1 Metody dowodzenia twierdzeÅ„ p, q, r, . . . '" (" Ò! Ô! Ź p Ò! q p q p q q p p q p Ô! q p q p Ò! q p q p q a a - 4 a3 + 1 x x2 - 3x - 10 = 0 x = -2 x = 5 (p Ò! q) Ô! (Źq Ò! Źp). q p a b a b " " n a b a n b n (p Ò! q) Ô! (Źp (" q). (p Ò! q) Ô! Ź(p '" Źq) , p q (p '" Źq) p(n) n p(n) n n n0 p(n0) k n0 p(k) Ò! p(k + 1), p(k + 1) p(k) p(k) p(k + 1) n n 13 + 23 + . . . + n3. n 6n+2 + 72n+1 43 n 4 3n > n3. n a d 1 n (2a + (n - 1)d) . 2 p(n) n p(n) n n n0 p(n0) k n0 (p(n0) '" p(n0 + 1) '" · · · '" p(k)) Ò! p(k + 1) p(k+1) p(i) n0 i k a0 = 12, a1 = 29 n 2 an = 5an-1 - 6an-2 n an = 5 · 3n + 7 · 2n . n m n > m n m n > k · m k " N k + 1 n 4 n + 1 n a b a + b n n2 n n n > 1 n " n p p d" n n n(n+1)(2n+1) 12 + 22 + 32 + . . . + n2 = 6 13 + 33 + 53 + . . . + (2n - 1)3 = n2(2n2 - 1) n(n+1)(n+2)(n+3) 1 · 2 · 3 + 2 · 3 · 4 + . . . + n · (n + 1) · (n + 2) = 4 n " N 1 · 1! + 2 · 2! + 3 · 3! + · · · + n · n! = (n + 1)! - 1. n 0 11n+2 + 122n+1 133 n a q q = 1
a(1 - qn) . 1 - q a0 = 6, a1 = 11 n 2 an = 3an-1 - 2an-2 , n 0 an = 5 · 2n + 1 . n × n -1, 0, 1 n+1 2n 2n + 1 n+1 2n n n A {1, 4, 7, 10, 13, . . . 100} A 104 n A n + 1 [2n] A a b a b