thallium III nitrate trihydrate eros rt085


THALLIUM(III) NITRATE TRIHYDRATE 1
TTN
Thallium(III) Nitrate Trihydrate1 ArCH=CHCOAr2 ArCOCOAr2 (2)
H+
Ar = Ar2 = Ph, 61%
Tl(NO3)3.
3H2O
Ar = 4-BrC6H4, Ar2 = Ph, 55%
Ar = Ph, Ar2 = 42 -BrC6H4, 70%
Ar = Ph, Ar2 = 42 -MeC6H4, 49%
[13453-38-8] H6N3O12Tl (MW 444.47)
Ar = Ph, Ar2 = 42 -MeOC6H4, 49%
InChI = 1/3NO3.3H2O.Tl/c3*2-1(3)4;;;;/h;;;3*1H2;/q3*-1;;;;+3
InChIKey = ZCPIKMRXMBJLCP-UHFFFAOYAD
CH(OMe)2
CH(OMe)2
(oxidizing agent; Lewis acid for alkene cyclization)
CHO
TTN R2
Alternate Name: thallium trinitrate (TTN).
R2 MeOH TMOF
ć%
Physical Data: mp 102 105 C.
(3)
R1 R1
Solubility: sol water, organic solvents.
R1 = R2 = H, 79%
Form Supplied in: moist white crystals, hygroscopic; widely
R1 = 4-MeO, R2 = H, 84%
available.
R1 = 4-NO2, R2 = H, 63%
Drying: compound decomposes on heating.
R1 = H, R2 = Me, 83%
Handling, Storage, and Precautions: all thallium compounds are
R1 = 3-NO2, R2 = Me, 50%
extremely toxic to inhalation, skin contact, and ingestion. Tox-
icity is cumulative. Extreme caution should be used when han-
TTN adsorbed on Montmorillonite K10 is an effective reagent
dling these materials. Use in a fume hood.
for the conversion of ketones to rearranged esters. For example,
acetophenone is readily converted to phenylacetate on treatment
with TTN/K-10 reagent (eq 4).6 Supported TTN reagents are
practical, since product isolation from the insoluble inorganic
Original Commentary
byproducts is simple.
Mukund P. Sibi
O
North Dakota State University, Fargo, ND, USA
CO2Me
(4)
Oxidations. Thallium trinitrate is a powerful oxidant. A vari-
R
ety of substituted phenols undergo oxidation using TTN to provide
R
quinones.2 For example, hydroquinones are oxidized to quinones
R TTN, MeOH, HClO4 TTN/K-10
in good yields. p-Alkoxyphenols are oxidized to p-quinone acetals
in good yields by TTN in methanol (eq 1). Similarly, naphthols are
H 84% 86%
oxidized to naphthoquinones using TTN. This oxidation proceeds F 44% 88%
Me 86% 84%
in higher yields if TTN on Celite is used as the oxidant.3
Br 35% 89%
OH O
Alkene Oxidation. Simple alkenes are converted to aldehy-
RR
des or ketones in good yields using TTN. These reactions proceed
TTN
(1)
with migration of the higher migratory aptitude substituent.7 The
MeOH
preparation of arylacetaldehyde dimethyl acetals by oxidative
MeO OMe
OMe
rearrangement of substituted styrenes using TTN proceeds in
good yields (eq 5). The reaction proceeds through the exclusive
R = H, 97%; Cl, 97%; Br, 91%; Me, 87%
migration of the aryl substituent and the yields are higher if
TTN supported on K-10 is used as the oxidant.1b,6b
Chalcones are oxidized under acidic conditions to 1,2-diketones
CH(OMe)2
(5)
using three equivalents of TTN (eq 2).4
TTN is a trihydrate and generally reactions with it are carried RR
out under fairly acidic conditions. TTN oxidations in methanol as
R TTN, MeOH TTN/K-10
a solvent are also strongly acidic, since nitric acid is produced as a
byproduct. Reactions that fail or proceed poorly with TTN (TTN in
H 85% 92%
methanol or acetic acid), or where the substrates are acid sensitive,
F 27% 79%
can be promoted by using a 1:1 mixture of methanol and trimethyl
OMe 64% 81%
orthoformate (TMOF) (see Triethyl Orthoformate) or neat TMOF
Br 30% 76%
as solvent. Oxidation of cinnamaldehyde with TTN in methanol
proceeds very slowly and produces seven products. On the other Cycloalkenes provide ring contracted aldehydes on oxidation
hand, cinnamaldehydes are rearranged to aryl malondialdehyde with TTN under acidic conditions. Corey and Ravindranathan
tetramethyl acetals in good yields on treatment with TTN in 1:1 have used this methodology to prepare a key prostaglandin in-
MeOH TMOF (eq 3).5 termediate (eq 6).8 Similarly, enol ethers also undergo oxidative
Avoid Skin Contact with All Reagents
2 THALLIUM(III) NITRATE TRIHYDRATE
TTN, MeOH
ring contraction on treatment with TTN (eq 7).9 If methanol is
TMS NHCOMe
(12)
 20 °C, 1 h, to
used as the solvent, the corresponding acetals are formed as the
0 °C, 1 h
products.10 In contrast to the ring contractive oxidation of mono-
48%
cycloalkenes, bicyclic alkenes furnish nitrate esters on treatment
with TTN.11 Exocyclic alkenes furnish ring enlarged ketones on
oxidation with TTN (see Thallium(III) Perchlorate for similar
Functional Group Interconversions. TTN finds utility in a
reactions).12
variety of functional group interconversions. Phenols are read-
ily converted to anilines using TTN.20 Sulfides and selenides are
O
O
converted to sulfoxides (eq 13) and selenoxides, respectively, on
O
O
TTN, H3O+
oxidation with TTN.21 Other transformations include the pre-
(6)
50% paration of allene esters from Ä…-alkyl-²-keto esters (eq 14),22
carbamates from isocyanides (eq 15),23 and lactones from Å‚,´-
CHO
unsaturated acids.24
OBn
BnO
O
1. TTN, MeCN
TTN
O
S
1 h, rt
BnO (13)
S
R R
O (7)
R R
2. NaBH4
CHO
62%
R = Et, 85%; Pr, 92%; Bu, 94%; Ph, 82%
BnO
BnO OBn
Diarylalkynes are converted to 1,2-diketones using two equiv-
O O
alents of TTN (eq 8) and terminal alkynes are oxidized to
H
1. N2H4
carboxylic acids (eq 9).13
" (14)
OMe
2. TTN, MeOH
H CO2Me
TTN
50%
Ph Ph PhCOCOPh (8)
85%
TTN
TTN
R RCO2H (9)
RNC RNHCO2Me (15)
MeOH, H2O
R = C6H13, 80%; C5H11, 55%
R = EtOCOCH2, 84%; Cy, 90%; t-Bu, 35%; Ph, 93%; 4-MeC6H4, 85%
TTN can be used for electrophilic cyclizations of polyalkenes.14
The oxythallative cyclization of elemol acetate using TTN in
acetic acid produces a guaiene diol after Lithium Aluminum TTN has been used to selectively deprotect bisthioacetals to
Hydride reduction (eq 10).15 In contrast, Mercury(II) Acetate give monothioacetals (eq 16).25 Simple thioacetals can also be
mediated cyclization of elemol produces the unrearranged cryp- deprotected using TTN. Oximes are converted to aldehydes or
tomeridiol. ketones in high yields on treatment with TTN in methanol at rt
(eq 17).26
R = Ac
S S
S S
1. TTN, AcOH
TTN
(16)
2. LiAlH4
H 97%
H
OR S
OH
63%
OH
O
R = H S
(10)
69% 1. Hg(OAc)2
2. LiAlH4
C6H13 C6H13
TTN
NOH O (17)
96%
H H
H
OH
OH
First Update
Allylations Using Allysilanes and TTN. Aromatic com-
Luiz F. Silva Jr & Vânia M. T. Carneiro
pounds are allylated using allylsilanes and TTN, but in poor
Universidade de Sćo Paulo, Sćo Paulo, Brazil
yield.16 Allylsilanes are converted to allylic ethers (eq 11),17 N-
allylic amides (eq 12),18 and allylic nitrates19 on treatment with
Oxidation of Ketones. The conversion of alkyl aryl ketones
TTN and the appropriate nucleophile.
into carboxylic acids or esters through an oxidative rearrangement
can be performed using thallium trinitrate (TTN) in either
OMe
TTN, MeOH
MeOH/TMOF or MeOH/HClO4.27 35 An example of this reac-
Ph TMS
+
Ph OMe
0.5 h
Ph tion is shown in eq 4. Enolizable ketones can be oxidized at the Ä…-
70%
(11)
position by TTN.36,37 For example, the oxidation of flavanols was
A list of General Abbreviations appears on the front Endpapers
THALLIUM(III) NITRATE TRIHYDRATE 3
carried out with TTN, giving 2,3-dimethoxy-3-hydroxyflavanones
1.1 equiv TTNÅ"3H2O, TMOF/MeOH (1:1)
O
in excellent yields (eq 18).37
rt, 4 7 days
84 88%
RO
R = COC6H4NO2-4
Ph
1.1 equiv TTNÅ"3H2O, MeOH
O Ph
O
O
(22)
rt, 15 20 min
OMe
OMe
94%
OH O
OH
O
O
(18)
RO
CO2Me
The reaction of 3- and 4-alkylcyclohexanones with TTN gives
(CH2)n 1.2 equiv TTNÅ"3H2O, MeCN/HClO4
O
alkylcyclopentanecarboxylic acids in an efficient manner (eq 19).
80 82 °C, 30 min
However, treatment of 2-alkylcyclohexanones with TTN furnishes
n = 2, 92%
the ring contraction product in poor yield.38
n = 3, 94%
O n = 4, 92%
1.1 equiv TTNÅ"3H2O
(23)
O
O
CH2Cl2, rt, 24 h
(CH2)n
97%
O
COOH COOH (19)
+
Oxidation of Flavanones. The reaction of flavanones with
(4 : 1)
TTN in MeOH/CHCl3/HClO4,45 MeCN/HClO4,46 or MeCN47
produced isoflavones as major products (eq 24). However, the
The same reaction conditions were applied to the synthesis
reaction may also give 2,3-dihydro-2-arylbenzofuran-3-carboxyl-
of functionalized trans-hydrindanes.39 Excellent yields and
ates as the main product using TTN in TMOF/HClO4 (eq 25).48
diastereoselectivities were obtained from 1,3,4-unsubstituted
O Ph 2.5 equiv TTNÅ"3H2O
trans-2-decalones (eq 20). When cis-fused decalones were used as
MeCN, reflux, 2 3 h
starting material, ring contraction products were obtained in low
regio- and stereoselectivity.40 The reaction of other cis-decalones
O O O Ph
with TTN in AcOH resulted in a single product, but the yield was
low.41 +
(24)
Ph
80% <5%
O O
1.1 equiv TTNÅ"3H2O
CH2Cl2, rt, 24 h
1.1 equiv TTNÅ"3H2O
O Ph
CO2H
(20)
TMOF/HClO4, rt, 20 30 min
93%
O
H H
O Ph
O
O
Ph +
The reaction of a series of 1-tetralones with TTN supported
(25)
on Montmorillonite K-10 clay led to products of ring contraction
CO2Me
75% 15%
O
(methyl indan-1-carboxylates) and/or Ä…-oxidation (2-methoxy-1-
tetralones), in variable yields (eq 21).42
The synthesis of some nitrogen analogs of isoflavanones, that is,
3-aryl-4-quinolones, has been achieved in high yields using TTN
O
in MeCN/HClO4 (eq 26).49 On the contrary, when TMOF/HClO4
2 equiv TTNÅ"3MeOH/K-10
was employed instead of MeCN/HClO4, 2-phenyl-4-methoxy-
pentane, rt, 30 h
quinolines were obtained in 80 84% yield (eq 27).49
O
CO2Me
Ac
H
OMe
N Ph 1.1 equiv TTNÅ"3H2O
N
(21)
+ MeCN/HClO4, reflux, 1.5 h
(26)
92%
Ph
38%
7%
O
O
H
The ring contraction of chromanones can be performed using
1.1 equiv TTNÅ"3H2O
N Ph N Ph
TTN in TMOF/MeOH (eq 22).43 However, the closely related
TMOF/HClO4, rt, 1 h
2-spirochromanones did not afford ring contraction products when
84% (27)
treated with TTN in MeCN/HClO4.44 Instead, annulated deriva-
O OMe
tives were obtained (eq 23).
Avoid Skin Contact with All Reagents
4 THALLIUM(III) NITRATE TRIHYDRATE
Oxidation of Chalcones. The treatment of chalcones with
TTN can lead to several kinds of rearranged products. The oxi-
1. 3 equiv TTNÅ"3H2O, CH2Cl2
dative rearrangement of 2 -hydroxychalcones with TTN, fol-
MeOH, reflux, 10 min
NH N
lowed by acid-catalyzed ring closure, furnishes the corresponding
2. 88% HCO2H, rt, 2 h
isoflavones (eq 28).50 52 Using this method, dihydropyrano-
91%
N HN
isoflavones53 were obtained from dihydropyranochalcones and
R = (CH2)2CO2Me
pyranoisoflavones54 from pyranochalcones (eq 29). Furthermore,
this strategy was also applied to the synthesis of other simi-
(31)
CHO
R R
lar products such as (E)-3-styrylchromones,55 benzoxanthones,56
coumestans,57 and 3-aryl-4(1H)-quinolines.58
CHO
NH N
BzO OBz
1. 1.1 equiv TTNÅ"3H2O
The construction of the triquinane-type skeleton by the ring
H3CO OH
MeOH, rt, 6 h
expansion of the cyclobutane moiety has been described (eq 32).65
2. HCl 10%, reflux, 4 h
76%
C8H17
O
1.1 equiv TTNÅ"3H2O
H3CO O
(28)
OBz
THF, rt, 15 min
(32)
OH
O
OBz
+
O
1. 1.1 equiv TTNÅ"3H2O
O OAc Ar
MeOH, rt, 10 h
O
76% 12%
2. HCl 10%, reflux, 3 h
70%
The treatment of glycals with TTN in the presence of a large
O OMe O
(29)
OO excess of NaBH4 allows the synthesis of open chain deriva-
tives through an oxidative rearrangement followed by reduction
(eq 33).66,67
Ar
O OMe O
BnOH2C O 2 equiv TTNÅ"3H2O
4 equiv NaBH4, MeOH, rt
50%
BnO
The oxidative rearrangement of chalcones with no free hy-
(33)
OBn
OH OBn
droxyl group with TTN in MeOH leads to ketals (eq 30).59 63
BnO
In some cases, these ketals are intermediates in the synthesis of
OCH3
isoflavones.61 63
OBn
The ring contraction of cyclic dienes mediated by TTN was
BnO OBn
1.5 equiv TTNÅ"3H2O
performed during the synthesis of (+)-ferruginine (eq 34).68
MeOH, rt, 5 h
Under similar conditions, other analogous dienes gave a mixture
70%
of the ring contraction products and the 1,4-addition products.69
OMe O OBn
The same authors have also carried out the synthesis of ²-cedrene,
(30)
using as a key step an analogous TTN-mediated ring contraction.70
BnO MeO OMe
R1 CO2R2
N
R1 CO2R2
6 equiv TTNÅ"3H2O HH
OMe O
OBn N MeOH, rt, 5.5 h
BnO
H
H
MeO
85%
R1 = CO2Me
OMe
R2 = ( )-8-phenylmethyl
(34)
Oxidation of Olefins with Rearrangement. Treatment of a
vinyl porphyrin with TTN leads to the corresponding bisdimethyl Homoallylic alcohols can undergo a fragmentation reaction
acetal,64 which can be either isolated or stirred at room tempera- when treated with TTN (eq 35).71,72 This method was employed
ture in formic acid to give the corresponding aldehyde (eq 31). in the synthesis of hormones such as estrone73,74 and estradiol.74
A list of General Abbreviations appears on the front Endpapers
THALLIUM(III) NITRATE TRIHYDRATE 5
O
The synthesis of cis-hydrindanes can be achieved through the
ring contraction of cis-octalins using TTN in TMOF or MeOH/
HO
1.3 equiv TTNÅ"3H2O, dioxane
AcOH (eq 39).89
HClO4, rt, 15 min
69% (35)
1.1 equiv TTNÅ"3H2O
AcO
O
MeOH/AcOH, rt, 2 h
O
(39)
40%
(cis:trans 1:1)
OH H H
AcO
Ring Opening of Cyclopropanes. The corner attack of TTN
The reaction of cyclic homoallylic alcohols with TTN in AcOH/
on cyclopropanes bearing a suitably positioned internal nucleo-
H2O leads to ring contraction products.75 Using this method, an
phile gives a lactol product stereospecifically (eq 40),65,90,91
efficient protocol for the construction of indanes was developed
whereas in the absence of the nucleophile, a mixture of allylic
starting from primary75 78 and secondary79 alcohols (eq 36). The
alcohols is obtained (eq 41).91
reaction with TTN of tertiary homoallylic alcohols bearing an al-
lylic methyl group fails to form the expected ring contraction pro-
ducts. Instead, the observed products are those originating from
a fragmentation reaction. On the contrary, treating analogous ter-
1.2 equiv TTNÅ"3H2O, dioxane
tiary alcohols without the allylic methyl group with TTN gives
HClO4, rt, 24 h
the corresponding indans in good yield through a ring contraction
63%
reaction.80
(40)
OH
O
OH
OH
1.5 equiv TTNÅ"3H2O
AcOH:H2O (2:1), rt
(36)
1.4 equiv TTNÅ"3H2O, dioxane
53%
HClO4, rt, 4 h
O
H
(41)
OH
+
The rearrangement of ²,Å‚-unsaturated esters,81 such as 2-(3,4-
dihydronaphthalen-1-yl)-propionic acid ethyl ester, with TTN in
OH
AcOH leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl
OH 66%
26%
esters in good yield (eq 37) through a ring contraction reaction.
Rearrangement of Ä…,²-unsaturated esters82 with TTN in MeOH
furnishes dimethyl acetals.
Cyclization Reactions. The treatment of (Ä…)-sulcatol with
CO2Et
CO2Et O
TTN gives ²-hydroxy cyclic ethers as well as its acetoxy- and
2 equiv TTNÅ"3H2O
methoxy-derivatives, depending on the reaction conditions.92
AcOH, rt, 2.5 h (37)
The reaction of the monoterpenes isopulegol, neoisopulegol, cis-
61%
carveol and Ä…-terpineol with TTN furnishes ²-hydroxy cyclic
ethers in good yields (eq 42).93 This approach has been used for
The TTN oxidation of 1,2-dihydronaphthalenes possessing di- the synthesis of other cyclic ethers.71,76,94
substituted double bond furnishes ring contraction products in
very good yields.83 87 For example, the reaction of 1-methyl-1,2-
dihydronaphthalene with TTN in MeOH led to the corresponding
1.2 equiv TTNÅ"3H2O
indane in 87% yield, as a single diastereomer (eq 38).83 This TTN-
AcOH/H2O (1:1), rt, 5 min
(42)
promoted ring contraction can be performed chemoselectively at
OH 85%
O
the double bond of a 1,2-dihydronaphthalene moiety without ox-
idation at the very reactive 2,3-position of the indole ring.88
HO
MeO
OMe
1.1 equiv TTNÅ"3H2O
The reaction of 2 -hydroxychalcones with an excess of TTN in
MeOH, 0 °C, 5 min
(38)
MeOH furnishes 4-methoxyaurones in moderate to good yields
87%
(eq 43).95,96 Another feature of this reaction is the introduction of
a methoxyl group into the aurone skeleton.
Avoid Skin Contact with All Reagents
6 THALLIUM(III) NITRATE TRIHYDRATE
1. 3 equiv TTNÅ"3H2O, MeOH
dimethoxylated substrates gave a mixture of quinines (eq 47).116
OH R
rt, 15 min
Under similar conditions, the reaction of the C-glycosyl naph-
2. HCl, reflux, 10 h
thalenediol with TTN led to the C-glycosyl juglone in good
MeO
R = NO2, 60%
yield.117,118
R = OMe, 54%
O
(43)
R = Cl, 72%
R
R
MeO OH
1 equiv TTNÅ"3H2O, MeOH
 5 to  10 °C, 5 10 min
MeO COMe
R = H, 80%
O
R = OMe, 90%
OMe
(46)
R
MeO
MeO O
O
OMe
MeO
COMe
MeO
Phenolic Oxidative Coupling. TTN has been used to pro-
OMe
mote the phenolic oxidative coupling of several molecules97,98
R OH 2.2 equiv TTNÅ"3H2O, MeOH
aimed toward the synthesis of natural products such as OF4949-
40 °C, 120 min
III99 and K-13.100 In these cyclizations, halogen substituents at
R = H, 85% (3 :1)
MeO COMe
both ortho-positions of the phenol group are required. Further-
(47)
R = OMe, 80% (1:1)
more, the quinine derivatives thus obtained can be either isolated99
(eq 44) or reduced in situ100 (eq 45). A great effort have been
R O
R OH
made to apply this protocol to the synthesis of antibiotics related
+
MeO
MeO
to vancomycin.101 108 The preparation of other related macrocy-
COMe
COMe
MeO
MeO
cles has also been performed by TTN oxidation.109 114 A spiro
OH
O
derivative of the alkaloid prianosin was obtained in low yield by
TTN-promoted nonphenolic oxidative coupling.115
Oxidation of Nitrogen Compounds. The oxidation of Ä…-
methylpyrroles using TTN supported in K-10 leads to Ä…-formyl-
CONH2
pyrroles.119,120 The preparation of 2-alkoxy-1H-imidazoles from
O
MeO2C H
5-aminopyrimidin-4(3H)-ones using TTN (eq 48) has been
N NHR
N
described.121,122 A method to transform 5-aminouracils into the
3 equiv TTNÅ"3H2O, MeOH
H
O respective gem-diols was also reported (eq 49).121,123
0 °C to rt, overnight
Br
27%
O O
R = CO2Bn
Cl Cl
Ph NH2 1.2 equiv TTNÅ"3H2O
HO N
(44)
N PhHN
MeOH, rt, 3 h
Br
OH
OMe
51%
N
N
(48)
Cl
OMe
H
O
O
O
OH
R NH2 1.2 equiv TTNÅ"3H2O
R
Br
Cl
N MeOH, rt, 1.5 2 h N
O
OH
(49)
R = Ph, R2 = Me, 93%
O N
O N
R2
R = Me, R2 = Ph, 81%
OMe
O
MeO2C H R2
R2
N NHR1
N
1. 3 equiv TTNÅ"3H2O, MeOH/dioxane (2:1)
The TTN-promoted intramolecular cyclization of arenecarbal-
H
O
0 °C to rt, overnight
dehyde benzothiazol-2-ylhydrazones furnishes 3-aryl-1,2,4-
Cl
2. Zn/AcOH/THF, rt, 3 h
triazolo[3,4-b]benzothiazoles. This transformation is performed
42%
BrBr in the presence of p-toluenesulfonic acid (eq 50).124
HO
R1 = CO2t-Bu, R2 = 4-OBn-C6H5
Cl
OH
1.2 equiv TTNÅ"3H2O, 3 equiv PTSA
N
MeCN, reflux, 5 min
N N C Ph
Br 92%
S
H H
(50)
(45)
Ph
O
N
Cl
Br
N
HO
N
S
Oxidation of Phenols. The reaction of 2 -hydroxyacetophe-
nones with TTN led to a single oxidation product from tri- and Oximes can be converted into the corresponding aldehy-
tetramethoxylated substrates (eq 46), whereas the mono- and des (or ketones) by treatment with TTN (eq 17).26 In con-
A list of General Abbreviations appears on the front Endpapers
THALLIUM(III) NITRATE TRIHYDRATE 7
trast to these results, the oxidation with TTN of 1,3-dimethyl- 13. (a) McKillop, A.; Oldenziel, O. H.; Swann, B. P.; Taylor, E. C.; Robey,
R. L., J. Am. Chem. Soc. 1971, 93, 7331. (b) McKillop, A.; Oldenziel,
5-(2,6-dichlorophenyl)uracil oxime leads to a cyclization product
O. H.; Swann, B. P.; Taylor, E. C.; Robey, R. L., J. Am. Chem. Soc.
(eq 51).125
1973, 95, 1296.
14. Anteunis, M.; DeSmet, A., Synthesis 1974, 868.
15. Renold, W.; Ohloff, G.; Norin, T., Helv. Chim. Acta 1979, 62, 985.
Cl Cl
16. Ochiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H., Chem. Pharm.
1.4 equiv TTNÅ"3H2O
Me Bull. 1983, 31, 86.
MeOH/C6H6 (1:1), 30 40 °C, 2 h
NN
17. Ochiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H., Chem. Pharm.
50%
OH
Bull. 1984, 32, 5027.
O N O
(51) 18. Ochiai, M.; Tada, S.-I.; Arimoto, M.; Fujita, E., Chem. Pharm. Bull.
Me
Cl
1982, 30, 2836.
O
19. Ochiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H., Chem. Pharm.
Me
Cl
Bull. 1984, 32, 887.
N
N
20. Taylor, E. C.; Jagdmann, Jr.; G.; McKillop, A., J. Org. Chem. 1978, 43,
O
O N
4385.
Me
21. Nagao, Y.; Ochiai, M.; Kaneko, K.; Maeda, A.; Watanabe, K.; Fujita,
E., Tetrahedron Lett. 1977, 1345.
The cleavage of the hydrazine moiety induced by TTN furnishes
22. Taylor, E. C.; Robey, R. L.; McKillop, A., J. Org. Chem. 1972, 37,
a variety of different carboxylic acid derivatives, depending on the
2797.
conditions (eq 52).126 Moreover, this transformation can be per-
23. Kienzle, F., Tetrahedron Lett. 1972, 1771.
formed using a catalytic amount of TTN and NaBrO3 as reoxidant.
24. Ferraz, H. M. C.; Ribeiro, C. R., Synth. Commun. 1992, 22, 399.
However, this is not a general protocol, because it fails with some
25. (a) Smith, R. A. J.; Hannah, D. J., Synth. Commun. 1979, 9, 301.
substrates.126 TTN also promotes the cleavage of tosylhydrazones
(b) Fujita, E.; Nagao, Y.; Kaneko, K., Chem. Pharm. Bull. 1978,
(eq 53).127
26, 3743.
26. McKillop, A.; Hunt, J. D.; Naylor, R. D.; Taylor, E. C., J. Am. Chem.
2 equiv TTNÅ"3H2O
O
O
Soc. 1971, 93, 4918.
ROH, rt, 1 6 h
Ar NHNH2 R = H, 82% Ar OR (52) 27. Sangaiah, R.; Gold, A., J. Org. Chem. 1988, 53, 2620.
28. Miller, J. A.; Matthews, R. S., J. Org. Chem. 1992, 57, 2514.
R = t-Bu, 53%
29. Yang, C.; Harvey, R. G., Tetrahedron 1992, 48, 3735.
Ar = 4-nitrophenyl
30. Camps, P.; Giménez, S.; Farrés, X.; Mauleón, D.; Carganico, G., Liebigs
Ann. Chem. 1993, 641.
2 equiv TTNÅ"3H2O
R R
31. Camps, P.; Farrés, X., Synth. Commun. 1995, 25, 3931.
MeOH, rt, 1 2 min
NNHTs O (53)
32. Ho-Hoang, A.; Fache, F.; Lemaire, M., Synth. Commun. 1996, 26, 1289.
R = H, R2 = Ph, 90%
R2 R2
R = Me, R2 = Ph, 84%
33. van Aardt, T. G.; van Heerden, P. S.; Ferreira, D., Tetrahedron Lett.
1998, 39, 3881.
34. Ansems, R. B. M.; Scott, L. T., J. Am. Chem. Soc. 2000, 122, 2719.
35. Hu, B.; Ellingboe, J.; Han, S.; Largis, E.; Mulvey, R.; Oliphant, A., J.
1. (a) McKillop, A., Pure Appl. Chem. 1975, 43, 463. (b) McKillop, A.;
Med. Chem. 2001, 44, 1456.
Taylor, E. C. In Comprehensive Organometallic Chemistry; Wilkinson,
G., Ed.; Pergamon: Oxford, 1982; Vol. 7, p 465. 36. Tani, M.; Matsumoto, S.; Aida, Y.; Arikawa, S.; Nakane, A.; Yokoyama,
Y.; Murakami, Y., Chem. Pharm. Bull. 1994, 42, 443.
2. McKillop, A.; Perry, D. H.; Edwards, M.; Antus, S.; Farkas, L.; Nogradi,
M.; Taylor, E. C., J. Org. Chem. 1976, 41, 282.
37. Singh, O. V.; Khanna, M. S.; Tanwar, M. P.; Garg, C. P.; Kapoor, R. P.,
Synth. Commun. 1990, 20, 2401.
3. Crouse, D. J.; Wheeler, M. M.; Goemann, M.; Tobin, P. S.; Basu, S. K.;
Wheeler, D. M. S., J. Org. Chem. 1981, 46, 1814.
38. Ferraz, H. M. C.; Silva, L. F. Jr., Tetrahedron Lett. 1997, 38, 1899.
4. McKillop, A.; Swann, B. P.; Ford, M. E.; Taylor, E. C., J. Am. Chem.
39. Ferraz, H. M. C.; Silva, L. F. Jr., J. Org. Chem. 1998, 63, 1716.
Soc. 1973, 95, 3641.
40. Ferraz, H. M. C.; Silva, L. F. Jr., J. Braz. Chem. Soc. 2001, 12, 548.
5. Taylor, E. C.; Robey, R. L.; Liu, K.-T.; Favre, B.; Bozimo, H. T.; Conley,
41. Bird, C. W.; Cooper, R., Org. Prep. Proced. Int. 1993, 25, 237.
R. A.; Chiang, C.-S.; McKillop, A.; Ford, M. E., J. Am. Chem. Soc.
42. Ferraz, H. M. C.; Silva, L. F., Jr.; Aguilar, A. M.; Vieira, T. O., J. Braz.
1976, 98, 3037.
Chem. Soc. 2001, 12, 680.
6. (a) McKillop, A.; Swann, B. P.; Taylor, E. C., J. Am. Chem. Soc. 1973,
43. Grisar, J. M.; Bolkenius, F. N.; Petty, M. A.; Verne, J., J. Med. Chem.
95, 3340. (b) Taylor, E. C.; Chiang, C.-S.; McKillop A.; White, J. F., J.
1995, 38, 453.
Am. Chem. Soc. 1976, 98, 6750.
44. Singh, O. V.; Kapil, R. S.; Garg, C. P.; Kapoor, R. P., Tetrahedron Lett.
7. McKillop, A.; Hunt, J. D.; Taylor, E. C.; Kienzle, F., Tetrahedron Lett.
1991, 32, 5619.
1970, 5275.
45. Kinoshita, T.; Ichinose, K.; Sankawa, U., Tetrahedron Lett. 1990, 31,
8. Corey, E. J.; Ravindranathan, T., Tetrahedron Lett. 1971, 4753.
7355.
9. Kaye, A.; Neidle, S.; Reese, C. B., Tetrahedron Lett. 1988, 29, 1841.
46. Singh, O. V.; Kapil, R. S., Indian J. Chem. 1993, 32, 911.
10. McKillop, A.; Hunt, J. D.; Kienzle, F.; Bigham, E.; Taylor, E. C.,
47. Khanna, M. S.; Singh, O. V.; Garg, C. P.; Kapoor, R. P., J. Chem. Soc.,
J. Am. Chem. Soc. 1973, 95, 3635.
Perkin Trans. 1 1992, 2565.
11. Layton, W. J.; Brock, C. P.; Crooks, P. A.; Smith, S. L.; Burn, P.,
J. Org. Chem. 1985, 50, 5372. 48. Khanna, M. S.; Singh, O. V.; Garg, C. P.; Kapoor, R. P., Synth. Commun.
1993, 23, 585.
12. Farcasiu, D.; Schleyer, P. v. R.; Ledlie, D. B., J. Org. Chem. 1973, 38,
3455. 49. Singh, O. V.; Kapil, R. S., Synlett 1992, 751.
Avoid Skin Contact with All Reagents
8 THALLIUM(III) NITRATE TRIHYDRATE
50. Jain, A. C.; Paliwal, P., Indian J. Chem. 1990, 29B, 757. 89. Ferraz, H. M. C.; Vieira, T. O.; Silva, L. F. Jr., Synthesis 2006, 2748.
51. Sekizaki, H.; Yokosawa, R.; Chinen, C.; Adachi, H.; Yamane, Y., Biol. 90. Kocovskż, P.; Pour, M.; Gogoll, A.; Hanus, V.; Smrcina, M., J. Am.
Pharm. Bull. 1993, 16, 698. Chem. Soc. 1990, 112, 6735.
52. Khan, R. A.; Kapil, R. S., J. Heterocyclic Chem. 2001, 38, 1007.
91. Kocovskż, P.; Srogl, J.; Pour, M.; Gogoll, A., J. Am. Chem. Soc. 1994,
116, 186.
53. Tsukayama, M.; Horie, T.; Iguchi, Y.; Nakayama, M., Chem. Pharm.
Bull. 1988, 36, 592.
92. Ferraz, H. M. C.; Sano, M. K.; Ribeiro, C. M. R., Quím. Nova 1993,
16, 548.
54. Tsukayama, M.; Kawamura, Y.; Tamaki, H.; Kubo, T.; Horie, T., Bull.
Chem. Soc. Jpn. 1989, 62, 826.
93. Ferraz, H. M. C.; Ribeiro, C. M. R.; Grazini, M. V. A.; Brocksom, T.
55. Silva, A. M. S.; Cavaleiro, J. A. S.; Elguero, J., Liebigs Ann/ Recueil J.; Brocksom, U., Tetrahedron Lett. 1994, 35, 1497.
1997, 2065.
94. Brocksom, U.; Toloi, A. P.; Brocksom, T. J., J. Braz. Chem. Soc. 1996,
56. Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M.; Thomas, J.-L., 7, 237.
Tetrahedron Lett. 1998, 39, 881.
95. Thakkar, K.; Cushman, M., Tetrahedron Lett. 1994, 35, 6441.
57. Kamara, B. I.; Brandt, E. V.; Ferreira, D., Tetrahedron 1999, 55, 861.
96. Thakkar, K.; Cushman, M., J. Org. Chem. 1995, 60, 6499.
58. Tokés, A. L.; Antus, S., Liebigs Ann. Chem. 1993, 927.
97. Nishiyama, S.; Susuki, T.; Yamamura, S., Tetrahedron Lett. 1982, 23,
59. Meyer, M.; Deschamps, C.; Molho, D., Bull. Soc. Chim. Fr. 1991, 127,
3699.
91.
98. Noda, H.; Niwa, M.; Yamamura, S., Tetrahedron Lett. 1981, 22, 3247.
60. Horie, T.; Kawamura, Y.; Sakai, C.; Akita, A.; Kuramoto, M., J. Chem.
99. Nishiyama, S.; Susuki, Y.; Yamamura, S., Tetrahedron Lett. 1988, 29,
Soc., Perkin Trans. 1 1994, 753.
559.
61. Horie, T.; Sasagawa, M.; Torii, F.; Kawamura, Y.; Yamashita, K., Chem.
100. Nishiyama, S.; Suzuki, Y.; Yamamura, S., Tetrahedron Lett. 1989, 30,
Pharm. Bull. 1996, 44, 486.
379.
62. Horie, T.; Shibata, K.; Yamashita, K.; Fujii, K.; Tsukayama, M.;
101. Suzuki, Y.; Nishiyama, S.; Yamamura, S., Tetrahedron Lett. 1989, 30,
Ohtsuru, Y., Chem. Pharm. Bull. 1998, 46, 222.
6043.
63. Tsukayama, M.; Wada, H.; Kishida, M.; Nishiuchi, M.; Kawamura, Y.,
102. Suzuki, Y.; Nishiyama, S.; Yamamura, S., Tetrahedron Lett. 1990, 31,
Chem. Lett. 2000, 1362.
4053.
64. Kahl, S. B.; Schaeck, J. J.; Koo, M.-S., J. Org. Chem. 1997, 62, 1875.
103. Nakamura, K.; Nishiyama, S.; Yamamura, S., Tetrahedron Lett. 1995,
65. Kocovskż, P.; Dunn, V.; Gogoll, A.; Langer, V., J. Org. Chem. 1999,
36, 8621.
64, 101.
104. Konishi, H.; Okuno, T.; Nishiyama, S.; Yamamura, S.; Koyasu, K.;
66. Passacantilli, P., Tetrahedron Lett. 1989, 30, 5349.
Terada, Y., Tetrahedron Lett. 1996, 37, 8791.
67. Bettelli, E.; D Andrea, P.; Mascanzoni, S.; Passacantilli, P.; Piancatelli,
105. Evans, D. A.; Dinsmore, C. J.; Ratz, A. M.; Evrard, D. A.; Barrow, J.
G., Carbohydr. Res. 1998, 306, 221.
C., J. Am. Chem. Soc. 1997, 119, 3417.
68. Rigby, J. H.; Pigge, F. C., J. Org. Chem. 1995, 60, 7392.
106. Evans, D. A.; Barrow, J. C.; Watson, P. S.; Ratz, A. M.; Dinsmore, C.
69. Rigby, J. H.; Pigge, F. C., Synlett 1996, 631.
J.; Evrard, D. A.; DeVries, K. M.; Ellman, J. A.; Rychnovsky, S. D.;
70. Rigby, J. H.; Kirova-Snover, M., Tetrahedron Lett. 1997, 38, 8153. Lacour, J., J. Am. Chem. Soc. 1997, 119, 3419.
71. Kocovskż, P.; Pour, M., J. Org. Chem. 1990, 55, 5580.
107. Evans, D. A.; Ellman, J. A.; DeVries, K. M., J. Am. Chem. Soc. 1989,
111, 8912.
72. Kocovskż, P.; Langer, V.; Gogoll, A., J. Chem. Soc., Chem. Commun.
1990, 1026.
108. Evans, D. A.; Dinsmore, C. J.; Ratz, A. M., Tetrahedron Lett. 1997,
38, 3189.
73. Kocovskż, P.; Baines, R. S., Tetrahedron Lett. 1993, 34, 6139.
74. Kocovskż, P.; Baines, R. S., J. Org. Chem. 1994, 59, 5439. 109. Inoue, T.; Inaba, T.; Umezawa, I.; Yuasa, M.; Itokawa, H.; Ogura, K.;
Komatsu, K.; Hara, H.; Hoshino, O., Chem. Pharm. Bull. 1995, 43,
75. Ferraz, H. M. C.; Santos, A. P.; Silva, L. F., Jr.; Vieira, TdO., Synth.
1325.
Commun. 2000, 30, 751.
110. Gubitskaya, I. I.; Klep, V. Z.; Makovetskii, V. P.; Novikov, V. P., Russ.
76. Ferraz, H. M. C.; Longo, L. S., Jr.; Zucherman-Schpector J., J. Org.
J. Org. Chem. 1996, 32, 917.
Chem. 2002, 67, 3518.
111. Kai, T.; Kajimoto, N.; Konda, Y.; Harigaya, Y.; Takayanagi, H.,
77. Ferraz, H. M. C.; Silva, L. F. Jr., Tetrahedron 2001, 57, 9939.
Tetrahedron Lett. 1999, 40, 6289.
78. Ferraz, H. M. C.; Silva, L. F. Jr., Synthesis 2002, 1033.
112. Nakamura, K.; Nishiya, H.; Nishiyama, S., Tetrahedron Lett. 2001, 42,
79. Silva, L. F., Jr.; Quintiliano, S. A. P.; Craveiro, M. V.; Vieira, F. Y. M.;
6311.
Ferraz, H. M. C., Synthesis 2007, 355.
113. Ito, M.; Yamanaka, M.; Kutsumura, N.; Nishiyama, S., Tetrahedron
80. Silva, L. F., Jr.; Quintiliano, S. A. P.; Ferraz, H. M. C.; Santos, L. S.;
Lett. 2003, 44, 7949.
Eberlin, M. N., J. Braz. Chem. Soc. 2006, 17, 981.
114. Ito, M.; Yamanaka, M.; Kutsumura, N.; Nishiyama, H., Tetrahedron
81. Silva, L. F., Jr.; Pedrozo, E. C.; Ferraz, H. M. C., J. Braz. Chem. Soc.
2004, 60, 5623.
2006, 17, 200.
115. Cheng, J.-F.; Nishiyama, S.; Yamamura, S., Chem. Lett. 1990, 1591.
82. Juhász, L.; Kürti, L.; Antus, S., J. Nat. Prod. 2000, 63, 866.
116. Horie, T.; Yamada, T.; Kawamura, Y.; Tsukayama, M.; Kuramoto, M.,
83. Ferraz, H. M. C.; Silva, L. F., Jr.; Vieira, T. O., Tetrahedron 2001, 57,
J. Org. Chem. 1992, 57, 1038.
1709.
117. Matsuo, G.; Matsumura, S.; Toshima, K., Chem. Commun. 1996, 2173.
84. Ferraz, H. M. C.; Aguilar, A. M.; Silva, L. F. Jr., Synthesis 2003, 1031.
118. Matsuo G.; Miki, Y.; Nakata, M.; Matsumura, S.; Toshima, K., J. Org.
85. Ferraz, H. M. C.; Aguilar, A. M.; Silva, L. F. Jr., Tetrahedron 2003,
Chem. 1999, 64, 7101.
59, 5817.
119. Jackson, A. H.; Rao, K. R. N.; Ooi, N. S.; Adelakun, E., Tetrahedron
86. Silva, L. F., Jr.; Sousa, R. M. F.; Ferraz, H. M. C.; Aguilar, A. M., J.
Lett. 1984, 25, 6049.
Braz. Chem. Soc. 2005, 16, 1160.
87. Silva, L. F., Jr.; Siqueira, F. A.; Pedrozo, E. C.; Vieira, F. Y. M.; 120. Jackson, A. H.; Rao, K. R. N.; Smeaton, E., Tetrahedron Lett. 1989,
Doriguetto, A. C., Org. Lett 2007, 9, 1433. 30, 2673.
88. Silva, L. F., Jr.; Craveiro, M. V.; Gambardella, M. T. P., Synthesis 2007, 121. Matsuura, I.; Ueda, T.; Murakami, N.; Nagai, S.; Nagatsu, A.;
3851. Sakakibara, J., J. Chem. Soc., Perkin Trans. 1 1993, 965.
A list of General Abbreviations appears on the front Endpapers
THALLIUM(III) NITRATE TRIHYDRATE 9
122. Matsuura, I.; Ueda, T.; Murakami, N.; Nagai, S.; Sakakibara, J., J. 125. Kim, J. N.; Lee, H. J.; Kim, H. R.; Ryu, E. K., Synth. Commun. 1997,
Chem. Soc., Chem. Commun. 1991, 1688. 27, 3477.
123. Matsuura, I.; Ueda, T.; Nagai, S.; Nagatsu, A.; Sakakibara, J.; Kurono, 126. Kocevar, M.; Mihorko, P.; Polanc, S., J. Org. Chem. 1995, 60, 1466.
Y.; Hatano, K., J. Chem. Soc., Chem. Commun. 1992, 1474.
127. Wang, J.; Lin, J.; Zheng, Y.; Huang, J., Synth. Commun. 1997, 27,
124. Singh, O. M.; George, V., Synth. Commun. 1994, 24, 2627. 2583.
Avoid Skin Contact with All Reagents


Wyszukiwarka