cw03 PS


Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 1/19
ĆWICZENIE 3
Analiza widmowa z zastosowaniem okien czasowych
1. Cel ćwiczenia
Okna czasowe stosuje się do wycięcia na osi czasu kawałka sygnału w celu przeprowadzenia
analizy widmowej. Okna znajdują też inne zastosowania, np. w projektowaniu filtrów
cyfrowych FIR, ale te zagadnienia wykraczają poza ramy tego ćwiczenia. Celem ćwiczenia
jest zbadanie, jak zmiana kształtu okna i jego długości wpływają na widmo okna. W
ćwiczeniu wybrane okna zostaną zastosowane do analizy widmowej sygnałów i będzie
badany wpływ właściwości okna na zdolność analizatora widma do rozróżniania bliskich
sobie prążków widma sygnału.
2. Wprowadzenie
W praktyce numeryczne obliczenie widma sygnału jest możliwe tylko na podstawie
skończonej liczby próbek sygnału (do pamięci komputera można wprowadzić tylko
skończone dane), zgromadzonych w skończonym czasie obserwacji. Wybranie N kolejnych
próbek z nieskończonego sygnału x[n] jest równoważne przepuszczeniu tego sygnału przez
okno w[n] o skończonej długości N (w najprostszym przypadku jest to okno prostokątne),
czyli jest równoważne następującemu mnożeniu
y[n]= x[n]w[n] , gdzie funkcja okna w[n]a" 0 poza 0 d" n d" N -1 (1)
Mnożeniu w dziedzinie czasu odpowiada splot w dziedzinie częstotliwości. Dlatego obliczone
jÉ
na podstawie N próbek widmo sygnału Y(e ) jest zniekształcone, różni się od widma
jÉ jÉ
sygnału oryginalnego X(e ), gdyż jest splotem widma oryginalnego sygnału X(e ) z
jÉ
widmem okna W(e )
Ä„
DTFT
1
jÉ j j(É - )
y[n]= x[n]w[n] "! Y(e )= X(e )W(e )d (2)
+"
2Ä„
-Ä„
gdzie widmo okna to
N -1
DTFT
jÉ - jÉn
w[n] "! W(e )= (3)
"w[n]e
n=0
Idealnym oknem (nie zniekształcającym widma sygnału) byłoby okno o widmie
będącym impulsem Diraca, gdyż splot widma sygnału z impulsem Diraca nie spowodowałby
zmiany kształtu widma. Niestety, takie okno nie istnieje (widmo o takiej postaci ma tylko
nieskończony ciąg jednakowych próbek, a okno w[n] z założenia musi być skończone).
Wynika stąd jednak wskazówka, że należy poszukiwać takiego okna, którego widmo ma
kształt zbliżony do impulsu Diraca (widmo wąskie, skupione wokół częstotliwości zerowej).
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 2/19
Istnieje wiele typów okien. Okna opracowane do celów analizy widmowej mają
kształt krzywej symetrycznej wokół maksimum usytuowanego w połowie długości okna,
czyli w punkcie ą = (N -1) 2 (jak na rys. 1a). Liczba próbek okna może być liczbą parzystą
lub nieparzystą. Ponieważ próbki okna są rzeczywiste, to widmo amplitudowe jest funkcją
parzystą i wystarczy rysować widmo okna tylko dla dodatniej półosi częstotliwości (rys. 1b).
Symetryczny kształt okna powoduje, że widmo fazowe okna jest zawsze liniowe i nie będzie
ono przedmiotem badań. W widmie amplitudowym okna wyróżnia się listek główny i listki
boczne. Należy poszukiwać okna o takim kształcie, aby jego widmo miało jak najwęższy
listek główny i jak najmniejsze listki boczne. Niestety są to wymagania sprzeczne, gdyż przy
zwężaniu listka głównego narastają listki boczne. Istniejące okna stanowią kompromis
między obu tymi wymaganiami. Poszukując okna o kompromisowych parametrach trzeba
pamiętać, że nawet niewielka, mało zauważalna na wykresie zmiana kształtu okna w[n]
jÉ
może spowodować istotną zmianę kształtu widma W(e ).
a)
b)
jÉ
W (e )
w[n]
N -1
[ ]
w n
1
"
TÅ‚umienie
n = 0
listków
R[dB]
bocznych
Listek
Listek
L
główny
boczny
n B
0
0 0,5 f
N - 1
WM
Ä… =
N - 1
N
2
Szerokość
listka głównego
Rys. 1. Typowe okno: a) kształt okna; b) kształt widma okna
Widma badanych okien łatwiej jest porównywać, gdy są one wykreślane w mierze
decybelowej i unormowane tak, że rozpoczynają się od 0dB , a wykresy są sporządzone w
funkcji znormalizowanej częstotliwości. Definiuje się dwa następujące podstawowe
parametry stanowiące miarę jakości okna:
a) Szerokość listka głównego WM . Jest zdefiniowana jako odległość od f = 0 do
fmin , gdzie częstotliwość fmin jest częstotliwością najbliższego minimum widma
amplitudowego. Szerokość listka głównego jest odwrotnie proporcjonalna do długości
okna N (lub N +1 w zależności od okna, dla dużego N nie ma to praktycznie
znaczenia), dlatego wygodnie jest porównywać okna posługując się nie parametrem
WM , ale parametrem B = WM N (lub B = WM (N +1)).
b) Tłumienie listków bocznych R[dB]. Jest zdefiniowane jako wyrażony w mierze
decybelowej stosunek wartości listka głównego w zerze, do maksimum najwyższego
listka bocznego.
Dla listka głównego oprócz szerokości ważny jest jego kształt, najlepiej aby był zbliżony do
wąskiego prostokąta. Z kolei dla listków bocznych ważne jest nie tylko ich tłumienie, ale i
sposób zmian w funkcji częstotliwości, najlepiej aby malały one jak najszybciej do zera.
Nachylenie z jakim widmo zanika do zera jest ściśle uzależnione od gładkości funkcji okna
analogowego w(t) będącego odpowiednikiem okna dyskretnego w[n]. Okno w(t), które ma
na krańcach skończoną nieciągłość (kończy się uskokami), ma widmo zanikające z taką
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 3/19
prędkością jak funkcja 1 f . Okno, którego pierwsza pochodna ma na krańcach skończoną
2
nieciągłość, ma widmo zanikające jak 1 f . Okno, którego druga pochodna ma na krańcach
3
skończoną nieciągłość, ma widmo zanikające jak 1 f , itd. Im bardziej gładka jest funkcja
okna w(t) na krańcach, tym szybciej zanika jej widmo w funkcji częstotliwości.
Zdefiniujemy wybrane okna.
a) Okno prostokątne. Jest to okno podstawowe, względem którego są porównywane pozostałe
okna. Okno to jest zdefiniowane jako prostokÄ…tna funkcja dyskretna
1 , dla 0 d" n d" N -1
Å„Å‚
wPr[n]= (4)
òÅ‚0 , pozostale n
ół
i ma widmo
N
öÅ‚
sinëÅ‚É
ìÅ‚ ÷Å‚
N -1 N
- jÉ - jÉ
2
jÉ íÅ‚ Å‚Å‚
2 2
WPr(e )= e = e asinc(É) (5)
É
sin
2
Okno prostokątne ma bardzo wąski listek główny B = NWM = 1, ale jednocześnie ma bardzo
małe tłumienie listków bocznych
îÅ‚ 1,5Ä„ Å‚Å‚
R H" 20log10 ïÅ‚N sinëÅ‚ öÅ‚ = 13,5 dB (6)
ìÅ‚ ÷łśł
N
íÅ‚ Å‚Å‚
ðÅ‚ ûÅ‚
N "
Listki boczne maleją jak funkcja 1 f , czyli zanikają z prędkością - 6dB okt .
b) Okno Bartletta. Okno to jest zdefiniowane następująco
2n N -1
Å„Å‚
, 0 d" n d"
ôÅ‚
N -1 2
wBa[n]= (7)
òÅ‚
2n N -1
ôÅ‚ - , < n d" N -1
2
N
ół -1 2
Ma ono kształt trójkątny. Ponieważ sygnał trójkątny jest wynikiem splotu dwóch
jednakowych sygnałów prostokątnych, a splotowi w dziedzinie czasu odpowiada mnożenie w
dziedzinie częstotliwości, to widmo okna Bartletta ma kształt podniesionego do kwadratu
widma okna prostokÄ…tnego
2 f
jÉ 2
WBa(e )= WPr ëÅ‚ öÅ‚ (8)
ìÅ‚ ÷Å‚
N 2
íÅ‚ Å‚Å‚
Szerokość listka głównego okna równa się B = NWM = 2 , a tłumienie listków bocznych ma
wartość R = 27 dB i zanikają one z prędkością -12dB okt . Obserwujemy tutaj typową
wymienność parametrów okna. W porównaniu z oknem prostokątnym w oknie Bartletta
tłumienie listków bocznych wzrosło dwukrotnie za cenę dwukrotnego zwiększenia szerokości
listka głównego.
c) Okno von Hanna. Okno to nosi też nazwę podniesionego kosinusa, gdyż jest zdefiniowane
następującą zależnością
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 4/19
1 1 n n
öÅ‚ ëÅ‚ öÅ‚
2
wvH [n]= - cosëÅ‚2Ä„ = sin Ä„ , 0 d" n d" N -1 (9)
ìÅ‚ ÷Å‚ ìÅ‚ ÷Å‚
2 2 N -1Å‚Å‚ íÅ‚ N -1Å‚Å‚
íÅ‚
Jego widmo jest złożeniem trzech widm okien prostokątnych
1 1 1 1 1
öÅ‚ öÅ‚
jÉ
WvH (e )= WPr ( f )- WPr ëÅ‚ f - ÷Å‚ - WPr ëÅ‚ f + (10)
ìÅ‚ ìÅ‚ ÷Å‚
2 4 N -1Å‚Å‚ 4 N -1Å‚Å‚
íÅ‚ íÅ‚
Szerokość listka głównego okna równa się B = NWM = 2 , a tłumienie listków bocznych ma
wartość R = 31,5dB i zanikają one z prędkością -18dB okt .
d) Okno Hamminga. Okno to nosi też nazwę podniesionego kosinusa na piedestale, gdyż w
odróżnieniu od okna von Hanna nie rozpoczyna się od zera, ale od piedestału o wysokości
0,08
n
öÅ‚
wHa[n]= 0,54 - 0,46cosëÅ‚2Ä„ , 0 d" n d" N -1 (11)
ìÅ‚ ÷Å‚
N -1Å‚Å‚
íÅ‚
Widmo tego okna wyraża się w funkcji widma okna prostokątnego następującym wzorem
1 1
öÅ‚ öÅ‚
jÉ
WHa(e )= 0,54WPr ( f )- 0,23WPr ëÅ‚ f - ÷Å‚ - 0,23WPr ëÅ‚ f + (12)
ìÅ‚ ìÅ‚ ÷Å‚
N -1Å‚Å‚ N -1Å‚Å‚
íÅ‚ íÅ‚
Szerokość listka głównego okna równa się B = NWM = 2 , a tłumienie listków bocznych ma
wartość R = 42 dB i zanikają one z prędkością - 6dB okt . W porównaniu z oknem von
Hanna okno Hamminga ma większe tłumienie listków bocznych za cenę mniejszej prędkości
zanikania listków bocznych.
e) Okno Blackmana. Okno to podobnie jak okna von Hanna i Hamminga ma postać
wielomianu trygonometrycznego, ale zawiera o jeden wyraz więcej
n 2n
öÅ‚ öÅ‚
wBl[n]= 0,42 - 0,5cosëÅ‚2Ä„ + 0,08cosëÅ‚2Ä„ , 0 d" n d" N -1 (13)
ìÅ‚ ÷Å‚ ìÅ‚ ÷Å‚
N -1Å‚Å‚ N -1Å‚Å‚
íÅ‚ íÅ‚
i jego widmo to
1 1
öÅ‚ öÅ‚
jÉ
WBl(e )= 0,42WPr ( f )- 0,25WPr ëÅ‚ f - ÷Å‚ - 0,25WPr ëÅ‚ f + +
ìÅ‚ ìÅ‚ ÷Å‚
N -1Å‚Å‚ N -1Å‚Å‚
íÅ‚ íÅ‚
(14)
2 2
öÅ‚ öÅ‚
+ 0,04WPr ëÅ‚ f - ÷Å‚ ìÅ‚ ÷Å‚
+ 0,04WPr ëÅ‚ f +
ìÅ‚
N -1Å‚Å‚ N -1Å‚Å‚
íÅ‚ íÅ‚
Szerokość listka głównego okna równa się B = NWM = 3, a tłumienie listków bocznych ma
wartość R = 58dB i zanikają one z prędkością -18dB okt . W porównaniu z oknem
Hamminga osiągnięto większe tłumienie listków bocznych i szybsze ich zanikanie, ale za
cenę poszerzenia listka głównego.
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 5/19
f) Okno Kaisera. Jest to okno z parametrem ² i w jego zależnoÅ›ci definicyjnej wystÄ™puje
zmodyfikowana funkcja Bessela pierwszego rodzaju zerowego rzędu I0(x)
2
îÅ‚ Å‚Å‚
2n
ëÅ‚
ïÅ‚ śł
I0 ² 1- ìÅ‚ -1öÅ‚
÷Å‚
N -1
ïÅ‚ íÅ‚ Å‚Å‚ śł
ðÅ‚ ûÅ‚
wKa[n]= , 0 d" n d" N -1 (15)
I0(² )
Dlatego okno to nosi też nazwę okna Kaisera-Bessela. W oknie tym zminimalizowano energię
sygnału zawartą w listkach bocznych w stosunku do energii w listku głównym. Nie jest znana
zależność analityczna na widmo tego okna i wartości numeryczne widma oblicza się z
prostego przekształcenia DTFT
N -1
jÉ
WKa(e )= [n]e- jÉn (16)
"wKa
n=0
ZwiÄ™kszajÄ…c wartość parametru ² można w sposób pÅ‚ynny zwiÄ™kszać tÅ‚umienie listków
bocznych za cenę zmniejszenia prędkości zanikania listków bocznych i zwiększenia
szerokości listka głównego.
g) Okno Dolpha. Jest to okno o równofalistych listkach bocznych z jednym parametrem. Przy
zadanym parametrze, którym jest tłumienie listków bocznych zadane w mierze decybelowej
R [dB], oblicza siÄ™ parametry pomocnicze
s = 10R 20 , x0 = cosh(cosh-1(s) (N -1)) (17)
które występują we wzorze definiującym okno Dolpha
îÅ‚ N -1 Å‚Å‚
öÅ‚
N -1
2Ä„këÅ‚n - ÷łśł
ìÅ‚
ïÅ‚
2
1 Ä„k 2
ëÅ‚ öÅ‚cos
íÅ‚ łłśł , 0 d" n d" N -1
ïÅ‚
wDo[n]= s + 2 x0 cos (18)
ìÅ‚ ÷Å‚
"CN -1
N N N
ïÅ‚ śł
íÅ‚ Å‚Å‚
k =1
ïÅ‚ śł
ðÅ‚ ûÅ‚
W powyższej zależności wykorzystuje się wielomiany Czebyszewa
Å„Å‚
cos(mcos-1 x), x d" 1
Cm(x) = (19)
òÅ‚
(mcosh-1 x), x > 1
ółcosh
i dlatego okno to nosi też nazwę okna Dolpha-Czebyszewa. Widmo okna zmienia się według
następującej zależności
É
öÅ‚
CN -1ëÅ‚ x0 cos
ìÅ‚ ÷Å‚
2
jÉ íÅ‚ Å‚Å‚
WDo(e )= (20)
CN -1(x0 )
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 6/19
h) Okno ultrasferyczne. Jest to okno z dwoma parametrami µ oraz xµ . Jest ono zdefiniowane
następującą zależnością
îÅ‚ N -1 Å‚Å‚
öÅ‚
N -1
2Ä„këÅ‚n - ÷łśł
ìÅ‚
ïÅ‚
2
1
µ µ
ïÅ‚U N -1 2 N -1ëÅ‚ xµ cos Ä„k öÅ‚cos íÅ‚ 2 łłśł , 0 d" n d" N -1 (21)
wUS [n]= (xµ )+
ìÅ‚ ÷Å‚
"U íÅ‚ N Å‚Å‚
N N
ïÅ‚ śł
k =1
ïÅ‚ śł
ðÅ‚ ûÅ‚
gdzie wielomiany ultrasferyczne Urµ (x) mogÄ… być wyznaczone z zależnoÅ›ci rekurencyjnej
µ
U0 (x) = 1
U1µ (x) = 2µx
µ
U (x) = -µ + 2µ(1+ µ)x2 (22)
2
K
1
µ µ
U (x) = [2x(r + µ -1)U (x)- (r + 2µ - 2)Urµ (x)]
r r-1 -2
r
Posługując się jawną postacią wielomianu ultrasferycznego, próbki okna można wyznaczyć z
następującej zależności
2
µxµM ëÅ‚ µ + M + n - M -1öÅ‚M - n-M ëÅ‚ µ + M - n - M -1öÅ‚
-2
ìÅ‚ ÷Å‚ ìÅ‚ ÷Å‚ëÅ‚ M + n - M öÅ‚ xµ m
wUS [n]= (1- )
"
ìÅ‚ ÷Å‚
ìÅ‚ ÷Å‚ ìÅ‚ ÷Å‚ìÅ‚ m ÷Å‚
M + n - M M + n - M -1 M - n - M - m
m=0
íÅ‚ Å‚Å‚
íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚
N -1
M = , 0 d" n d" N -1 (23)
2
ëÅ‚Ä… öÅ‚
Współczynniki dwumianowe ìÅ‚ ÷Å‚ dla liczby rzeczywistej Ä… i liczby naturalnej k
ìÅ‚ ÷Å‚
k
íÅ‚ Å‚Å‚
najdogodniej jest obliczać rekurencyjnie
ëÅ‚Ä… öÅ‚ ëÅ‚Ä… öÅ‚ Ä… - k +1 Ä… öÅ‚
ëÅ‚
ìÅ‚ ÷Å‚ = 1 ; ìÅ‚ ÷Å‚ = ìÅ‚ ÷Å‚ (24)
ìÅ‚ ÷Å‚ ìÅ‚ ÷Å‚ ìÅ‚k
0 k k -1÷Å‚
íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚
Posługiwanie się zależnością (21) (czas obliczeń jest proporcjonalny do długości okna)
wymaga mniejszego nakładu obliczeniowego niż posługiwanie się zależnością (23) (czas
obliczeń jest funkcją kwadratową długości okna).
Widmo okna ultrasferycznego zmienia się według następującej zależności
É
ëÅ‚ öÅ‚
µ
U xµ cos
ìÅ‚ ÷Å‚
N -1
2
jÉ íÅ‚ Å‚Å‚
WUS (e )= (25)
µ
U (xµ )
N -1
Zmiana parametru µ wpÅ‚ywa na prÄ™dkość zmian listków bocznych. Dla µ > 0 listki boczne
zanikajÄ… z prÄ™dkoÅ›ciÄ… tym wiÄ™kszÄ… im wiÄ™ksza jest wartość µ . Dla -1 < µ < 0 okno
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 7/19
ultrasferyczne ma unikalny kształt widma z listkami bocznymi narastającymi w funkcji
czÄ™stotliwoÅ›ci. Przy µ 0 wielomiany ultrasferyczne przechodzÄ… w wielomiany
Czebyszewa i okno ultrasferyczne staje siÄ™ oknem Dolpha. Zmiana parametru µ wpÅ‚ywa też
na tłumienie listków bocznych i szerokość listka głównego, ale zasadniczo na wymienność
tych dwóch parametrów wpÅ‚ywa parametr xµ . ZwiÄ™kszanie wartoÅ›ci parametru xµ powoduje
zwiększenie tłumienia listków bocznych za cenę zwiększenia szerokości listka głównego.
Powyższe okna są dostępne do badań w interfejsie graficznym okna. Oprócz tego w
interfejsie graficznym okna3 są dostępne do badań takie okna jak: Parzen, Harris-Nuttall,
płaski szczyt ISO, Gauss, Lanczos, podniesiona funkcja próbkowa, okno kodera mowy ITU-T
G.729 . Dokładniejsze omówienie tych okien wykracza jednak poza ramy tego ćwiczenia.
Okno interfejsu graficznego okna pokazano na rys. 2. Dla wszystkich wymienionych
okien w[n] są podawane cztery wartości ich parametrów. Wartości te są wyznaczane
metodami numerycznymi (np. maksima i minima funkcji sÄ… wyznaczane numerycznie) i
dlatego wartości te nieco różnią się od wartości dokładnych wyznaczonych metodami
analitycznymi. W przypadku okien z parametrem wartość parametru zmienia się suwakiem
lub wpisuje się ją w pole edycyjne. Długość okna N można zmieniać suwakiem lub poprzez
wpis wartości N w polu edycyjnym. Przyciskami radiowymi wybiera się okna, dla których
jÉ
jest sporządzany wykres czasowy w[n] i widma W(e ) [dB]. Widmo jest wykreślane od
zera, rzeczywista wartość widma w zerze (równa sumie próbek okna w dB) jest podawana
jako parametr W(0) [dB]. Wartość widma jest wykreślana powyżej wartości min dB
zadawanej w polu edycyjnym.
Rys. 2. Okno interfejsu graficznego okna
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 8/19
Przykład 1. Porównamy właściwości okna prostokątnego i okna Bartletta. Przy długości
N = 17 , okna i ich widma są takie jak na rys. 2. Jest wyraznie widoczna wymienność
parametrów okien. W porównaniu z oknem prostokątnym, w oknie Bartletta uzyskano
dwukrotnie większe tłumienie listków bocznych za cenę dwukrotnego zwiększenia szerokości
listka głównego. Kształt listka głównego nieco pogorszył się (mniej przypomina prostokąt),
ale wzrosła dwukrotnie prędkość zanikania listków bocznych z - 6dB okt do -12dB okt .

Wpływ okna na widmo sygnału przepuszczanego przez to okno najdogodniej jest
prześledzić na przykładzie sygnałów sinusoidalnych. Sygnał nieskończony będący sumą
dwóch sygnałów sinusoidalnych
x[n]= A1 cos(2Ä„f1nT + Õ1)+ A2 cos(2Ä„f2nT + Õ2 ) (26)
ma widmo amplitudowe o postaci impulsów Diraca (pola impulsów Diraca to odpowiednio
(A1) i (A2 )) i pokazano je na rys. 3a. Sygnał sinusoidalny po przejściu przez okno jest
sygnałem skończonym i ma widmo będące splotem impulsu Diraca i widma okna, czyli jego
widmo jest repliką widma okna rozciągającą się wokół częstotliwości sinusoidy. W
przypadku sumy dwóch sinusoid, sygnał po przejściu przez okno ma widmo będące sumą
dwóch replik widm okna (rys. 3b).
a) b)
(A1) (A2 ) ~ A1 ~ A2
f1 f2 f1 f2
0 ff
0
"f = f1 - f2
Rys. 3. Analiza widmowa: a) widmo sygnału oryginalnego; b) widmo sygnału
przepuszczonego przez okno
Analizator widma z wbudowanym oknem zniekształca mierzone widmo sygnału
nieskończonego. Z powodu tych zniekształceń dwie sąsiadujące składowe dyskretne widma
mogą być trudne do rozróżnienia. Jak widać na rys. 3b, dwie składowe dyskretne widma ani
nie mogą znajdować się zbyt blisko siebie, ani zbyt różnić się amplitudami, gdyż widmo
odpowiadające jednemu prążkowi zniknie na tle drugiego. Zdolność analizatora widma do
rozróżniania składowych dyskretnych widma nazywa się jego rozdzielczością częstotliwości
i amplitudy.
a) Rozdzielczość częstotliwości jest parametrem mówiącym o zdolności rozróżnienia
składowych widma sumy dwóch sinusoid o jednakowych amplitudach ( A1 = A2 = A )
x[n]= Acos(2Ä„f1nT + Õ1)+ Acos(2Ä„f2nT + Õ2 ) (27)
różniących się niewiele częstotliwościami, przy czym "f = f1 - f2 . Rozdzielczość
częstotliwości jest minimalną wartością "fmin , przy której dwie składowe widma z rys. 3b są
jeszcze możliwe do rozróżnienia. O rozdzielczości częstotliwości decyduje głównie szerokość
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 9/19
listka głównego ( "fmin H" 2WM , zetknięcie się dwóch listków głównych), chociaż ma na nią
także wpływ kształt listka głównego, ukształtowanie listków bocznych, fazy pomiarowych
sygnałów sinusoidalnych.
b) Rozdzielczość amplitudy jest parametrem mówiącym o zdolności rozróżnienia składowych
widma sygnału opisanego wzorem (26) będącego sumą dwóch sinusoid, przy zadanej
wartości "fmin = f1 - f2 , stałej amplitudzie A1 i zmniejszającej się amplitudzie A2 .
Rozdzielczość amplitudy wyrażona w mierze decybelowej, to 20log10(A1 A2 min ), gdzie
A2 min jest minimalną wartością amplitudy drugiej składowej widma, przy której jest jeszcze
możliwe jej rozróżnienie na rys. 3b na tle pierwszej składowej o amplitudzie A1 . O
rozdzielczości amplitudy decyduje głównie tłumienie listków bocznych R, chociaż ma na nią
wpływ także ukształtowanie listków bocznych i fazy pomiarowych sygnałów sinusoidalnych.
Zwiększenie długości okna N zawsze spowoduje zwiększenie rozdzielczości
częstotliwości i amplitudy analizatora widma, niezależnie od kształtu okna czasowego. Dzieje
się tak za cenę zwiększenia czasu pomiaru widma, gdyż wzrasta czas obserwacji sygnału i
czas obróbki cyfrowej coraz większej liczby próbek sygnału.
Do badania widm sygnałów przepuszczanych przez okna czasowe będziemy używali
interfejsu graficznego widmo. Okno tego interfejsu pokazano na rys. 4.
Rys. 4. Okno interfejsu graficznego widmo
W interfejsie graficznym widmo można wprowadzić sygnał x(t) będący sumą do
dziesięciu składowych sinusoidalnych wpisywanych do dziesięciu pól. Kliknięte do edycji
pole ma czerwony tekst. Dla każdej składowej sinusoidalnej zadajemy amplitudę A ,
częstotliwość f0 i fazę poprzez wpis w polu edycyjnym lub za pomocą suwaka. Aby
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 10/19
wyeliminować niepotrzebnie wpisaną składową sygnału należy podstawić wartość amplitudy
A = 0 . Składową stałą sygnału wprowadzamy jako sinudoidę o częstotliwości zerowej.
Długość N okna w[n] ustalamy suwakiem lub poprzez wpis w polu edycyjnym. Wyboru
okna Bartlett, von Hann, Hamming, Blackman lub Dolph dokonujemy za pomocÄ… przycisku
radiowego. Komputer wykreśla najpierw nieskończony sygnał x(t), a następnie sygnał
spróbkowany x[n] przepuszczony przez okno prostokątne (niebieskie  o ) oraz przez inne
wybrane okno (czerwone  x ). Zostaje też wykreślone widmo amplitudowe sygnału
przepuszczonego przez okno prostokątne i przez inne okno. Widma mogą być wykreślone w
skali liniowej lub decybelowej.
Przykład 2. Zbadamy właściwości cyfrowego analizatora widma z oknem prostokątnym o
długości N = 40 . Jako sygnał wejściowy wybierzemy sygnał dwuharmoniczny
x(t) = 100cos(2Ä„ 0,1t)+100cos(2Ä„ 0,3t) (28)
Widmo sygnału spróbkowanego i przepuszczonego przez okno jest takie jak na rys. 4.
Zmierzymy teraz rozdzielczość częstotliwości analizatora widma. Drugą składową
sygnału o częstotliwości 0,3 podświetlamy kliknięciem na czerwono do edycji i suwakiem
zmniejszamy płynnie częstotliwość. Prawy prążek widma zbliża się do lewego prążka, i gdy
prążki zbliżą się do siebie na odległość równą rozdzielczości częstotliwości
"fmin H" 2B N = 0,05 , to listki główne zetkną się i prawy prążek zacznie zanikać na tle prążka
lewego. Wyznaczona wartość jest wartością przybliżoną, gdyż trudno jest jednoznacznie
stwierdzić na podstawie wykresu czy prążki widma (listki główne) już się zetknęły i zachodzą
na siebie czy jeszcze nie.
Przechodzimy teraz do zmierzenia rozdzielczości amplitudy analizatora widma.
Pozostawiamy dwa prążki widma w odległości równej rozdzielczości częstotliwości
"fmin = 0,05 . Zmniejszamy suwakiem amplitudę drugiej składowej sygnału, aż prawy prążek
widma zacznie niknąć na tle listków bocznych. Uważamy że prążek niknie, gdy osiąga
amplitudę równą amplitudzie listków bocznych. W tym przypadku tak stanie się przy
A2 H" 20 , czyli rozdzielczość amplitudy równa się 20log10(A1 A2 ) = 20log10(5) H" 14 dB i jest
w przybliżeniu równa tłumieniu listków bocznych okna prostokątnego R = 13,5 dB .
Wyznaczona wartość jest wartością przybliżoną, gdyż trudno jest jednoznacznie stwierdzić na
podstawie niewielkiego wykresu czy prążek widma już osiągnął poziom listków bocznych
czy jeszcze nie.
Pomiary rozdzielczości częstotliwości i amplitudy analizatora widma można
przeprowadzać posługując się skalą liniową lub decybelową na wykresie widma.

Przykład 3. Zbadamy jaki kształt ma w cyfrowym analizatorze widmo fali prostokątnej. Fala
prostokątna o amplitudzie Ą 4 ma następujące rozwinięcie w szereg Fouriera
1 1 1 1
x(t) = cos(2Ä„f0t)- cos(2Ä„ 3 f0t)+ cos(2Ä„ 5 f0t)- cos(2Ä„ 7 f0t)+ cos(2Ä„ 9 f0t)+ K (29)
3 5 7 9
Wybieramy wartość f0 = 0,05 i aproksymujemy falę prostokątną biorąc pięć kolejnych
składowych z powyższego rozwinięcia w szereg Fouriera. Przy długości okna N = 100
wyniki są takie jak na rys. 5. Prążki widma sygnału okresowego nie są pokazywane jako
nieskończenie wąskie, ale o kształcie takim jak widmo zastosowanego okna. W przypadku
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 11/19
okna prostokątnego są to prążki stosunkowo wąskie o kształcie zbliżonym do listka
głównego, ale występujące na tle wydatnych listków bocznych. W przypadku innych okien
prążki widma są przedstawiane jako listki główne szersze niż dla okna prostokątnego, ale za
to występujące na tle niższych listków bocznych.
Rys. 5. Widmo fali prostokÄ…tnej w cyfrowym analizatorze widma

Okna czasowe znajdują zastosowanie w dyskretnym, krótkoczasowym przekształceniu
Fouriera (ang. Short-Time Fourier Transform  STFT). Przekształcenie to pozwala badać
sygnały, w których widmo lokalne zmienia się w funkcji czasu. Takimi sygnałami są na
przykład sygnały mowy, w których widmo zmienia się w miarę wypowiadania kolejnych
głosek. Dyskretne krótkoczasowe przekształcenie Fouriera jest zdefiniowane jako ciąg widm
lokalnych obliczanych w miarę przesuwania się okna w[n] wzdłuż sygnału x[n]
"
jÉ jÉn
X(k,e )= (30)
"x[n]w[n - k]e- , - " < k < "
k =-"
Widma nie trzeba obliczać dla każdego indeksu k. Wystarczy je obliczać co połowę długości
okna. Graficznie przedstawia się zazwyczaj tylko wyniki obliczeń widma amplitudowego i
taki wykres nazywa siÄ™ spektrogramem. Wprawdzie spektrogram jest wykresem funkcji
dwóch zmiennych, ale wykonuje się go na płaszczyznie w układzie współrzędnych czas,
częstotliwość. Trzeci wymiar (wartość modułu widma) jest wyrażany poprzez poziom
szarości lub kolor. Wygląda to podobnie jak na mapie, gdzie kolorami przedstawia się
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 12/19
wysokość terenu (im wyższa góra, tym więcej koloru brązowego, im niżej położona dolina,
tym więcej koloru zielonego).
Do sporządzania spektrogramów przygotowano interfejs graficzny stft. Okno tego
interfejsu pokazano na rys. 6. Badane sygnały mają postać plików wav i można je odtwarzać
używając przycisku PLAY, przy czym jest podawana częstotliwość próbkowania sygnału i
liczba próbek sygnału. Wzdłuż sygnału przesuwa się skokami co połowę swojej długości
okno Hamminga o długości z przedziału od 3 do 513. Długość okna ustalamy posługując się
suwakiem lub wpisując wartość w polu edycyjnym (jest to zarazem liczba próbek w szybkiej
transformacie Fouriera). Na tle przebiegu czasowego sygnału zostało wykreślone czerwoną
linią przerywaną okno. Pod spodem zamieszczono widmo amplitudowe sygnału i
spektrogram (krótkoczasowe widmo amplitudowe).
Rys.6. Okno interfejsu graficznego stft
Przykład 4. Plik gama.wav zawiera próbki sygnału gamy do-re-mi-fa-sol-la-si-do. Są to
kolejne odcinki po 0,3 ms sinusoid o częstotliwościach tonów middle C, D, E, F, G, A, B, C,
czyli: 262 Hz, 294 Hz, 330 Hz, 349 Hz, 392 Hz, 440 Hz, 494 Hz, 523 Hz. Osiem tonów to
oktawa, w ramach której częstotliwość zostaje podwojona (dokładnie od 261,6256... Hz do
523,2512... Hz). Widać to na rys. 6 zarówno na widmie amplitudowym jak i na spektrogramie
sygnału. Spektrogram daje o wiele lepszy wgląd we właściwości widmowe sygnału niż
zwykłe, uśrednione w czasie widmo, gdyż pozwala mierzyć zmiany widma w funkcji czasu.
Spektrogram kojarzy się z zapisem nutowym muzyki. Podobnie jak na pięciolinii tak i w
spektrogramie na osi poziomej zmienną jest czas, a na osi pionowej częstotliwość. Im wyżej
na pięciolinii jest umieszczona nuta, tym większa jest częstotliwość tonu.

Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 13/19
W interfejsie graficznym stft oprócz sygnału gama są dostępne do badań także inne
sygnały opisane poniżej.
2
Plik chirplin.wav zawiera próbki sygnaÅ‚u Å›wiergotowego x(t) = cos(Ä„µt ),
µ = 200 Hz s , próbkowanego z czÄ™stotliwoÅ›ciÄ… f = 400 Hz . CzÄ™stotliwość chwilowa tego
p
sygnaÅ‚u zmienia siÄ™ liniowo f (t) = µt . W czasie od 0 do 4 s czÄ™stotliwość roÅ›nie od 0 do
800 Hz. Spektrogram pokaże w przedziale czasu od 0 do 2 s liniowe narastanie częstotliwości
od 0 do częstotliwości Nyquista fN = f 2 = 200 Hz . Dalej spektrogram będzie kreślony
p
linią łamaną, gdyż sygnał nie spełnia założeń twierdzenia o próbkowaniu, zachodzą
zniekształcenia aliasowe, widmo musi mieścić się w przedziale Nyquista 0 d" f < fN .
Rozdzielczości spektrogramu na osi czasu i częstotliwości nie mogą być jednocześnie
doskonałe, gdyż wzrost jednej rozdzielczości pociąga za sobą zmalenie drugiej
rozdzielczości. Kompromisowe rozdzielczości uzyskuje się, gdy stosunek szerokości listka
głównego okna do długości okna jest w przybliżeniu taki jak prędkość zmian częstotliwości
sygnału
WM df
ëÅ‚ öÅ‚ ëÅ‚ öÅ‚
H" (31)
ìÅ‚ ÷Å‚ ìÅ‚ ÷Å‚
Ä
íÅ‚ Å‚Å‚syg
íÅ‚ Å‚Å‚okno dt
W przypadku sygnału świergotowego oznacza to, że okno Hamminga powinno mieć w
przybliżeniu następującą długość
2
L H" f = 40 (32)
p
µ
Plik AM.wav zawiera próbki sygnału z modulacją amplitudy
x(t) = A[1+ mcos(2Ä„fmt)]cos(2Ä„f0t), A = 2 3, m = 0,5 , fm = 5 Hz , f0 = 30 Hz ,
próbkowanego z częstotliwością f = 100 Hz . Sygnał modulujący, a więc i sygnał
p
zmodulowany mają widmo stałe w funkcji czasu. Dlatego spektrogram sygnału będzie stały w
funkcji czasu. Prążki wstęg bocznych mają amplitudę mA 2 .
Plik FM.wav zawiera próbki sygnału z modulacją częstotliwości
x(t) = cos[2Ä„f0t + ² sin(2Ä„fmt)], f0 = 50 Hz , fm = 5 Hz , ² = "f fm = 5 , próbkowanego z
częstotliwością f = 200 Hz . Sygnał modulujący, a więc i sygnał zmodulowany mają widmo
p
stałe w funkcji czasu. Dlatego spektrogram sygnału będzie stały w funkcji czasu. Prążki
widma są odległe od siebie co częstotliwość sygnału modulującego i mają amplitudy
proporcjonalne do wartoÅ›ci funkcji Bessela pierwszego rodzaju Jk (² ). Ponieważ
J2(5) = 0,0466 H" 0 , to należy oczekiwać, że prążki numer dwa we wstęgach bocznych będą
praktycznie zerowe.
Plik PSK.wav zawiera próbki sygnału z cyfrową modulacją 2PSK,
x(t) = cos[2Ä„f0t + Õ(t)], f0 = 10 Hz , próbkowanego z czÄ™stotliwoÅ›ciÄ… f = 40 Hz . Faza Õ(t)
p
jest kluczowana w takt sygnału cyfrowego (ciągu zero-jedynkowego), dla bitów 0 faza
Õ(t) = 0 , a dla bitów 1 faza Õ(t) = 1800 . PrzykÅ‚adowy cyfrowy sygnaÅ‚ modulujÄ…cy, to tylko
cztery bity 0101, każdy trwający 1 sekundę.
Plik auto.wav zawiera próbki sygnału przejeżdżającego samochodu z włączonym
klaksonem (częstotliwość próbkowania f = 11025 Hz ). Sygnał klaksonu jest sygnałem
p
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 14/19
okresowym o częstotliwości podstawowej równej 400 Hz w warunkach, gdy samochód zbliża
się do obserwatora. Na skutek zjawiska Dopplera częstotliwość ta maleje w warunkach, gdy
samochód oddala się od obserwatora. Obserwator słyszy sygnał o częstotliwości pozornej
f różniącej się od częstotliwości oryginalnej f , przy czym zmiany częstotliwości
pozorna
opisuje następujący wzór
v
f = f (33)
pozorna
v m vs
gdzie vs jest prędkością samochodu, zaś v jest prędkością dzwięku w powietrzu zależną od
temperatury
0
t [ C] m
îÅ‚ Å‚Å‚
v = 332 1+ (34)
ïÅ‚ śł
273 s
ðÅ‚ ûÅ‚
Na spektrogramie można zaobserwować jak zmalała częstotliwość klaksonu po minięciu
obserwatora. Ósma harmoniczna częstotliwości klaksonu samochodu zbliżającego się miała
wartość f1 = 3200 Hz i częstotliwość tej harmonicznej zmalała do wartości f2 = 2900 Hz z
chwilą, gdy samochód zaczął oddalać się od obserwatora. Oznacza to, że przy prędkości
rozchodzenia się dzwięku w powietrzu równej 333 m/s, prędkość samochodu miała
następującą wartość
f1 - f2 3200 - 2900 m km
vs = v = 333 = 16,4 = 59 (35)
f1 + f2 3200 + 2900 s godz
Kolejnych dziesięć plików wav interfejsu graficznego stft zawiera próbki dziesięciu
głosek mowy próbkowanych z częstotliwością f = 8000 Hz . Znajomość właściwości
p
widmowych poszczególnych głosek jest niezbędna w zagadnieniach rozpoznawania i syntezy
mowy. Głoski dzielą się na dzwięczne (np. a, e) i bezdzwięczne (np. s, sz). Organ mowy
ludzkiej jest tak zbudowany, że przypomina pudło rezonansowe, w którym człowiek jest w
stanie wytworzyć cztery częstotliwości rezonansowe (cztery formanty). Tak więc organ
mowy przypomina filtr z charakterystyką częstotliwościową o czterech przestrajanych
maksimach. Przy wydawaniu głosek dzwięcznych filtr jest pobudzany sygnałem okresowym
(ciągiem delt Kroneckera o okresie większym dla mężczyzn po mutacji i mniejszym dla
kobiet i dzieci). Przy wydawaniu głosek bezdzwięcznych filtr jest pobudzany szumem. Na
przykład dla głoski dzwięcznej eee częstotliwości formantów to w przybliżeniu 600 Hz ,
1800 Hz , 2500 Hz , 3400Hz , a częstotliwość podstawowa pobudzenia okresowego to
100 Hz . Z kolei na przykład dla głoski bezdzwięcznej szsz częstotliwości formantów to w
przybliżeniu 1600 Hz , 2000 Hz , 3400 Hz i nie ma w widmie prążków, co wskazuje na
szumowe, a nie okresowe pobudzenie filtru. Te spostrzeżenia stanowiły podstawę do
opracowania bardzo skutecznej metody kompresji sygnałów mowy. Do odbiorcy wystarczy
przesyłać współczynniki filtru (kształtowanie charakterystyki częstotliwościowej, formantów
w takt wypowiadanych głosek) z informacją, czy filtr ma być pobudzany sygnałem
okresowym, czy szumem.
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 15/19
3. Wykonanie ćwiczenia
1. Wybierz do badań dwa okna podobnie jak w przykładzie 1. Narysuj te okna i ich widma,
podaj wartości parametrów. Przedyskutuj wyniki wykazując wymienność parametrów okien.
2. W literaturze podaje siÄ™, że okno Kaisera z odpowiednio dobranÄ… wartoÅ›ciÄ… parametru ²
aproksymuje inne okno. I tak, dla ² = 5 jest aproksymowane okno von Hanna, dla ² = 6 jest
aproksymowane okno Hamminga, dla ² = 8,6 jest aproksymowane okno Blackmana.
Wybierz jeden z tych trzech przypadków i pokaż na ile dokładna jest ta aproksymacja w
dziedzinie czasu i w dziedzinie częstotliwości.
3. Zmierz rozdzielczość częstotliwości i amplitudy cyfrowego analizatora widma posługując
się interfejsem graficznym widmo podobnie jak w przykładzie 2. Wybierz jedno z dostępnych
okien i wybierz jego długość N. Narysuj widmo z zaznaczoną rozdzielczością częstotliwości i
widmo z zaznaczoną rozdzielczością amplitudy. Przedyskutuj uzyskane wyniki, porównaj z
przewidywaniami teoretycznymi.
2
4. Fala trójkątna o amplitudzie Ą 8 ma następujące rozwinięcie w szereg Fouriera
1 1 1 1
x(t) = cos(2Ä„f0t)+ cos(2Ä„ 3 f0t)+ cos(2Ä„ 5 f0t)+ cos(2Ä„ 7 f0t)+ cos(2Ä„ 9 f0t)+K
9 25 49 81
Podobnie jak w przykładzie 3 pokaż, jakie jest widmo tego sygnału w cyfrowym analizatorze
widma (stosuj skalę liniową i decybelową) z wybranym oknem o wybranej długości. Narysuj
sygnał i jego widmo. Czy prążki widma występują na częstotliwościach takich jak
przewidywano? Czy wysokości prążków są takie jak przewidywano, np. czy prążek trzeciej
harmonicznej jest 9 razy mniejszy niż prążek podstawowej harmonicznej? Przedyskutuj jak
zależy kształt prążków widma sygnału od rodzaju i długości okna.
5. Wybierz do badań inny sygnał niż w przykładzie 4. Zbadaj właściwości widmowe
wybranego sygnału posługując się interfejsem graficznym stft. Opisz te właściwości. Jakie
wnioski wynikają z obserwacji uśrednionego widma sygnału, a jakie ze spektrogramu?
4. Zadania testowe na wejściówkę i sprawdzian
1. Narysuj okno:
a) prostokątne w[n] o długości N = 7 ;
b) trójkątne w[n] o długości N = 7 ;
c) von Hanna w[n] o długości N = 7 ;
d) Hamminga w[n] o długości N = 7 ;
e) Blackmana w[n] o długości N = 7 .
jÉ
Oblicz i wykreśl widmo okna W(e ) . Oblicz szerokość listka głównego WM , B i tłumienie
listków bocznych R [dB]. Jaka będzie w przybliżeniu rozdzielczość częstotliwości i
rozdzielczość amplitudy analizatora widma z takim oknem?
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 16/19
2. Sygnał x[n] jest kosinusoidą o amplitudzie 1 i okresie 8T , gdzie T jest okresem
próbkowania. Sygnał ten przepuszczono przez:
a) okno prostokątne w[n] o długości N = 5 ;
b) okno Bartletta w[n] o długości N = 5 ;
c) okno von Hanna w[n] o długości N = 5 ;
d) okno Hamminga w[n] o długości N = 5 ;
e) okno Blackmana w[n] o długości N = 5 ;
i otrzymano sygnał y[n]. Narysuj sygnały x[n], w[n], y[n] i ich widma amplitudowe.
2
3. Naszkicuj spektrogram sygnaÅ‚u Å›wiergotowego x(t) = cos(2Ä„f0t + Ä„µt ) o czasie trwania od
zera do tmax próbkowanego z częstotliwością f przy następujących wartościach
p
parametrów:
a) f0 = 0 , µ = 2 kHz , tmax = 2 s , f = 4 kHz ;
p
b) f0 = 2 kHz , µ = 2 kHz , tmax = 2 s , f = 8 kHz ;
p
c) f0 = 2 kHz , µ = 2 kHz , tmax = 4 s , f = 8 kHz .
p
Literatura
Zieliński T.: Cyfrowe Przetwarzanie Sygnałów. WKA, Warszawa 2005
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 17/19
Nazwisko i imiÄ™........................................................nr indeksu........................data.....................
Nr komputera..................................dzień tygodnia......................................godz.........................
LABORATORIUM PRZETWARZANIA SYGNAAÓW
Sprawozdanie z ćwiczenia 3
 Analiza widmowa z zastosowaniem okien czasowych
Ad. 1. Wybierz do badań dwa okna, podobnie jak w przykładzie 1. Narysuj te okna i ich
widma, podaj wartości parametrów. Przedyskutuj wyniki wykazując wymienność parametrów
okien.
Ad. 2. W literaturze podaje się, że okno Kaisera z odpowiednio dobraną wartością parametru
² aproksymuje inne okno. I tak, dla ² = 5 jest aproksymowane okno von Hanna, dla ² = 6
jest aproksymowane okno Hamminga, dla ² = 8,6 jest aproksymowane okno Blackmana.
Wybierz jeden z tych trzech przypadków i pokaż na ile dokładna jest ta aproksymacja w
dziedzinie czasu i w dziedzinie częstotliwości.
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 18/19
Ad. 3. Zmierz rozdzielczość częstotliwości i amplitudy cyfrowego analizatora widma
posługując się interfejsem graficznym widmo podobnie jak w przykładzie 2. Wybierz jedno z
dostępnych okien i wybierz jego długość N. Narysuj widmo z zaznaczoną rozdzielczością
częstotliwości i widmo z zaznaczoną rozdzielczością amplitudy. Przedyskutuj uzyskane
wyniki, porównaj z przewidywaniami teoretycznymi.
2
Ad. 4. Fala trójkątna o amplitudzie Ą 8 ma następujące rozwinięcie w szereg Fouriera
1 1 1 1
x(t) = cos(2Ä„f0t)+ cos(2Ä„ 3 f0t)+ cos(2Ä„ 5 f0t)+ cos(2Ä„ 7 f0t)+ cos(2Ä„ 9 f0t)+K
9 25 49 81
Podobnie jak w przykładzie 3 pokaż, jakie jest widmo tego sygnału w cyfrowym analizatorze
widma (stosuj skalę liniową i decybelową) z wybranym oknem o wybranej długości. Narysuj
sygnał i jego widmo. Czy prążki widma występują na częstotliwościach takich jak
przewidywano? Czy wysokości prążków są takie jak przewidywano, np. czy prążek trzeciej
harmonicznej jest 9 razy mniejszy niż prążek podstawowej harmonicznej? Przedyskutuj jak
zależy kształt prążków widma sygnału od rodzaju i długości okna.
Andrzej Leśnicki Laboratorium PS Ćwiczenie 3 19/19
Ad.5. Wybierz do badań inny sygnał niż w przykładzie 4. Zbadaj właściwości widmowe
wybranego sygnału posługując się interfejsem graficznym stft. Opisz te właściwości. Jakie
wnioski wynikają z obserwacji uśrednionego widma sygnału, a jakie ze spektrogramu?


Wyszukiwarka