THALLIUM(III) NITRATE TRIHYDRATE 1 TTN Thallium(III) Nitrate Trihydrate1 ArCH=CHCOAr2 ArCOCOAr2 (2) H+ Ar = Ar2 = Ph, 61% Tl(NO3)3. 3H2O Ar = 4-BrC6H4, Ar2 = Ph, 55% Ar = Ph, Ar2 = 42 -BrC6H4, 70% Ar = Ph, Ar2 = 42 -MeC6H4, 49% [13453-38-8] H6N3O12Tl (MW 444.47) Ar = Ph, Ar2 = 42 -MeOC6H4, 49% InChI = 1/3NO3.3H2O.Tl/c3*2-1(3)4;;;;/h;;;3*1H2;/q3*-1;;;;+3 InChIKey = ZCPIKMRXMBJLCP-UHFFFAOYAD CH(OMe)2 CH(OMe)2 (oxidizing agent; Lewis acid for alkene cyclization) CHO TTN R2 Alternate Name: thallium trinitrate (TTN). R2 MeOH TMOF ć% Physical Data: mp 102 105 C. (3) R1 R1 Solubility: sol water, organic solvents. R1 = R2 = H, 79% Form Supplied in: moist white crystals, hygroscopic; widely R1 = 4-MeO, R2 = H, 84% available. R1 = 4-NO2, R2 = H, 63% Drying: compound decomposes on heating. R1 = H, R2 = Me, 83% Handling, Storage, and Precautions: all thallium compounds are R1 = 3-NO2, R2 = Me, 50% extremely toxic to inhalation, skin contact, and ingestion. Tox- icity is cumulative. Extreme caution should be used when han- TTN adsorbed on Montmorillonite K10 is an effective reagent dling these materials. Use in a fume hood. for the conversion of ketones to rearranged esters. For example, acetophenone is readily converted to phenylacetate on treatment with TTN/K-10 reagent (eq 4).6 Supported TTN reagents are practical, since product isolation from the insoluble inorganic Original Commentary byproducts is simple. Mukund P. Sibi O North Dakota State University, Fargo, ND, USA CO2Me (4) Oxidations. Thallium trinitrate is a powerful oxidant. A vari- R ety of substituted phenols undergo oxidation using TTN to provide R quinones.2 For example, hydroquinones are oxidized to quinones R TTN, MeOH, HClO4 TTN/K-10 in good yields. p-Alkoxyphenols are oxidized to p-quinone acetals in good yields by TTN in methanol (eq 1). Similarly, naphthols are H 84% 86% oxidized to naphthoquinones using TTN. This oxidation proceeds F 44% 88% Me 86% 84% in higher yields if TTN on Celite is used as the oxidant.3 Br 35% 89% OH O Alkene Oxidation. Simple alkenes are converted to aldehy- RR des or ketones in good yields using TTN. These reactions proceed TTN (1) with migration of the higher migratory aptitude substituent.7 The MeOH preparation of arylacetaldehyde dimethyl acetals by oxidative MeO OMe OMe rearrangement of substituted styrenes using TTN proceeds in good yields (eq 5). The reaction proceeds through the exclusive R = H, 97%; Cl, 97%; Br, 91%; Me, 87% migration of the aryl substituent and the yields are higher if TTN supported on K-10 is used as the oxidant.1b,6b Chalcones are oxidized under acidic conditions to 1,2-diketones CH(OMe)2 (5) using three equivalents of TTN (eq 2).4 TTN is a trihydrate and generally reactions with it are carried RR out under fairly acidic conditions. TTN oxidations in methanol as R TTN, MeOH TTN/K-10 a solvent are also strongly acidic, since nitric acid is produced as a byproduct. Reactions that fail or proceed poorly with TTN (TTN in H 85% 92% methanol or acetic acid), or where the substrates are acid sensitive, F 27% 79% can be promoted by using a 1:1 mixture of methanol and trimethyl OMe 64% 81% orthoformate (TMOF) (see Triethyl Orthoformate) or neat TMOF Br 30% 76% as solvent. Oxidation of cinnamaldehyde with TTN in methanol proceeds very slowly and produces seven products. On the other Cycloalkenes provide ring contracted aldehydes on oxidation hand, cinnamaldehydes are rearranged to aryl malondialdehyde with TTN under acidic conditions. Corey and Ravindranathan tetramethyl acetals in good yields on treatment with TTN in 1:1 have used this methodology to prepare a key prostaglandin in- MeOH TMOF (eq 3).5 termediate (eq 6).8 Similarly, enol ethers also undergo oxidative Avoid Skin Contact with All Reagents 2 THALLIUM(III) NITRATE TRIHYDRATE TTN, MeOH ring contraction on treatment with TTN (eq 7).9 If methanol is TMS NHCOMe (12) 20 °C, 1 h, to used as the solvent, the corresponding acetals are formed as the 0 °C, 1 h products.10 In contrast to the ring contractive oxidation of mono- 48% cycloalkenes, bicyclic alkenes furnish nitrate esters on treatment with TTN.11 Exocyclic alkenes furnish ring enlarged ketones on oxidation with TTN (see Thallium(III) Perchlorate for similar Functional Group Interconversions. TTN finds utility in a reactions).12 variety of functional group interconversions. Phenols are read- ily converted to anilines using TTN.20 Sulfides and selenides are O O converted to sulfoxides (eq 13) and selenoxides, respectively, on O O TTN, H3O+ oxidation with TTN.21 Other transformations include the pre- (6) 50% paration of allene esters from Ä…-alkyl-²-keto esters (eq 14),22 carbamates from isocyanides (eq 15),23 and lactones from Å‚,´- CHO unsaturated acids.24 OBn BnO O 1. TTN, MeCN TTN O S 1 h, rt BnO (13) S R R O (7) R R 2. NaBH4 CHO 62% R = Et, 85%; Pr, 92%; Bu, 94%; Ph, 82% BnO BnO OBn Diarylalkynes are converted to 1,2-diketones using two equiv- O O alents of TTN (eq 8) and terminal alkynes are oxidized to H 1. N2H4 carboxylic acids (eq 9).13 " (14) OMe 2. TTN, MeOH H CO2Me TTN 50% Ph Ph PhCOCOPh (8) 85% TTN TTN R RCO2H (9) RNC RNHCO2Me (15) MeOH, H2O R = C6H13, 80%; C5H11, 55% R = EtOCOCH2, 84%; Cy, 90%; t-Bu, 35%; Ph, 93%; 4-MeC6H4, 85% TTN can be used for electrophilic cyclizations of polyalkenes.14 The oxythallative cyclization of elemol acetate using TTN in acetic acid produces a guaiene diol after Lithium Aluminum TTN has been used to selectively deprotect bisthioacetals to Hydride reduction (eq 10).15 In contrast, Mercury(II) Acetate give monothioacetals (eq 16).25 Simple thioacetals can also be mediated cyclization of elemol produces the unrearranged cryp- deprotected using TTN. Oximes are converted to aldehydes or tomeridiol. ketones in high yields on treatment with TTN in methanol at rt (eq 17).26 R = Ac S S S S 1. TTN, AcOH TTN (16) 2. LiAlH4 H 97% H OR S OH 63% OH O R = H S (10) 69% 1. Hg(OAc)2 2. LiAlH4 C6H13 C6H13 TTN NOH O (17) 96% H H H OH OH First Update Allylations Using Allysilanes and TTN. Aromatic com- Luiz F. Silva Jr & Vânia M. T. Carneiro pounds are allylated using allylsilanes and TTN, but in poor Universidade de Sćo Paulo, Sćo Paulo, Brazil yield.16 Allylsilanes are converted to allylic ethers (eq 11),17 N- allylic amides (eq 12),18 and allylic nitrates19 on treatment with Oxidation of Ketones. The conversion of alkyl aryl ketones TTN and the appropriate nucleophile. into carboxylic acids or esters through an oxidative rearrangement can be performed using thallium trinitrate (TTN) in either OMe TTN, MeOH MeOH/TMOF or MeOH/HClO4.27 35 An example of this reac- Ph TMS + Ph OMe 0.5 h Ph tion is shown in eq 4. Enolizable ketones can be oxidized at the Ä…- 70% (11) position by TTN.36,37 For example, the oxidation of flavanols was A list of General Abbreviations appears on the front Endpapers THALLIUM(III) NITRATE TRIHYDRATE 3 carried out with TTN, giving 2,3-dimethoxy-3-hydroxyflavanones 1.1 equiv TTNÅ"3H2O, TMOF/MeOH (1:1) O in excellent yields (eq 18).37 rt, 4 7 days 84 88% RO R = COC6H4NO2-4 Ph 1.1 equiv TTNÅ"3H2O, MeOH O Ph O O (22) rt, 15 20 min OMe OMe 94% OH O OH O O (18) RO CO2Me The reaction of 3- and 4-alkylcyclohexanones with TTN gives (CH2)n 1.2 equiv TTNÅ"3H2O, MeCN/HClO4 O alkylcyclopentanecarboxylic acids in an efficient manner (eq 19). 80 82 °C, 30 min However, treatment of 2-alkylcyclohexanones with TTN furnishes n = 2, 92% the ring contraction product in poor yield.38 n = 3, 94% O n = 4, 92% 1.1 equiv TTNÅ"3H2O (23) O O CH2Cl2, rt, 24 h (CH2)n 97% O COOH COOH (19) + Oxidation of Flavanones. The reaction of flavanones with (4 : 1) TTN in MeOH/CHCl3/HClO4,45 MeCN/HClO4,46 or MeCN47 produced isoflavones as major products (eq 24). However, the The same reaction conditions were applied to the synthesis reaction may also give 2,3-dihydro-2-arylbenzofuran-3-carboxyl- of functionalized trans-hydrindanes.39 Excellent yields and ates as the main product using TTN in TMOF/HClO4 (eq 25).48 diastereoselectivities were obtained from 1,3,4-unsubstituted O Ph 2.5 equiv TTNÅ"3H2O trans-2-decalones (eq 20). When cis-fused decalones were used as MeCN, reflux, 2 3 h starting material, ring contraction products were obtained in low regio- and stereoselectivity.40 The reaction of other cis-decalones O O O Ph with TTN in AcOH resulted in a single product, but the yield was low.41 + (24) Ph 80% <5% O O 1.1 equiv TTNÅ"3H2O CH2Cl2, rt, 24 h 1.1 equiv TTNÅ"3H2O O Ph CO2H (20) TMOF/HClO4, rt, 20 30 min 93% O H H O Ph O O Ph + The reaction of a series of 1-tetralones with TTN supported (25) on Montmorillonite K-10 clay led to products of ring contraction CO2Me 75% 15% O (methyl indan-1-carboxylates) and/or Ä…-oxidation (2-methoxy-1- tetralones), in variable yields (eq 21).42 The synthesis of some nitrogen analogs of isoflavanones, that is, 3-aryl-4-quinolones, has been achieved in high yields using TTN O in MeCN/HClO4 (eq 26).49 On the contrary, when TMOF/HClO4 2 equiv TTNÅ"3MeOH/K-10 was employed instead of MeCN/HClO4, 2-phenyl-4-methoxy- pentane, rt, 30 h quinolines were obtained in 80 84% yield (eq 27).49 O CO2Me Ac H OMe N Ph 1.1 equiv TTNÅ"3H2O N (21) + MeCN/HClO4, reflux, 1.5 h (26) 92% Ph 38% 7% O O H The ring contraction of chromanones can be performed using 1.1 equiv TTNÅ"3H2O N Ph N Ph TTN in TMOF/MeOH (eq 22).43 However, the closely related TMOF/HClO4, rt, 1 h 2-spirochromanones did not afford ring contraction products when 84% (27) treated with TTN in MeCN/HClO4.44 Instead, annulated deriva- O OMe tives were obtained (eq 23). Avoid Skin Contact with All Reagents 4 THALLIUM(III) NITRATE TRIHYDRATE Oxidation of Chalcones. The treatment of chalcones with TTN can lead to several kinds of rearranged products. The oxi- 1. 3 equiv TTNÅ"3H2O, CH2Cl2 dative rearrangement of 2 -hydroxychalcones with TTN, fol- MeOH, reflux, 10 min NH N lowed by acid-catalyzed ring closure, furnishes the corresponding 2. 88% HCO2H, rt, 2 h isoflavones (eq 28).50 52 Using this method, dihydropyrano- 91% N HN isoflavones53 were obtained from dihydropyranochalcones and R = (CH2)2CO2Me pyranoisoflavones54 from pyranochalcones (eq 29). Furthermore, this strategy was also applied to the synthesis of other simi- (31) CHO R R lar products such as (E)-3-styrylchromones,55 benzoxanthones,56 coumestans,57 and 3-aryl-4(1H)-quinolines.58 CHO NH N BzO OBz 1. 1.1 equiv TTNÅ"3H2O The construction of the triquinane-type skeleton by the ring H3CO OH MeOH, rt, 6 h expansion of the cyclobutane moiety has been described (eq 32).65 2. HCl 10%, reflux, 4 h 76% C8H17 O 1.1 equiv TTNÅ"3H2O H3CO O (28) OBz THF, rt, 15 min (32) OH O OBz + O 1. 1.1 equiv TTNÅ"3H2O O OAc Ar MeOH, rt, 10 h O 76% 12% 2. HCl 10%, reflux, 3 h 70% The treatment of glycals with TTN in the presence of a large O OMe O (29) OO excess of NaBH4 allows the synthesis of open chain deriva- tives through an oxidative rearrangement followed by reduction (eq 33).66,67 Ar O OMe O BnOH2C O 2 equiv TTNÅ"3H2O 4 equiv NaBH4, MeOH, rt 50% BnO The oxidative rearrangement of chalcones with no free hy- (33) OBn OH OBn droxyl group with TTN in MeOH leads to ketals (eq 30).59 63 BnO In some cases, these ketals are intermediates in the synthesis of OCH3 isoflavones.61 63 OBn The ring contraction of cyclic dienes mediated by TTN was BnO OBn 1.5 equiv TTNÅ"3H2O performed during the synthesis of (+)-ferruginine (eq 34).68 MeOH, rt, 5 h Under similar conditions, other analogous dienes gave a mixture 70% of the ring contraction products and the 1,4-addition products.69 OMe O OBn The same authors have also carried out the synthesis of ²-cedrene, (30) using as a key step an analogous TTN-mediated ring contraction.70 BnO MeO OMe R1 CO2R2 N R1 CO2R2 6 equiv TTNÅ"3H2O HH OMe O OBn N MeOH, rt, 5.5 h BnO H H MeO 85% R1 = CO2Me OMe R2 = ( )-8-phenylmethyl (34) Oxidation of Olefins with Rearrangement. Treatment of a vinyl porphyrin with TTN leads to the corresponding bisdimethyl Homoallylic alcohols can undergo a fragmentation reaction acetal,64 which can be either isolated or stirred at room tempera- when treated with TTN (eq 35).71,72 This method was employed ture in formic acid to give the corresponding aldehyde (eq 31). in the synthesis of hormones such as estrone73,74 and estradiol.74 A list of General Abbreviations appears on the front Endpapers THALLIUM(III) NITRATE TRIHYDRATE 5 O The synthesis of cis-hydrindanes can be achieved through the ring contraction of cis-octalins using TTN in TMOF or MeOH/ HO 1.3 equiv TTNÅ"3H2O, dioxane AcOH (eq 39).89 HClO4, rt, 15 min 69% (35) 1.1 equiv TTNÅ"3H2O AcO O MeOH/AcOH, rt, 2 h O (39) 40% (cis:trans 1:1) OH H H AcO Ring Opening of Cyclopropanes. The corner attack of TTN The reaction of cyclic homoallylic alcohols with TTN in AcOH/ on cyclopropanes bearing a suitably positioned internal nucleo- H2O leads to ring contraction products.75 Using this method, an phile gives a lactol product stereospecifically (eq 40),65,90,91 efficient protocol for the construction of indanes was developed whereas in the absence of the nucleophile, a mixture of allylic starting from primary75 78 and secondary79 alcohols (eq 36). The alcohols is obtained (eq 41).91 reaction with TTN of tertiary homoallylic alcohols bearing an al- lylic methyl group fails to form the expected ring contraction pro- ducts. Instead, the observed products are those originating from a fragmentation reaction. On the contrary, treating analogous ter- 1.2 equiv TTNÅ"3H2O, dioxane tiary alcohols without the allylic methyl group with TTN gives HClO4, rt, 24 h the corresponding indans in good yield through a ring contraction 63% reaction.80 (40) OH O OH OH 1.5 equiv TTNÅ"3H2O AcOH:H2O (2:1), rt (36) 1.4 equiv TTNÅ"3H2O, dioxane 53% HClO4, rt, 4 h O H (41) OH + The rearrangement of ²,Å‚-unsaturated esters,81 such as 2-(3,4- dihydronaphthalen-1-yl)-propionic acid ethyl ester, with TTN in OH AcOH leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl OH 66% 26% esters in good yield (eq 37) through a ring contraction reaction. Rearrangement of Ä…,²-unsaturated esters82 with TTN in MeOH furnishes dimethyl acetals. Cyclization Reactions. The treatment of (Ä…)-sulcatol with CO2Et CO2Et O TTN gives ²-hydroxy cyclic ethers as well as its acetoxy- and 2 equiv TTNÅ"3H2O methoxy-derivatives, depending on the reaction conditions.92 AcOH, rt, 2.5 h (37) The reaction of the monoterpenes isopulegol, neoisopulegol, cis- 61% carveol and Ä…-terpineol with TTN furnishes ²-hydroxy cyclic ethers in good yields (eq 42).93 This approach has been used for The TTN oxidation of 1,2-dihydronaphthalenes possessing di- the synthesis of other cyclic ethers.71,76,94 substituted double bond furnishes ring contraction products in very good yields.83 87 For example, the reaction of 1-methyl-1,2- dihydronaphthalene with TTN in MeOH led to the corresponding 1.2 equiv TTNÅ"3H2O indane in 87% yield, as a single diastereomer (eq 38).83 This TTN- AcOH/H2O (1:1), rt, 5 min (42) promoted ring contraction can be performed chemoselectively at OH 85% O the double bond of a 1,2-dihydronaphthalene moiety without ox- idation at the very reactive 2,3-position of the indole ring.88 HO MeO OMe 1.1 equiv TTNÅ"3H2O The reaction of 2 -hydroxychalcones with an excess of TTN in MeOH, 0 °C, 5 min (38) MeOH furnishes 4-methoxyaurones in moderate to good yields 87% (eq 43).95,96 Another feature of this reaction is the introduction of a methoxyl group into the aurone skeleton. Avoid Skin Contact with All Reagents 6 THALLIUM(III) NITRATE TRIHYDRATE 1. 3 equiv TTNÅ"3H2O, MeOH dimethoxylated substrates gave a mixture of quinines (eq 47).116 OH R rt, 15 min Under similar conditions, the reaction of the C-glycosyl naph- 2. HCl, reflux, 10 h thalenediol with TTN led to the C-glycosyl juglone in good MeO R = NO2, 60% yield.117,118 R = OMe, 54% O (43) R = Cl, 72% R R MeO OH 1 equiv TTNÅ"3H2O, MeOH 5 to 10 °C, 5 10 min MeO COMe R = H, 80% O R = OMe, 90% OMe (46) R MeO MeO O O OMe MeO COMe MeO Phenolic Oxidative Coupling. TTN has been used to pro- OMe mote the phenolic oxidative coupling of several molecules97,98 R OH 2.2 equiv TTNÅ"3H2O, MeOH aimed toward the synthesis of natural products such as OF4949- 40 °C, 120 min III99 and K-13.100 In these cyclizations, halogen substituents at R = H, 85% (3 :1) MeO COMe both ortho-positions of the phenol group are required. Further- (47) R = OMe, 80% (1:1) more, the quinine derivatives thus obtained can be either isolated99 (eq 44) or reduced in situ100 (eq 45). A great effort have been R O R OH made to apply this protocol to the synthesis of antibiotics related + MeO MeO to vancomycin.101 108 The preparation of other related macrocy- COMe COMe MeO MeO cles has also been performed by TTN oxidation.109 114 A spiro OH O derivative of the alkaloid prianosin was obtained in low yield by TTN-promoted nonphenolic oxidative coupling.115 Oxidation of Nitrogen Compounds. The oxidation of Ä…- methylpyrroles using TTN supported in K-10 leads to Ä…-formyl- CONH2 pyrroles.119,120 The preparation of 2-alkoxy-1H-imidazoles from O MeO2C H 5-aminopyrimidin-4(3H)-ones using TTN (eq 48) has been N NHR N described.121,122 A method to transform 5-aminouracils into the 3 equiv TTNÅ"3H2O, MeOH H O respective gem-diols was also reported (eq 49).121,123 0 °C to rt, overnight Br 27% O O R = CO2Bn Cl Cl Ph NH2 1.2 equiv TTNÅ"3H2O HO N (44) N PhHN MeOH, rt, 3 h Br OH OMe 51% N N (48) Cl OMe H O O O OH R NH2 1.2 equiv TTNÅ"3H2O R Br Cl N MeOH, rt, 1.5 2 h N O OH (49) R = Ph, R2 = Me, 93% O N O N R2 R = Me, R2 = Ph, 81% OMe O MeO2C H R2 R2 N NHR1 N 1. 3 equiv TTNÅ"3H2O, MeOH/dioxane (2:1) The TTN-promoted intramolecular cyclization of arenecarbal- H O 0 °C to rt, overnight dehyde benzothiazol-2-ylhydrazones furnishes 3-aryl-1,2,4- Cl 2. Zn/AcOH/THF, rt, 3 h triazolo[3,4-b]benzothiazoles. This transformation is performed 42% BrBr in the presence of p-toluenesulfonic acid (eq 50).124 HO R1 = CO2t-Bu, R2 = 4-OBn-C6H5 Cl OH 1.2 equiv TTNÅ"3H2O, 3 equiv PTSA N MeCN, reflux, 5 min N N C Ph Br 92% S H H (50) (45) Ph O N Cl Br N HO N S Oxidation of Phenols. The reaction of 2 -hydroxyacetophe- nones with TTN led to a single oxidation product from tri- and Oximes can be converted into the corresponding aldehy- tetramethoxylated substrates (eq 46), whereas the mono- and des (or ketones) by treatment with TTN (eq 17).26 In con- A list of General Abbreviations appears on the front Endpapers THALLIUM(III) NITRATE TRIHYDRATE 7 trast to these results, the oxidation with TTN of 1,3-dimethyl- 13. (a) McKillop, A.; Oldenziel, O. H.; Swann, B. P.; Taylor, E. C.; Robey, R. L., J. Am. Chem. Soc. 1971, 93, 7331. (b) McKillop, A.; Oldenziel, 5-(2,6-dichlorophenyl)uracil oxime leads to a cyclization product O. H.; Swann, B. P.; Taylor, E. C.; Robey, R. L., J. Am. Chem. Soc. (eq 51).125 1973, 95, 1296. 14. Anteunis, M.; DeSmet, A., Synthesis 1974, 868. 15. Renold, W.; Ohloff, G.; Norin, T., Helv. Chim. Acta 1979, 62, 985. Cl Cl 16. Ochiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H., Chem. Pharm. 1.4 equiv TTNÅ"3H2O Me Bull. 1983, 31, 86. MeOH/C6H6 (1:1), 30 40 °C, 2 h NN 17. Ochiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H., Chem. Pharm. 50% OH Bull. 1984, 32, 5027. O N O (51) 18. Ochiai, M.; Tada, S.-I.; Arimoto, M.; Fujita, E., Chem. Pharm. Bull. Me Cl 1982, 30, 2836. O 19. Ochiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H., Chem. Pharm. Me Cl Bull. 1984, 32, 887. N N 20. Taylor, E. C.; Jagdmann, Jr.; G.; McKillop, A., J. Org. Chem. 1978, 43, O O N 4385. Me 21. Nagao, Y.; Ochiai, M.; Kaneko, K.; Maeda, A.; Watanabe, K.; Fujita, E., Tetrahedron Lett. 1977, 1345. The cleavage of the hydrazine moiety induced by TTN furnishes 22. Taylor, E. C.; Robey, R. L.; McKillop, A., J. Org. Chem. 1972, 37, a variety of different carboxylic acid derivatives, depending on the 2797. conditions (eq 52).126 Moreover, this transformation can be per- 23. Kienzle, F., Tetrahedron Lett. 1972, 1771. formed using a catalytic amount of TTN and NaBrO3 as reoxidant. 24. Ferraz, H. M. C.; Ribeiro, C. R., Synth. Commun. 1992, 22, 399. However, this is not a general protocol, because it fails with some 25. (a) Smith, R. A. J.; Hannah, D. J., Synth. Commun. 1979, 9, 301. substrates.126 TTN also promotes the cleavage of tosylhydrazones (b) Fujita, E.; Nagao, Y.; Kaneko, K., Chem. Pharm. Bull. 1978, (eq 53).127 26, 3743. 26. McKillop, A.; Hunt, J. D.; Naylor, R. D.; Taylor, E. C., J. Am. Chem. 2 equiv TTNÅ"3H2O O O Soc. 1971, 93, 4918. ROH, rt, 1 6 h Ar NHNH2 R = H, 82% Ar OR (52) 27. Sangaiah, R.; Gold, A., J. Org. Chem. 1988, 53, 2620. 28. Miller, J. A.; Matthews, R. S., J. Org. Chem. 1992, 57, 2514. R = t-Bu, 53% 29. Yang, C.; Harvey, R. G., Tetrahedron 1992, 48, 3735. Ar = 4-nitrophenyl 30. Camps, P.; Giménez, S.; Farrés, X.; Mauleón, D.; Carganico, G., Liebigs Ann. Chem. 1993, 641. 2 equiv TTNÅ"3H2O R R 31. Camps, P.; Farrés, X., Synth. Commun. 1995, 25, 3931. MeOH, rt, 1 2 min NNHTs O (53) 32. Ho-Hoang, A.; Fache, F.; Lemaire, M., Synth. Commun. 1996, 26, 1289. R = H, R2 = Ph, 90% R2 R2 R = Me, R2 = Ph, 84% 33. van Aardt, T. G.; van Heerden, P. S.; Ferreira, D., Tetrahedron Lett. 1998, 39, 3881. 34. Ansems, R. B. M.; Scott, L. T., J. Am. Chem. Soc. 2000, 122, 2719. 35. Hu, B.; Ellingboe, J.; Han, S.; Largis, E.; Mulvey, R.; Oliphant, A., J. 1. (a) McKillop, A., Pure Appl. Chem. 1975, 43, 463. (b) McKillop, A.; Med. Chem. 2001, 44, 1456. Taylor, E. C. In Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon: Oxford, 1982; Vol. 7, p 465. 36. Tani, M.; Matsumoto, S.; Aida, Y.; Arikawa, S.; Nakane, A.; Yokoyama, Y.; Murakami, Y., Chem. Pharm. Bull. 1994, 42, 443. 2. McKillop, A.; Perry, D. H.; Edwards, M.; Antus, S.; Farkas, L.; Nogradi, M.; Taylor, E. C., J. Org. Chem. 1976, 41, 282. 37. Singh, O. V.; Khanna, M. S.; Tanwar, M. P.; Garg, C. P.; Kapoor, R. P., Synth. Commun. 1990, 20, 2401. 3. Crouse, D. J.; Wheeler, M. M.; Goemann, M.; Tobin, P. S.; Basu, S. K.; Wheeler, D. M. S., J. Org. Chem. 1981, 46, 1814. 38. Ferraz, H. M. C.; Silva, L. F. Jr., Tetrahedron Lett. 1997, 38, 1899. 4. McKillop, A.; Swann, B. P.; Ford, M. E.; Taylor, E. C., J. Am. Chem. 39. Ferraz, H. M. C.; Silva, L. F. Jr., J. Org. Chem. 1998, 63, 1716. Soc. 1973, 95, 3641. 40. Ferraz, H. M. C.; Silva, L. F. Jr., J. Braz. Chem. Soc. 2001, 12, 548. 5. Taylor, E. C.; Robey, R. L.; Liu, K.-T.; Favre, B.; Bozimo, H. T.; Conley, 41. Bird, C. W.; Cooper, R., Org. Prep. Proced. Int. 1993, 25, 237. R. A.; Chiang, C.-S.; McKillop, A.; Ford, M. E., J. Am. Chem. Soc. 42. Ferraz, H. M. C.; Silva, L. F., Jr.; Aguilar, A. M.; Vieira, T. O., J. Braz. 1976, 98, 3037. Chem. Soc. 2001, 12, 680. 6. (a) McKillop, A.; Swann, B. P.; Taylor, E. C., J. Am. Chem. Soc. 1973, 43. Grisar, J. M.; Bolkenius, F. N.; Petty, M. A.; Verne, J., J. Med. Chem. 95, 3340. (b) Taylor, E. C.; Chiang, C.-S.; McKillop A.; White, J. F., J. 1995, 38, 453. Am. Chem. Soc. 1976, 98, 6750. 44. Singh, O. V.; Kapil, R. S.; Garg, C. P.; Kapoor, R. P., Tetrahedron Lett. 7. McKillop, A.; Hunt, J. D.; Taylor, E. C.; Kienzle, F., Tetrahedron Lett. 1991, 32, 5619. 1970, 5275. 45. Kinoshita, T.; Ichinose, K.; Sankawa, U., Tetrahedron Lett. 1990, 31, 8. Corey, E. J.; Ravindranathan, T., Tetrahedron Lett. 1971, 4753. 7355. 9. Kaye, A.; Neidle, S.; Reese, C. B., Tetrahedron Lett. 1988, 29, 1841. 46. Singh, O. V.; Kapil, R. S., Indian J. Chem. 1993, 32, 911. 10. McKillop, A.; Hunt, J. D.; Kienzle, F.; Bigham, E.; Taylor, E. C., 47. Khanna, M. S.; Singh, O. V.; Garg, C. P.; Kapoor, R. P., J. Chem. Soc., J. Am. Chem. Soc. 1973, 95, 3635. Perkin Trans. 1 1992, 2565. 11. Layton, W. J.; Brock, C. P.; Crooks, P. A.; Smith, S. L.; Burn, P., J. Org. Chem. 1985, 50, 5372. 48. Khanna, M. S.; Singh, O. V.; Garg, C. P.; Kapoor, R. P., Synth. Commun. 1993, 23, 585. 12. Farcasiu, D.; Schleyer, P. v. R.; Ledlie, D. B., J. Org. Chem. 1973, 38, 3455. 49. Singh, O. V.; Kapil, R. S., Synlett 1992, 751. Avoid Skin Contact with All Reagents 8 THALLIUM(III) NITRATE TRIHYDRATE 50. Jain, A. C.; Paliwal, P., Indian J. Chem. 1990, 29B, 757. 89. Ferraz, H. M. C.; Vieira, T. O.; Silva, L. F. Jr., Synthesis 2006, 2748. 51. Sekizaki, H.; Yokosawa, R.; Chinen, C.; Adachi, H.; Yamane, Y., Biol. 90. Kocovskż, P.; Pour, M.; Gogoll, A.; Hanus, V.; Smrcina, M., J. Am. Pharm. Bull. 1993, 16, 698. Chem. Soc. 1990, 112, 6735. 52. Khan, R. A.; Kapil, R. S., J. Heterocyclic Chem. 2001, 38, 1007. 91. Kocovskż, P.; Srogl, J.; Pour, M.; Gogoll, A., J. Am. Chem. Soc. 1994, 116, 186. 53. Tsukayama, M.; Horie, T.; Iguchi, Y.; Nakayama, M., Chem. Pharm. Bull. 1988, 36, 592. 92. Ferraz, H. M. C.; Sano, M. K.; Ribeiro, C. M. R., Quím. Nova 1993, 16, 548. 54. Tsukayama, M.; Kawamura, Y.; Tamaki, H.; Kubo, T.; Horie, T., Bull. Chem. Soc. Jpn. 1989, 62, 826. 93. Ferraz, H. M. C.; Ribeiro, C. M. R.; Grazini, M. V. A.; Brocksom, T. 55. Silva, A. M. S.; Cavaleiro, J. A. S.; Elguero, J., Liebigs Ann/ Recueil J.; Brocksom, U., Tetrahedron Lett. 1994, 35, 1497. 1997, 2065. 94. Brocksom, U.; Toloi, A. P.; Brocksom, T. J., J. Braz. Chem. Soc. 1996, 56. Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M.; Thomas, J.-L., 7, 237. Tetrahedron Lett. 1998, 39, 881. 95. Thakkar, K.; Cushman, M., Tetrahedron Lett. 1994, 35, 6441. 57. Kamara, B. I.; Brandt, E. V.; Ferreira, D., Tetrahedron 1999, 55, 861. 96. Thakkar, K.; Cushman, M., J. Org. Chem. 1995, 60, 6499. 58. Tokés, A. L.; Antus, S., Liebigs Ann. Chem. 1993, 927. 97. Nishiyama, S.; Susuki, T.; Yamamura, S., Tetrahedron Lett. 1982, 23, 59. Meyer, M.; Deschamps, C.; Molho, D., Bull. Soc. Chim. Fr. 1991, 127, 3699. 91. 98. Noda, H.; Niwa, M.; Yamamura, S., Tetrahedron Lett. 1981, 22, 3247. 60. Horie, T.; Kawamura, Y.; Sakai, C.; Akita, A.; Kuramoto, M., J. Chem. 99. Nishiyama, S.; Susuki, Y.; Yamamura, S., Tetrahedron Lett. 1988, 29, Soc., Perkin Trans. 1 1994, 753. 559. 61. Horie, T.; Sasagawa, M.; Torii, F.; Kawamura, Y.; Yamashita, K., Chem. 100. Nishiyama, S.; Suzuki, Y.; Yamamura, S., Tetrahedron Lett. 1989, 30, Pharm. Bull. 1996, 44, 486. 379. 62. Horie, T.; Shibata, K.; Yamashita, K.; Fujii, K.; Tsukayama, M.; 101. Suzuki, Y.; Nishiyama, S.; Yamamura, S., Tetrahedron Lett. 1989, 30, Ohtsuru, Y., Chem. Pharm. Bull. 1998, 46, 222. 6043. 63. Tsukayama, M.; Wada, H.; Kishida, M.; Nishiuchi, M.; Kawamura, Y., 102. Suzuki, Y.; Nishiyama, S.; Yamamura, S., Tetrahedron Lett. 1990, 31, Chem. Lett. 2000, 1362. 4053. 64. Kahl, S. B.; Schaeck, J. J.; Koo, M.-S., J. Org. Chem. 1997, 62, 1875. 103. Nakamura, K.; Nishiyama, S.; Yamamura, S., Tetrahedron Lett. 1995, 65. Kocovskż, P.; Dunn, V.; Gogoll, A.; Langer, V., J. Org. Chem. 1999, 36, 8621. 64, 101. 104. Konishi, H.; Okuno, T.; Nishiyama, S.; Yamamura, S.; Koyasu, K.; 66. Passacantilli, P., Tetrahedron Lett. 1989, 30, 5349. Terada, Y., Tetrahedron Lett. 1996, 37, 8791. 67. Bettelli, E.; D Andrea, P.; Mascanzoni, S.; Passacantilli, P.; Piancatelli, 105. Evans, D. A.; Dinsmore, C. J.; Ratz, A. M.; Evrard, D. A.; Barrow, J. G., Carbohydr. Res. 1998, 306, 221. C., J. Am. Chem. Soc. 1997, 119, 3417. 68. Rigby, J. H.; Pigge, F. C., J. Org. Chem. 1995, 60, 7392. 106. Evans, D. A.; Barrow, J. C.; Watson, P. S.; Ratz, A. M.; Dinsmore, C. 69. Rigby, J. H.; Pigge, F. C., Synlett 1996, 631. J.; Evrard, D. A.; DeVries, K. M.; Ellman, J. A.; Rychnovsky, S. D.; 70. Rigby, J. H.; Kirova-Snover, M., Tetrahedron Lett. 1997, 38, 8153. Lacour, J., J. Am. Chem. Soc. 1997, 119, 3419. 71. Kocovskż, P.; Pour, M., J. Org. Chem. 1990, 55, 5580. 107. Evans, D. A.; Ellman, J. A.; DeVries, K. M., J. Am. Chem. Soc. 1989, 111, 8912. 72. Kocovskż, P.; Langer, V.; Gogoll, A., J. Chem. Soc., Chem. Commun. 1990, 1026. 108. Evans, D. A.; Dinsmore, C. J.; Ratz, A. M., Tetrahedron Lett. 1997, 38, 3189. 73. Kocovskż, P.; Baines, R. S., Tetrahedron Lett. 1993, 34, 6139. 74. Kocovskż, P.; Baines, R. S., J. Org. Chem. 1994, 59, 5439. 109. Inoue, T.; Inaba, T.; Umezawa, I.; Yuasa, M.; Itokawa, H.; Ogura, K.; Komatsu, K.; Hara, H.; Hoshino, O., Chem. Pharm. Bull. 1995, 43, 75. Ferraz, H. M. C.; Santos, A. P.; Silva, L. F., Jr.; Vieira, TdO., Synth. 1325. Commun. 2000, 30, 751. 110. Gubitskaya, I. I.; Klep, V. Z.; Makovetskii, V. P.; Novikov, V. P., Russ. 76. Ferraz, H. M. C.; Longo, L. S., Jr.; Zucherman-Schpector J., J. Org. J. Org. Chem. 1996, 32, 917. Chem. 2002, 67, 3518. 111. Kai, T.; Kajimoto, N.; Konda, Y.; Harigaya, Y.; Takayanagi, H., 77. Ferraz, H. M. C.; Silva, L. F. Jr., Tetrahedron 2001, 57, 9939. Tetrahedron Lett. 1999, 40, 6289. 78. Ferraz, H. M. C.; Silva, L. F. Jr., Synthesis 2002, 1033. 112. Nakamura, K.; Nishiya, H.; Nishiyama, S., Tetrahedron Lett. 2001, 42, 79. Silva, L. F., Jr.; Quintiliano, S. A. P.; Craveiro, M. V.; Vieira, F. Y. M.; 6311. Ferraz, H. M. C., Synthesis 2007, 355. 113. Ito, M.; Yamanaka, M.; Kutsumura, N.; Nishiyama, S., Tetrahedron 80. Silva, L. F., Jr.; Quintiliano, S. A. P.; Ferraz, H. M. C.; Santos, L. S.; Lett. 2003, 44, 7949. Eberlin, M. N., J. Braz. Chem. Soc. 2006, 17, 981. 114. Ito, M.; Yamanaka, M.; Kutsumura, N.; Nishiyama, H., Tetrahedron 81. Silva, L. F., Jr.; Pedrozo, E. C.; Ferraz, H. M. C., J. Braz. Chem. Soc. 2004, 60, 5623. 2006, 17, 200. 115. Cheng, J.-F.; Nishiyama, S.; Yamamura, S., Chem. Lett. 1990, 1591. 82. Juhász, L.; Kürti, L.; Antus, S., J. Nat. Prod. 2000, 63, 866. 116. Horie, T.; Yamada, T.; Kawamura, Y.; Tsukayama, M.; Kuramoto, M., 83. Ferraz, H. M. C.; Silva, L. F., Jr.; Vieira, T. O., Tetrahedron 2001, 57, J. Org. Chem. 1992, 57, 1038. 1709. 117. Matsuo, G.; Matsumura, S.; Toshima, K., Chem. Commun. 1996, 2173. 84. Ferraz, H. M. C.; Aguilar, A. M.; Silva, L. F. Jr., Synthesis 2003, 1031. 118. Matsuo G.; Miki, Y.; Nakata, M.; Matsumura, S.; Toshima, K., J. Org. 85. Ferraz, H. M. C.; Aguilar, A. M.; Silva, L. F. Jr., Tetrahedron 2003, Chem. 1999, 64, 7101. 59, 5817. 119. Jackson, A. H.; Rao, K. R. N.; Ooi, N. S.; Adelakun, E., Tetrahedron 86. Silva, L. F., Jr.; Sousa, R. M. F.; Ferraz, H. M. C.; Aguilar, A. M., J. Lett. 1984, 25, 6049. Braz. Chem. Soc. 2005, 16, 1160. 87. Silva, L. F., Jr.; Siqueira, F. A.; Pedrozo, E. C.; Vieira, F. Y. M.; 120. Jackson, A. H.; Rao, K. R. N.; Smeaton, E., Tetrahedron Lett. 1989, Doriguetto, A. C., Org. Lett 2007, 9, 1433. 30, 2673. 88. Silva, L. F., Jr.; Craveiro, M. V.; Gambardella, M. T. P., Synthesis 2007, 121. Matsuura, I.; Ueda, T.; Murakami, N.; Nagai, S.; Nagatsu, A.; 3851. Sakakibara, J., J. Chem. Soc., Perkin Trans. 1 1993, 965. A list of General Abbreviations appears on the front Endpapers THALLIUM(III) NITRATE TRIHYDRATE 9 122. Matsuura, I.; Ueda, T.; Murakami, N.; Nagai, S.; Sakakibara, J., J. 125. Kim, J. N.; Lee, H. J.; Kim, H. R.; Ryu, E. K., Synth. Commun. 1997, Chem. Soc., Chem. Commun. 1991, 1688. 27, 3477. 123. Matsuura, I.; Ueda, T.; Nagai, S.; Nagatsu, A.; Sakakibara, J.; Kurono, 126. Kocevar, M.; Mihorko, P.; Polanc, S., J. Org. Chem. 1995, 60, 1466. Y.; Hatano, K., J. Chem. Soc., Chem. Commun. 1992, 1474. 127. Wang, J.; Lin, J.; Zheng, Y.; Huang, J., Synth. Commun. 1997, 27, 124. Singh, O. M.; George, V., Synth. Commun. 1994, 24, 2627. 2583. Avoid Skin Contact with All Reagents