, 503. (b) Marei, M. G.; Mishrikey, M. M.; (RMgOEt).19 No yields are reported for this reaction. El-Kholy, I. El-S., Acta Chim. Hung. 1987, 124, 733. (c) Marei, M. G.; Mishrikey, M. M.; El-Kholy, I. El-S., Indian J. Chem., Sect. B 1987, 26B, 163. (d) Moffett, R. B., Org. Synth., Coll. Vol. 1963, 4, 427. (e) Roberts, J. Related Reagents. Potassium t-Butoxide; Potassium D.; McMahon, R. E., Org. Synth., Coll. Vol. 1963, 4, 457. (f) Kaufmann, 2-Methyl-2-butoxide; Sodium Hydroxide; Sodium Methoxide. W. E.; Dreger, E. E., Org. Synth., Coll. Vol. 1941, 1, 253. (g) Connolly, J. M.; Dyson, G. M., J. Chem. Soc 1936, 827. (h) Tieckelmann, J.; Post, H. W., J. Org. Chem. 1948, 13, 265. 1. (a) Fieser & Fieser 1967, 1, 1065. (b) Fieser & Fieser 1969, 2, 157. 14. Mulzer, J.; Kappert, J.; Huttner, J.; Jibril, J., Angew. Chem., Int. Ed. Engl. (c) Fieser & Fieser 1972, 3, 265. (d) Fieser & Fieser 1974, 4, 451. 1984, 23, 704. (e) Fieser & Fieser 1977, 6, 540. (f) Fieser & Fieser 1986, 12, 402. 15. Vankar, Y. B.; Shah, J.; Bawa, J.; Singh, S. P., Tetrahedron 1991, 47, 2. (a) Denoon, Jr., C. E., Org. Synth., Coll. Vol. 1955, 3, 16. (b) Riegel, E. 8883. R.; Zwilgmeyer, J., Org. Synth., Coll. Vol. 1943, 2, 126. (c) Magnani, J.; McElvain, S. M., Org. Synth., Coll. Vol. 1955, 3, 251. (d) Tishler, J.; 16. (a) Alhaique, J.; Riccieri, F. M.; Santucci, J., Tetrahedron Lett. 1975, Gal, J.; Stein, G. A., Org. Synth., Coll. Vol. 1963, 4, 536. (e) Briese, R. 173. (b) Johnson, J.; Nasutavicus, W. W., J. Org. Chem. 1962, 27, 3953. R.; McElvain, S. M., J. Am. Chem. Soc. 1933, 55, 1697. (f) Hershberg, 17. (a) Shainyan, B. A.; Rappoport, J., J. Org. Chem. 1993, 58, 3421. E. B.; Fieser, L. F., Org. Synth., Coll. Vol. 1943, 2, 194. (g) Floyd, D. (b) Englund, J., Org. Synth., Coll. Vol. 1963, 4, 184. E.; Miller, S. E., Org. Synth., Coll. Vol. 1963, 4, 141. (h) Holmes, H. 18. Yang, J.; Geise, H. J.; Nouwen, J.; Adriaensens, J.; Franco, J.; L.; Trevoy, L. W., Org. Synth., Coll. Vol. 1955, 3, 301. (i) Friedman, J.; Vanderzande, J.; Martens, J.; Gelan, J.; Mehbod, J., Synth. Met. 1992, Kosower, J., Org. Synth., Coll. Vol. 1955, 3, 510. 47, 111. 3. (a) Allen, J.; Kalm, M. J., Org. Synth., Coll. Vol. 1963, 4, 616. (b) Adams, 19. Gupta, J.; Sharma, J.; Narula, A. K., J. Organomet. Chem. 1993, 452, 1. J.; Kamm, R. M., Org. Synth., Coll. Vol. 1941, 1, 245. (c) Cox, R. F. B.; 20. (a) Schroeder, J., React. Kinet. Catal. Lett. 1992, 46, 51. (b) Pregel, M. McElvain, S. M., Org. Synth., Coll. Vol. 1943, 2, 279. (d) Callen, J. E.; J.; Buncel, J., J. Am. Chem. Soc. 1993, 115, 10. Dornfield, C. A.; Coleman, G. H., Org. Synth., Coll. Vol. 1955, 3, 212. (e) Moffett, R. B., Org. Synth., Coll. Vol. 1963, 4, 291. (f) Mariella, R. P.; Raube, J., Org. Synth., Coll. Vol. 1963, 4, 288. (g) Andruzzi, J.; Hvilsted, K. Sinclair Whitaker J., Polymer 1991, 32, 2294. (h) Marvel, C. S.; King, W. B., Org. Synth., Wayne State University, Detroit, MI, USA Coll. Vol. 1941, 1, 246. (i) Shriner, R. L.; Todd, H. R., Org. Synth., Coll. D. Todd Whitaker Vol. 1943, 2, 200. (j) Howes, P. D.; Stirling, C. J. M., Org. Synth., Coll. Vol. 1988, 6, 31. Detroit Country Day School, Beverly Hills, MI, USA A list of General Abbreviations appears on the front Endpapers