I Podstawowe
twierdzenia
(oznaczenia: a,b,c,C,k,p,q-
stale; n EN;
f,g,F
- funkcje)
f(x+h)-
f(x)
ff
= F + C <=> F' = f (dalej stal<t C opuszczamy)
f':
D, 3XH
f'(x)=lim
f
IHO
h
ff tw:-L [F (x) J:= F (b)- F (a) II
1) a) (cof)'
=c-f';
b) (J +g)' = f' +g'
1) a) fcof=Co
ff
; b)
f(J±g)=
ff±
fg
b
b
b
b
b
fcof=c,
ff
;
f(J±g)=
ff±
fg
II
II
II
II
II
b
b
2)
(Jog)'
=f'.g+
fog'
l:-
2)c.p.cz.:
ff'·g=fog-
ffog'
;
f f' . g = [f 0 g f fog'
II
II
( f)'
g:o f' 0 g - f . g'
(~)' g*O g'
3)
[>
=
g
g2
g2
4) c.p.p.:
4)
(go f)'
= (g' 0 f)'
f'
1) fg(f(x))of'(x)dx
= II 1 ( x
'() ) = u
II = fg(u)du
I lI~f(x)
1 x dx=du
2) fg(x)dx
= 11:==II~(~i)du 11= fg(f(
u ))0 f'( u )du III=r1(x) I(x)=u
b
fJ
1) fg(f(x)) 0
f'(x)dx
=
,()
_
: x a
I
1
b
= fg(u)du
1 x dy-duo
II
I
1/3
a
U
a I
fJ
X = 1(11)
b
2)fg(x)dx=
,
.xlal/3
= f g ( f ( u )) 0 f' (u ) du dx = 1 (lI)dll ,
I I
a
U
a I b
II
[>
p:= ax+b= u,a*
j
0: \fi=F
+c => fi(ax+b)
= ~F(ax+b)
+c
a
P
I
cl
:= f:
If f' = lnlfl+c
0
ffk 0 f'
k:' _1
fk+l +
2
f
'
k+l
5) (r1)'-
1
- f'or'
II Uzyteczne
wzory
Tl:
sin ax ocosbx = 0,5 ~Sin( a+b)x
+sin( a- b)X~
WI k = e
I;
blnll
W2
log b = loge b
[>
cosaxocosbx
= 0,5
cos( a + b)x + cos( a-b)x II
loge a
sinax-sinbx
=0,5
cos(a-b)x-cos(a+b)x
T2 : 1+ cos x = 2 cos2 ~
T-H
T3: sin
2
2 x = ~-~cos2x
I> sin~ x =!( cos4x-4cos2x+3) 228
sin2x+ cos2 x = 1
cosh2 X - sinh2 X = 1
2sinxcosx = sin2x
2sinhxcoshx= sinh2x
l-cosx
= 2sin2 ~
2
1
1
I>
~
l(
)
cos x =-+-cos2x
cos x =-
cos4x+4cos2x+3
cos2 x-sin2 x = cos2x
cosh2 x +sinh2 X = cosh 2x 2
228
cos-2 x=1+tg2x
cosh-2 x=1-tgh2x
I Podstawowe
twierdzenia
(oznaczenia: a,b,c,C,k,p,q-
stale; n EN;
f,g,F
- funkcje)
f(x+h)-
f(x)
ff = F + C <=> F' = f (dalej sta1tt C opuszczamy) 1': D, 3XH
I'(x)=lim
f
11-.+0
h
If
tw:-L [F(x)J: = F(b)-F(a) II
1) a) (cof)'
=c-I';
b) (J +g)' = I' +g'
1) a) fcof=Co
ff
; b) f(J±g)=
ff±
fg
b
b
b
b
b
fcof=Co
ff
;
f(J±g)=
ff±
fg
II
II
II
II
II
b
b
2)
(J. g)' = f' - g + fog'
2)c.p.cz.:
fl'·g=fog-
ffog'
;
f I' g = [f g! - f f . g'
0
0
II
II
( f)'
g:o I' g - f . g'
0
(~)'g:;t::O g'
3)
[>
=
g
g2
g2
4)
(go f)'
= (g' 0 f)' I'
4) c.p.p.:
1) fg(J(x))ol'(x)dx
= II f ( x
'() ) = u
II = f g(u)du
I lI~f(x)
f
x dx=du
2) fg(x)dx
= 11:=:f~ii)du
II = fg(J(
u )). f'( u )du III=r1(x)
f(x)=u
b
fJ
1) fg(J(x)).
I'(x)dx
=
,()
_
. x I a 1 b
= fg(u)du
II
f
XdY-du'ulaifJ
a
fJ
X = f(u)
b
2)fg(x)dx=
,
.xlalfJ
= fg(J(u))o
I'(u) du
dx = f (u)du ,
I I
a
U
a I b
II
[>
PI:= ax+b= u,a"* 0: Ifi = F+C => fi(ax+b)
= ~F(ax+b)
+c
a
P := f:
If I' = lnlfl+c
I ffk .I' k:1 _1 fk+l + cl 0
2
f
'
k+l
5) (r1)'-
1
- I'of-I
II Uzyteczne
wzory
Tl:
sinax ·cosbx
= 0,5 ~Sin( a+b)x
+sin( a- b)X~
cosa x·cosbx
= 0,5
cos( a + b)x+ cos( a-b)x sinax-sinbx
=0,5
cos(a-b)x-cos(a+b)x
T2 : 1+ cos x = 2 cos2 ~
T-H
T3: sin
2
2 x = ~-~cos2x
I> sin~ x =.!.( cos4x - 4cos2x + 3) 228
sin2x+cos2x=1
cosh2 X -sinh2 X = 1
2sinxcosx = sin2x
2sinhxcoshx= sinh2x
l-cosx
= 2sin2 ~
2
1
1
I>
~
l(
)
cos x =-+-cos2x
cos x =-
cos4x+4cos2x+3
cos2 x-sin2
x = cos2x
cosh2 x +sinh2 X = cosh 2x 2
228
cos-2 x=1+tg2x
cosh-2 x = I-tgh2x
!( Xk)' = k· Xk-lll> (c)' = 0; (x)' = 1 ; (X2)' = 2x;
!b=1 =>
fxk = k~1 Xk+11 v f
f
f
l'f,I,
(~)'
=-~.
(~)'
=-~.
0= C·
1= x·
x = -x-'
x- = -x '
,
,
2'
3'
2'
2
3
'
X
X
X
X
/12:::2
n
11/
(-£)'
f~=-~·
f~=
__ 1
. f_l
=2 ~.
f"~
= -x!\tx
= 2 I,X ; (if;)'
,
,
3
2 2'
,
'\IX,
'\IX
"~2
1
r
x
x
x
'\IX
n+l
"\IX
n!Jx"-1
f 1
1
1
n??2=>
(
)" =--1'(
)"-1
x-c
n-
x-c
I f~= 1n1xll '
,
W2
1
1
(loga x)
=
_.-
*
Ina
x
fin x dx c:;:z. f( x)' Inx dx = x(lnx-l)+
C
I fex = ex! v
WI
1
f
(
)'
WI
(
)(11)
aX
= Ina-ax;
eX
= eX
X
x
a = -·a
Ina
r
([f(x)]
:1
g(x)
[f(x)]g(x)
( g'(x).lnf(x)+
f'(;(~(x))
I
'
1
WYMIERNE)
(arctgx)
= -2-
f 1
X
+1
('>0
1
x
,
,
=
-arctg-
v
x- + c-
I(
C
C
arcctgx)'
x/+
=-
1-1
2
f
1
2
2x+ p
11 = P - 4q < 0 =>,
=
,---:- arctg
,---:-;
x- + px+q
'\1-11
'\1-11
fax
+ b
a
('
)
a p - 2 b
2x + P
,
= -In x- + p x + q
,---:- arctg
,---:-;
x- + px+q
2
'\1-11
'\1-11
Vn??2I:=f
1
=
,
11
(x2 + px+q)"
= _
1
[
2x + P
+ (4n _ 6) I
] v
( -1) 11 ( 2
)"-1
11-1
n
x + px+q
f
1
('>0
1
x
1
x
=
-·--+-arctg-
( 2
2 )2
2 c2 x2 + c2
2c3
C
X
+c
* farctgxdx c~cz. J(x)'arctgxdx = xarctgx-O,51n(x2 +1)+C
,
XE(-I,I)
1
( arcsin x)
=.J
'
1
00
x
1-x-
f 121 = arcsin - v
vc- -x-
c
,
XE(-I,I)
1
( arcccos x)
=
r:-----?
f
1
1.
-2ax-b
a<O =>
vl-x2
= -
arcsm
.Jax2 +bx+c
~
.Jb2 -4ac
~
1
~
c2
•
x_I
fvc-
-x-
dx = -xvc-
-x-
+-arcsm-
2
2
c
* farcsinxdx c:;:z. f(x)'arcsinxdx = xarcsinx+.Jl-x2
+C
r
1
J ri- ,:0 lnl
In( x + .J
x+.Jx2 +cl
V
X2
+ 1 = (arsinh x)'
.Jx2 + 1
\!X- + c
~lnl
a> 0 => J I 2 1
=
ax+~+~~ax2
+bx+c I
\lax
+bx+c
"a
2
og6lnie:
a ", 0 => J~ a x2 + b X + c =
=(~x+~
l~ax2 +bx+c _ b2-4ac
J
1
tt
2
4a)
8a
~ax2 +bx+c
(sin x)' = cos x
(sinhx)' = cosh x
JSinx = -cosx
JSinhx = cosh x
(cosx)' = -sinx
(cosh x)' = sinh
Jcosx = sin x
Jcoshx = sinh x
X
J
,
1
,
1
1
(tgx) =-2-
(tghx)
=
J-1,-=tgX
=tghx
cos- X
cosh
COS
X
cosh
2 x
2 X
,
1
,
1
(ctgx) =--.-
(ctghx) =--.-,-
J-.-1-
= -ctg X
J-.-1_,- = - ctgh x
sm
sm
slnh- x
2x
sinh- X
2x
I Jtgx = -lnlcosxl;
Jctgx = InIsin xl I sm x
2
cos x
2
4 II
J-.1
= InItg ~ I; J_1
= InI tg(~ + IT )
IJ .,
1
1.
2
J
2
1
1.
2 cl
sm-x=-x--sm
x·
cos x=-2x+-4sm
x
2
4
'
a",Oi
b",O =>
Jeaxsinbx=
a2~b2 (asinbx-bcosbx)eax;
J eax cosbx = _,_1__, (acosbx+ bsinbx)eax a- +b-k",O =>
JSinkx=-i
coskx;
Jcoskx=i
sinkx;
J x sinkx= J,sinkx- ~xcoskx;
k-
k
Jx coskx= ~coskx+
~xsinkx;
k
k
J2 • k
2
. k
1,
2
X sm x = -2 xsm
x- -x- cosk x+-cosk
x;
k
k
k3
J'
k
2
k
12,
2.
x- cos x = -2 XCOS x+ -x smkx--smkx
k
k
e
" -
" -
!(n-1)!!
n"
2
2
JSin" x dx: = Jcos"x dx: =
..
o
0
(n-1)!!.lT
n!!
2
a
f ci&gla i nieparzysta w (-a,a) ~ f f(x)dx
= 0;
o
a
f ci&gla i parzysta w (-a,a) ~ f f(x)dx
=2 ff(x)dx
-0
0