- z - z z - 0 L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)] a, b " C
1 z L[f(at)] = F a " R+ a a L[f(t - a)] = e-zaF (z) a " R+
L etf(t) = F (z - ) " C (n) L [tnf(t)] = (-1)nF (z)
L f(n)(t) = znF (z) - zn-1f(t0) - zn-2f (t1)... - zf(n-2)(tn-2) - f(n-1)(tn-1) f(t0), f (t1), f(n-2)(tn-2), f(n-1)(tn-1) http : //www.mini.pw.edu.pl/ <" eplonkow/ tn et sin t cos t tnet sin(Ét) cos(Ét) et sin(Ét) n! 1 1 z 1 z n! É z É zn+1 z- z2+1 z2+1 z2-1 z2-1 (z-)n+1 z2+É2 z2+É2 (z-)2+É2
t L te-2t cos 3 z F1(z) = L [cos t] = z2 + 1
t 1 9z F2(z) = L cos = F1(3z) = 3 1/3 9z2 + 1
t 9(z + 2) F3(z) = L e-2t cos = F2 (z - (-2)) = 3 9(z + 2)2 + 1