PHENYLHYDRAZINE 1 using this methodology. Indeed, when 4-oxo-1,2,3,4-tetrahydro- Phenylhydrazine1 ²-carboline (1) is heated with an excess of phenylhydrazine, the pyridinodiindole (2) is readily obtained (eq 4).15 PhNHNH2 H H+ [3,3] [100-63-0] C6H8N2 (MW 108.16) N CH2R2 N N N R2 InChI = 1/C6H8N2/c7-8-6-4-2-1-3-5-6/h1-5,8H,7H2 H H R1 R1 InChIKey = HKOOXMFOFWEVGF-UHFFFAOYAN R2 R2 R2 (forms hydrazones with carbonyl compounds;1,3 useful reagent (2) R1 NH2 [NH3] for the formation of indoles4 19 and other heterocyclic ring R1 + + NH2 R1 systems20 31) N N NH2 H H H ć% ć% ć% Physical Data: mp 18 20 C; bp 238 241 C, 52 53 C/0.06 mmHg; d 1.098 g cm-3. Solubility: misc EtOH, Et2O, CHCl3, benzene; sol dil acids; PhNHNH2 slightly sol H2O, petroleum ether. (3) AcOH Form Supplied in: yellow solid or yellow oil. O N 85% Preparative Method: from aniline via diazotization, followed H by reduction of the resultant benzenediazonium chloride with Na2SO3.2 Handling, Storage, and Precautions: keep in tightly closed con- tainer; protect from light; toxic, possible carcinogen, irritant. O N PhNHNH2 HN NH (4) N NH Introduction. Although PhNHNH2 readily forms hydrazones H with ketones and aldehydes, too many of the products thus formed tend to be oils and are difficult to detect visually.3 For this reason, (1) (2) 2,4-Dinitrophenylhydrazine is, instead, the preferred reagent of choice for making carbonyl derivatives. Phenylhydrazine, how- Use of the bis-Fischer indole synthesis has culminated in ever, is very useful in the synthesis of various heterocyclic com- the total synthesis of indolo[2,3-a]carbazole alkaloids.16,17 In a pounds. variation of the Rubottom oxidation of silyl enol ethers,18 the Diels adduct (3) is treated with m-Chloroperbenzoic Acid to Fischer Indole Synthesis. Indolization of a phenylhydrazone, in the presence of a catalyst, was first observed by Fischer.4 presumably provide the dione (4), which is then exposed to 2 equiv of phenylhydrazine. Treatment of the osazone (5), thus Although Zinc Chloride is the classical reagent of choice for cat- obtained, with Trimethylsilyl Polyphosphate (PPSE), a mild alyzing these transformations, several other catalysts have since catalyst, followed by aromatization of the central ring provides been successfully used.1b This method has emerged as a general N-methylarcyriaflavin A (6) (eq 5).16 and powerful method for making indoles (eq 1).5 R2 O O H OTMS O ZnCl2 PhNHNH2 m-CPBA (1) N CH2R2 R1 Me N Me N N EtOH N OTMS O R1 H H O O (3) (4) The generally accepted mechanism for this reaction was origi- nally proposed by Robinson and Robinson.6 There exists substan- O O H tial evidence for this mechanism which involves a [3,3] sigmat- NH PhNHN 1. PPSE ropic rearrangement as a key step (eq 2).7 10 The phenylhydra- (5) N Me Me N 2. Pd/C zones are generally not isolated since many of these intermediates PhNHN NH H O O either cyclize under mild conditions or decompose upon attempted purification. The phenylhydrazone of cyclohexanone, for instance, is generated and converted into tetrahydrocarbazole in one step (5) (6) by adding phenylhydrazine to a refluxing mixture of the ketone and AcOH (eq 3).11 A mild, one-step protocol for preparing 2,3- disubstituted indoles in good yields (70 90%) involves treating a A variation of the Fischer protocol has been used for the prepa- solution of a ketone and phenylhydrazine in benzene with Phos- ration of the dihydropyrrole ring system. Reaction of phenylhy- phorus(III) Chloride at room temperature for a few minutes.12 14 drazine with propionic anhydride (7) provides ²-propionylphenyl- Elaborate polycyclic structures can be rapidly assembled by hydrazine (8) which, upon treatment with Calcium Hydride, Avoid Skin Contact with All Reagents 2 PHENYLHYDRAZINE loses NH3 and leads to the formation of 3-methyloxindole (9) R1 R2 R1 R2 O PhOCH2COCl (eq 6).19 N N OPh Et3N, CH2Cl2 NH N Ph Ph O (16) (17) H O O PhNHNH2 CaH2 N MeI N (9) O NaH H R1 R2 R1 (7) (8) PhO PhOCH2COCl R2 N Me N Et3N, CH2Cl2 N (6) O Me O N Ph N Ph H (18) (19) (9) R1 = H, Me, Ph; R2 = Ar Pyrazoles and Pyrazolines. Phenylhydrazine has also been N 1. PhNHNH2 used in the synthesis of various five-membered heterocycles.20 + N (10) N CHO CHO 2. NaBH4 N Thermal treatment of 3-acetyl-1,4,5,6-tetrahydropyridine (10) H NHPh with PhNHNH2, under acidic conditions, leads to a 1:1 mixture of isomeric pyrazoles (11) and (12) (eq 7).21 The oxidative cycliza- tion of stannylhydrazones (13) provides the azocyclopropanes (14) in good yields. Whereas the formation of pyrazolines (15) Reactivity with Heterocumulenes. Reactions of phenylhy- is not observed via the direct ring-closure of (13), treatment of drazones with Phenyl Isocyanate, under thermal conditions, pro- (14) with catalytic amounts of Tin(II) Chloride in benzene, at vide triazolidines (eq 11).26 A 1,3-dipolar reaction between ke- refluxing temperature, furnishes the five-membered heterocycles tone phenylhydrazones and Phenyl Isothiocyanate, in the pres- (15) in high yields (eq 8).22 ence of Sodium Hydride in DMF, leads to the formation of 4-phenyl-5-phenylimino-1,3,4-thiadiazolidines (eq 12).27 Reac- Ph tions using Carbon Disulfide, instead of isothiocyanate, un- N N der similar conditions provide 4-phenyl-1,3,4-thiadiazolidine-5- O Ph N N thiones.27 PhNHNH2 + (7) N H H N Ph NH2 NH2 PhN=C=O N Et (11) NNHPh (10) (11) (12) N Et O Ph NHPh NPh NBS, CH2Cl2 N H N N R SnBu3 64 87% Ph R NaH N Et (12) NNHPh (13) (14) PhN=C=S S Et SnCl2 NPh Ph (8) N 87 96% N R Generation of Amines. Phenylhydrazine has been used for (15) the generation and regeneration of different kinds of amines. Re- R = Me, t-Bu, Ph duction of phenylhydrazones has been utilized, for example, in the synthesis of aminophosphonates. The reaction of PhNHNH2 with oxophosphonates (20) provides hydrazones (21) in almost quanti- Synthesis of ²-Lactams. Phenylhydrazones (16), when tative yields. Catalytic hydrogenation yields amines (22), and the treated with phenoxyketene, give N-acylated products (17), which diethylphosphonate moiety in (22) can be hydrolyzed to provide do not cycloadd to the ketene. However, N-alkylated phenylhydra- 1-aminoalkanephosphonic acids (24a) (eq 13).28 In a variation of zones (18)23 undergo [2 + 2] cycloaddition reactions with in situ the Ing Manske procedure,29 where a phthalimide is heated with generated phenoxyketene to provide ²-lactams (19) (eq 9).24 hydrazine to liberate a primary amine in an exchange reaction, the N-protective phthaloyl group of an amino acid or a peptide can be Synthesis of Piperidines. Reactions of Glutaraldehyde and cleaved. Thus refluxing phthaloyl-L-leucine, in the presence of a hydrazines, in the presence of benzotriazole, lead to the formation tertiary amine in EtOH, can be used to access crystalline L-leucine of piperidines (eq 10).25 (eq 14).30 A list of General Abbreviations appears on the front Endpapers PHENYLHYDRAZINE 3 O NHPh 2 equiv PhNHNH2 N NH2 AcOH O NNHPh PhNHNH2 H2, Pd/C O (16) R P O O X NNHPh R P R P HCl EtO OEt EtO OEt EtO OEt X = OH, OAc, Cl, Br an osazone (20) (21) (22) R = alkyl, aryl NH2 O O (13) + PhNHNH2 Cl R P Ph HO OH (27) (23) Ph Ph Ph Ph N Ph HN O N N Ph N CO2H PhNHNH2 + + N N N (17) H N N N NH Ph Bu3N N Ph Ph HN Ph N Ph Ph O (28) (29) (30) O CO2H Ph H2N N Ph (29) + (14) NH N N O Ph (31) Synthesis of Quinazolines. Further utility of phenylhydrazine is apparent in the synthesis of quinazolines. Treatment of methyl Triazolo Compounds. Hydrazones of acylated heterocycles anthranilate esters (24a) with orthoesters provides N-(2-methoxy- are widely used as precursors for the preparation of 1,2,4-triazolo carbonylphenyl) imidate esters (24b). The reaction of these compounds.39,40 Indeed, oxidative cyclizations of arylhydrazones imidate esters with PhNHNH2 leads to the formation of 3-amino- of 2-acylpyridines, in the presence of Mercury(II) Acetate or 4(3H)-quinazolinones (26) in a stepwise mechanism, presumably Lead(IV) Acetate (LTA), are efficient means of accessing fused via the intermediate amidrazones (25) (eq 15).31 1,2,4-triazoles and 1,2,3-triazolium systems. A coupling reac- tion of 2-benzoylpyridine (32) with PhNHNH2 provides the (E)- CO2Me X CO2Me X isomer of hydrazone (33), as established by X-ray structure RC(OEt)3 PhNHNH2 R analysis. An oxidative ring-closure of (33) with LTA leads to the NH2 N OEt formation of the corresponding 1,2,3-triazolium salt (34) in high (24a) (24b) yield (eq 18).41 Ph O PhNHNH2 LTA (18) Ph Ph N CO2Me X X NHPh N N N N N NHNHPh + (15) O N Cl Ph NHPh N R N R (32) (33) (34) (25) (26) X = H, Cl, Br; R = Me, Et Related Reagents. N,N-Dimethylhydrazine; 2,4-Dinitro- phenylhydrazine. Osazones. Treatment of Ä…-dicarbonyl compounds, Ä…-hydroxy aldehydes and ketones,.32,33 and Ä…-halo ketones34 36 with PhNHNH2 leads to the formation of osazones (eq 16). Osazones 1. (a) Butler, R. N.; Scott, F. L.; O Mahony, T. A. F., Chem. Rev. 1973, 73, are particularly important in carbohydrate chemistry and have 93. (b) Robinson, B., Chem. Rev. 1969, 69, 227. (c) Buckingham, J., Q. been used in alkaloid synthesis (eq 5). In a reaction of phenacyl Rev., Chem. Soc. 1969, 23, 37. (d) Robinson, B Chem. Rev. 1963, 63, 373. chloride (27) with PhNHNH2, the yellow crystalline pyridazine (e) Fusco, R.; Sannicolo, F., Tetrahedron 1980, 36, 161. (f) Robinson, derivative (28) is rapidly formed and the gradual formation of B. The Fischer Indole Synthesis; Wiley: New York, 1982. the osazone (29) is also observed. Also produced from this reac- 2. Coleman, G. H Org. Synth., Coll. Vol. 1941, 1, 442. tion is another compound, a tetrahydropyridazine (30) It has been 3. Shriner, R. L.; Curtin, D. Y.; Fuson, R. C.; Morrill, T. C. The Systematic rationalized that the pathway to (28) involves the formation of Identification of Organic Compounds; Wiley: New York, 1980; p 165. the hydrazone followed by 1,4-elimination of HCl and a subse- 4. (a) Fischer, E.; Jourdan, F., Chem. Ber. 1883, 16, 2241. (b) Fischer, E.; quent dimerization of the resultant ene azo intermediate (31).37 Hess, O., Chem. Ber. 1884, 17, 559. It has also been proposed that a retro-Diels Alder type reaction 5. (a) Laronze, J.-Y.; El Boukili, R.; Royer, D.; Levy, J., Tetrahedron 1991, of (28) furnishes the intermediate (31), which then participates as 47, 4915. (b) Shriner, R. L.; Ashley, W. C.; Welch, E., Org. Synth., Coll. the diene in a 1,4-cycloaddition reaction with the osazone (29) to Vol. 1955, 3, 725. provide cyclic (30) (eq 17).38 6. Robinson, G. M.; Robinson, R., J. Chem. Soc. 1918, 113, 639. Avoid Skin Contact with All Reagents 4 PHENYLHYDRAZINE 7. Forrest, T. P.; Chen, F. M. F., J. Chem. Soc., Chem. Commun. 1972, 1067. 23. Lerch, U.; Konig, J., Synthesis 1983, 157. 8. Douglas, A. W., J. Am. Chem. Soc. 1978, 100, 6463; 1979, 101, 5676. 24. Sharma, S. D.; Pandhi, S. B., J. Org. Chem. 1990, 55, 2196. 9. Bajwa, G. S.; Brown, R. K., Can. J. Chem. 1970, 48, 2293. 25. Katritzky, A. R.; Fan, W. Q., J. Org. Chem. 1990, 55, 3205. 10. Clusius, v. K.; Weisser, H. R., Helv. Chim. Acta 1952, 35, 400. 26. Yamamoto, I.; Mamba, A.; Gotoh, H., J. Chem. Soc., Perkin Trans. 1 1976, 2243. 11. Rogers, C. U.; Corson, B. B., Org. Synth., Coll. Vol. 1967, 4, 884. 27. Motoyoshiya, J.; Nishijima, M.; Yamamoto, I.; Gotoh, H.; Katsube, Y.; 12. Baccolini, G.; Todesco, P. E., J. Chem. Soc., Chem. Commun. 1981, 563. Ohshiro, Y.; Agawa, T., J. Chem. Soc., Perkin Trans. 1 1980, 574. 13. Baccolini, G.; Marotta, E., Tetrahedron 1985, 41, 4615. 28. Kudzin, Z. H.; Kotynski, A., Synthesis 1980, 1028. 14. (a) Baccolini, G.; Bartoli, G.; Marotta, E.; Todesco, P. E., J. Chem. Soc., 29. Ing, H. R.; Manske, R. H. F., J. Chem. Soc. 1926, 2348. Perkin Trans. 1 1983, 2695. (b) Baccolini, G.; Todesco, P. E., J. Chem. Soc., Perkin Trans. 1 1983, 535. 30. Schumann, I.; Boissonnas, R. A., Helv. Chim. Acta 1952, 2235, 2237. 15. Trudell, M. L.; Fukada, N.; Cook, J. M., J. Org. Chem. 1987, 52, 4293. 31. Leiby, R. W., J. Org. Chem. 1985, 50, 2926. 16. Gribble, G. W.; Berthel, S. J., Tetrahedron 1992, 48, 8869. 32. March, J. Advanced Organic Chemistry, 3rd ed; Wiley: New York, 1985; p 804. 17. Bergman, J.; Pelcman, B., J. Org. Chem. 1989, 54, 824. 33. Caglioti, L.; Rosini, G.; Rossi, F., J. Am. Chem. Soc. 1966, 88, 3865. 18. Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R., Tetrahedron Lett. 1974, 4319. 34. Buckingham, J.; Guthrie, R. D., J. Chem. Soc., Chem. Commun. 1966, 781. 19. Endler, A. S.; Becker, E. I., Org. Synth., Coll. Vol. 1963, 4, 657. 35. Buckingham, J.; Guthrie, R. D., J. Chem. Soc. (C) 1968, 3079. 20. (a) Saxena, M. K.; Gudi, M. N.; George, M. V., Tetrahedron 1973, 29, 101. (b) Haruki, E.; Hirai, Y.; Imoto, E., Bull. Chem. Soc. Jpn. 1968, 36. Hassner, A.; Catsoulacos, P., J. Chem. Soc., Chem. Commun. 1967, 121. 41, 267. (c) Balaban, A. T., Tetrahedron 1968, 24, 5059. (d) Grigg, R.; 37. Curtin, D. Y.; Tristram, E. W., J. Am. Chem. Soc. 1950, 72, 5238. Kemp, J.; Thompson, N., Tetrahedron Lett. 1978, 2827. (e) Mosher, W. 38. Stickler, W. C.; Hoffman, W. C., Angew. Chem., Int. Ed. Engl. 1970, 9, A.; Bechara, I. S., J. Heterocycl. Chem. 1970, 7, 843. (f) Grigg, R.; 242. Heaney, F.; Idle, J.; Somasunderam., Tetrahedron Lett. 1990, 31, 2767. 39. Bower, J. D.; Doyle, F. P.; J. Chem. Soc. 1957, 727. (g) Kenny, P. W.; Robinson, M. J. T., Tetrahedron Lett. 1986, 27, 6277. 40. Gray, E. J.; Stevens, M. F. G., J. Chem. Soc., Perkin Trans. 1 1976, 1492. (h) Ahmad, M. S.; Ansari, S. A.; Ali, S. M., Indian J. Chem., Sect. B 1985, 24B, 910. (i) Fomum, Z. T.; Landor, S. R.; Landor, P. D.; Mpango, 41. Butler, R. N.; Johnston, S. M., J. Chem. Soc., Perkin Trans. 1 1984, 2109. G. W. P., J. Chem. Soc., Perkin Trans. 1 1981, 2997. 21. Quin, L. D.; Pinion, D. O., J. Org. Chem. 1970, 35, 3134. Humayun S. Ateeq & Pir M. Shah 22. Nishiyama, H.; Arai, H.; Kanai, Y.; Kawashima, H.; Itoh, K., Tetrahedron H. E. J. Research Institute of Chemistry, Karachi, Pakistan Lett. 1986, 27, 361. A list of General Abbreviations appears on the front Endpapers